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Abstract. In this paper we provide a negative answer to a question of Farb about the relation
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the genus of the surface on which it is defined.
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1. Introduction

Let S D Sg be a closed, orientable surface of genus g. A pseudo-Anosov

homeomorphism f W S ! S is a virtual lift if there exists a branched cover

pW S ! † with degree deg.p/ > 1 over a (possibly nonorientable) surface †,

and a pseudo-Anosov �W † ! † so that � lifts to a power of f by p; that is, there

exists n > 0 so that pf n D �p. We say that f n is a lift of � via p.

Franks and Rykken [6] showed that if f W S ! S is a pseudo-Anosov (with

orientable stable/unstable foliations), g � 2, and if the stretch factor �.f / is a

quadratic irrational, then f is a virtual lift—in fact, the branched cover is over a

torus pW S ! † (cf. Gutkin and Judge [7] and Kenyon and Smillie [8]). In 2004,

Farb asked (see [19]) if a version of this is true when the degree of the stretch factor

was greater than 2. Specifically, he asked if there exists a function hWN ! N so

that a pseudo-Anosov homeomorphism f W Sg ! Sg is a virtual lift if the degree

of �.f / over Q is at most d and g � h.d/. Here we prove that the answer is ‘no’.

Main Theorem. For any even d � 4 and all g � d
2

C2, there exist pseudo-Anosov

homeomorphisms fg;d W Sg ! Sg with orientable stable/unstable foliations and

�.fg;d / of degree d over Q, so that fg;d is not a virtual lift.
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We also mention the related results [2, Lemma 6.2] and [19, Corollary 1.4] that

both describe conditions which guarantee that a pseudo-Anosov is not a virtual

lift. In the former case no control on the stretch factor is given, and in the latter

the stretch factors have degree 6g � 6 (the maximal possible degree).

We complete the Introduction by briefly describing the idea of the proof of

the Main Theorem. The pseudo-Anosov homeomorphisms are constructed as

products of high powers of Dehn twists. The twisting curves and powers are

chosen in such a way that we can apply Strenner’s results from [19] to ensure that

the stretch factor has the appropriate degree. To prove that the homeomorphisms

are not virtual lifts, we analyze the flat metrics defining the associated Teichmüller

axes. Appealing to work of Rafi [18], Minsky [16], and Brock-Canary-Minsky [5],

we prove that for carefully chosen twisting curves, there is a bi-infinite collection

of simple closed curves that are “characteristic” for the pseudo-Anosov. These

characteristic curves are described in terms of Euclidean cylinder neighborhoods

with respect to the flat metrics, and if a pseudo-Anosov homeomorphism is a

virtual lift, we prove that they must project to the quotient surface in a very specific

way. The proof is completed by choosing the twisting curves so that the associated

bi-infinite sequence of curves cannot project to any nontrivial quotient surface in

that way.

Remark 1.1. In fact, no pseudo-Anosov element of the Veech group containing

the pseudo-Anosov mapping class from the Main Theorem will be a virtual lift;

see §5.1. However, we do not know whether there are other elements in the Veech

group, so we have not made it a point to emphasize this fact. There is a simpler

proof for the special case of d D 4, where we can find more elements of the Veech

group that are not virtual lifts, and this is Theorem 5.3, whose proof also appears

in §5.1. We have made this last section mostly independent from the rest of the

paper, so one can find a negative answer to Farb’s question in these few pages, at

least in the special case of d D 4.

Acknowledgments. The authors wish to thank the organizers of the Oberwolfach

Workshop “Surface Bundles” in December 2016 for their invitation to attend the

workshop and where this work started. We also wish to thank the organizers

of the third GEAR Network Retreat, Stanford August 2017 where this work was

largely completed. The authors would also like to thank Balázs Strenner and the

anonymous referee for many helpful and insightful comments on earlier versions

of the paper.

2. Surfaces, curves, and annular projections

Suppose S is any orientable hyperbolic surface of finite topological type. When

convenient, we view S as a Riemann surface in which punctures are filled in and
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treated as marked points. Here we collect a few facts about curve complexes and

subsurface projections. See [13] and [14] for more details.

The curve graph of S , C.S/, is the simplicial complex whose vertex set C.0/.S/

is the set of isotopy classes of essential simple closed curves on S . A pair of

isotopy classes determine an edge if and only if they can be realized disjointly on

S --equivalently, the geodesic representatives with respect to the hyperbolic metric

are disjoint. We make C.S/ into a geodesic metric space by declaring each edge

to have length 1. According to [13], C.S/ is ı-hyperbolic.

If Y is an annulus, we define the curve graph of Y , C.Y /, in a similar fashion:

the vertex set consists of isotopy classes of essential arcs in Y , where isotopies

are required to fix the boundary pointwise. Edges connect isotopy classes when

there are representatives with disjoint interiors, and we similarly make C.Y / into

a geodesic metric space.

The curve graphs of annuli arise from annular subsurfaces of S as follows.

Given an essential annulus Y � S , there is a corresponding covering space
zY ! S . The ideal boundary of the universal covering H2 ! S determines an

ideal boundary of zY , and we let xY denote zY together with its ideal boundary,

making xY into a compact surface with boundary. Given a vertex ˛ of C.S/,

representing ˛ by its hyperbolic geodesic representative, we let Q̨ denote the union

of the arcs in the preimage of ˛ in xY . We define �Y .˛/ to be the union of the

components of Q̨ which are essential in xY (together with their ideal endpoints);

that is, the components with an endpoint on each boundary component of xY .

We view �Y .˛/ as a subset of C.Y /. If � is a measured foliation on S , we can

similarly define �Y .�/ to be the set of lifts of non-singular leaves with endpoints

on distinct boundary components. Note that if ˛ is either a curve or a measured

foliation, �Y .˛/ � C.Y / has diameter 1 (any two components are disjoint). Given

two curves or measured foliations ˛; ˇ, if �Y .˛/ and �Y .ˇ/ are both nonempty,

we define the projection distance

dY .˛; ˇ/ D diam.�Y .˛/ [ �Y .ˇ//:

One also has dY .˛; ˇ/ D max i.˛0; ˇ0/ C 1, where the maximum is taken over

˛0 2 �Y .˛/, ˇ0 2 �Y .ˇ/, and i denotes the geometric intersection number of the

isotopy classes of arcs ˛0; ˇ0 (the number of intersection points of the interiors,

minimized over representative of the relative isotopy classes, also equal to the

absolute value of the algebraic intersection number). With these definition, dY

satisfies a triangle inequality whenever the projections involved are nonempty.

See [14], especially §2.4, for more on these (and other) subsurface projections.

The core curve of Y is an essential simple closed curve 
 in S and every

essential simple closed curve is the core curve of an essential annulus. We

sometimes write C.
/, �
 , and d
 instead of C.Y /, �Y , and dY , respectively. We

have �
 .˛/ ¤ ; if and only if the geometric intersection number, i.˛; 
/ ¤ 0.

One of the key features of subsurface projections is the following Bounded

Geodesic Image Theorem (see [14]) in the case of annuli.
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Proposition 2.1. There exists a constant M > 0 with the following property. If

˛; ˇ are two curves in C.S/ and d
 .˛; ˇ/ > M , then the geodesic from ˛ to ˇ

contains a vertex ı so that i.ı; 
/ D 0, and hence ı is adjacent to 
 in C.S/.

The following is a special case of the Behrstock Inequality [4] for annuli that

we will need.

Proposition 2.2. Suppose ˛; ˇ; 
 are three simple closed curves on S that pair-

wise intersect. If d
 .˛; ˇ/ � 10 then d˛.
; ˇ/ � 3.

This version with explicit constants is proved by Mangahas in [11, 12].

3. Teichmuller geodesics and Euclidean cone metrics

A pseudo-Anosov homeomorphism f W S ! S preserves a Teichmüller geodesic

axis defined by a unit area Euclidean cone metric q0 with cone angles greater

than 2� at non-marked points, for which the stable and unstable foliations �˙

are orthogonal, geodesic foliations. Furthermore, in preferred coordinates �˙

are horizontal and vertical, respectively, and the transverse measures are given

by horizontal and vertical variation, respectively. The different points along the

axis are conformal structures of Euclidean cone metrics qt in which the stable

and unstable foliations have their transverse measures scaled as et�C; e�t��

(maintaining unit area for the Euclidean cone metrics). We call the family of

Euclidean cone metrics Q D ¹qtºt2R the associated flat metics. Note that any

two metrics in the family differ by an affine diffeomorphism (away from the cone

points). We write `qt
.
/ for the qt -length of a curve 
 .

If f n is a lift of �W † ! † via a branched cover pW S ! †, then the associated

flat metrics „ D ¹�tº for � can be chosen so that qt D p�.�t /=
p

deg.p/ (this

scaling is necessary since qt and �t have unit area). In this case, we say that

Q D ¹qtº and „ D ¹�tº are compatible.

If Q D ¹qtº are the flat metrics associated to a pseudo-Anosov on S as above,

a Q-cylinder or flat cylinder for Q (or just flat cylinder, if Q is understood) is

an annulus Y � S so that the path metric on Y coming from some qt 2 Q

makes Y into a Euclidean product I � S1, where I is an interval (we allow the

possibility that Y is only embedded on its interior, but still write Y � S ). Note

that if the metric on Y is a Euclidean product for some qt 2 Q, then it is for

all qt 2 Q (and any two such metrics differ by affine diffeomorphism). The

qt -modulus of a flat cylinder Y � S , denoted M.Y; qt/, is the ratio of the height to

circumference, and M.Y; Q/ D max¹M.Y; qt/ j t 2 Rº is the maximum modulus.

If 
 � S is a two-sided simple closed curve, there is a maximal flat cylinder

Y
 � S whose core curves are isotopic to 
 , and we set M.
; qt / D M.Y
 ; qt / and

M.
; Q/ D M.Y
 ; Q/. We are allowing the possibility of a degenerate cylinder,
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that is, one with width zero. In this case, the cylinder consists of the unique

geodesic representative (which is a concatenation of saddle connections), and we

have M.
; qt / D 0 for all t .

We say that 
 is a Q-cylinder curve if M.
; Q/ > 0. There is a unique t
 2 R,

called the balance time of 
 , so that the vertical and horizontal variations of


 agree (see e.g. [13, 18]), and hence also the time when the core geodesics of

the cylinder make angle ˙�
4

with these foliations. Since the qt -length `qt
.
/ is

the square root of the sum of the squares of these variations, this length is also

minimized at t
 , and we can write

`qt
.
/ D `qt


.
/ cosh
1
2 .2.t � t
 //:

Because the modulus is the ratio of the area of the cylinder (which is constant in t )

and the square of the length, it follows that M.
; qt
 / D M.
; Q/.

The following is an easy consequence of work of Rafi (see Lemma 3.8, Corol-

lary 5.3, and Theorem 5.6 of [18]). Since this exact statement doesn’t appear in-

adjustable [18], we give a proof here for completeness.

Proposition 3.1. Suppose f W S ! S is a pseudo-Anosov homeomorphism, Q is

the associated family of flat metrics, and �˙ are the stable and unstable foliations.

If d
 .�C; ��/ � 4, then 
 is a Q-cylinder curve. In general, if 
 is a Q-cylinder

curve, then
ˇ

ˇ

ˇ

ˇ

M.
; Q/ � d
 .�C; ��/

2

ˇ

ˇ

ˇ

ˇ

� 2

Proof. Suppose t D t
 , the balance time of 
 and suppose S is endowed with the

metric qt . Choose lifts of nonsingular leaves ıC of �C and ı� of �� to the annular

cover zY
 of S so that

d
 .�C; ��/ D i.ıC; ı�/ C 1:

Since ıC; ı� are qt -geodesics, these realize the minimal intersection number in

their relative isotopy classes, and so intersect in at least 3 points.

Now observe that any three consecutive points of intersection along ıC deter-

mines two consecutive, compact arcs in ıC, as well as three consecutive points

of intersection along ı� and two compact arcs of ı�. These four arcs determine

a quadrilateral in zY
 . Since the geodesics intersect in right angles, the Gauss–

Bonnet formula implies that there are no singular points inside the quadrilateral,

and hence this is the image of an isometrically immersed rectangle, which is an

embedding except at one pair of vertices. Furthermore, the diagonal of the rectan-

gle connecting the identified vertices is a geodesic representative of 
 , and since

t D t
 the balance time, the rectangle is actually a Euclidean square; see Fig-

ure 1. In fact, since the diagonal of square has length `qt
.
/, the sides have length

`qt
.
/=

p
2.
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ıC

ı�

Figure 1. Nonsingular lifts ıC and ı� in the annulus zY
 , with five intersection points

shown; three in “front” and two in “back.” Squares are formed from arcs along any three

consecutive intersection points. One such square is highlighted by thicker lines.

Next, observe that the geodesic which is a diagonal of a square from three

consecutive intersection points contains no cone points, and hence there is a

nondegenerate flat cylinder containing for 
 . Consequently, 
 is a cylinder curve.

For any four consecutive intersection points there are two squares in zY
 that

have two sides in common. The geodesics from the diagonals of these two

“consecutive” squares form a flat cylinder of circumference `qt
.
/ and height

`qt
.
/=2 (half a diagonal). There are i.ıC; ı�/ � 3 such cylinders in zY glued

end-to-end, and so

M.
; Q/ D M.
; qt /

� 1

2
.i.ıC; ı�/ � 3/

D 1

2
.d
 .�C; ��/ � 4/

D d
 .�C; ��/

2
� 2:

On the other hand, consider the maximal flat cylinder in zY
 , and choose ıC
0 ; ı�

0

to be a pair of lifts of leaves of �C; ��, respectively, with an intersection point on

one boundary component of this cylinder. Considering the squares in the cylinders

from triples of consecutive intersection points as above we find that there are at

least b2M.
; Q/cC1 intersection points of ıC
0 ; ı�

0 inside the flat cylinder. From the

Gauss-Bonnet argument, it follows that there can be at most one more intersection

point of ıC
0 ; ı�

0 outside the maximal cylinder, and hence

i.ıC
0 ; ı�

0 / � b2M.
; Q/c C 2 � 2M.
; Q/ C 1:

Since ıC
0 ; ı�

0 are arbitrary leaves, we have d
 .�C; ��/ � i.ıC
0 ; ı�

0 / � 1 and hence

M.
; Q/ � d
 .�C; ��/

2
:

Combining this with the inequality above completes the proof. �
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The proof of our main theorem will rely on understanding how Q-cylinders

in S are mapped down to †. The images need not be cylinders, but with some

additional mild assumptions, they are very well behaved. A Euclidean half-

pillowcase is the quotient of a Euclidean cylinder S1 � Œ�T; T � by the group

generated by the involution �.ei� ; t / D .e�i� ; �t /. Considering a fundamental

domain for this action, we can equivalently describe this as the Euclidean orbifold

obtained by gluing a component of the boundary of a Euclidean cylinder S1�Œ0; T �

to itself by the map .ei� ; 0/ � .e�i� ; 0/. Topologically, a half-pillow case is a disk

with two marked points. The two marked points are cone points with cone angle �

and there is a geodesic segment, the core segment, connecting those points whose

complement is itself a half-open Euclidean cylinder. We will refer to the modulus

of the complementary Euclidean cylinder as the modulus of the half-pillowcase.

Lemma 3.2. Suppose † is an orientable surface and �W † ! † a pseudo-Anosov

homeomorphism with associated flat metrics „ D ¹�tº. Assume that the only

marked points of † are cone points of �t with cone angle � and that † is not a

torus or a sphere with four marked points. Let hW Y ! † denote a map of an open

Euclidean cylinder into † which for some �t 2 „, is a local isometry away from

a finite number of branched points. Then either h.Y / is a Euclidean cylinder in †

and h is a covering map onto its image or else h.Y / is a Euclidean half-pillowcase.

In either case, M.h.Y /; �t / � M.Y /
2

.

Proof. First suppose that there are no branch points in Y . In this case, each core

geodesic of Y maps to a geodesic. Since the holonomy of �t is ¹˙I º, it follows

that these geodesics are simple. We wish to show that no two core geodesics map

to the same geodesic. Suppose on the contrary that ˛; ˇ are two distinct core

geodesics in Y that map to the same geodesic. Since † is orientable, the sub-

cylinder between ˛ and ˇ provides an isotopy from one to the other. Orient both ˛

and ˇ in the same direction coming from the annulus (so the isotopy between them

is orientation preserving). Again, because † is orientable, ˛ and ˇ must map to

the same oriented curve. Since the sub-cylinder between ˛ and ˇ lies on different

sides of these two curves (each are two-sided curves), it follows that image of the

cylinder lies on both sides of the image. Thus, we can identify ˛ and ˇ in the sub-

cylinder producing a torus which maps locally isometrically to †. Therefore † is

a flat torus, which is a contradiction. Thus, no two core geodesics of Y are sent

to the same curve, and it follows that h.Y / is a cylinder, foliated by the images of

the core geodesics. Since h restricts to a covering map from each core geodesic

onto its image, it follows that h restricts to a covering map from Y onto its image.

Now suppose h is nontrivially branched at some point � 2 Y . Note that h.�/

must be a cone point of angle � . Let ˛ be a core geodesic through �. We first

want to show that h can only be branched at points on ˛. For this, observe that

˛ must project to a geodesic segment between a pair of cone points with angle

� . In particular, there is an antipodal point �0 on ˛ that projects to the other cone
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point (there may be several points that project to �0, but one must be antipodal).

Geodesics sufficiently close to ˛ project to geodesics surrounding h.˛/, and hence

a cylinder neighborhood of ˛ maps down to a Euclidean half-pillowcase. We need

to show that no other core geodesic contains a point where h is branched. So,

suppose there were another such geodesic ˇ ¤ ˛ of Y that also contains a branch

point, and choose one that is closest to ˛. Observe that the Euclidean cylinder

between ˛ and ˇ contains no points where h branches, and so the boundary

components can be glued together (“folded” at antipodal points one each boundary

component where h branches) to produce a sphere with four cone points that maps

locally isometrically (away from the preimage of the cone points) onto † (this is

similar to the case of no branch points where we showed that † was the image of

a flat torus). The only orientable Euclidean cone surfaces with holonomy ¹˙I º
which is the image of a locally isometric map of the sphere with four cone points

is the sphere with four cone points, and so † is a sphere with four cone points, a

contradiction. Thus, there is only one geodesic ˛ which contains branch points.

The sub-cylinders on either side of ˛ map to † without branched points, so

by the previous paragraph, these cover cylinder. Thus h.Y / is a Euclidean half-

pillowcase, namely the union of the half-pillowcase neighborhood of the image of

˛, together with these two cylinders (which share some core geodesics).

If hW Y ! h.Y / is a covering map, then the modulus of h.Y / is the modulus

of Y times the degree of this covering. In the two-fold quotient from a Euclidean

cylinder to a half-pillowcase, the modulus is reduced by half. The lower bound on

modulus now follows. This completes the proof. �

Remark 3.3. We note that when h.Y / is a Euclidean half-pillowcase, the map h

is not necessarily a (branched) covering map from Y to h.Y /: the two distances

from the core geodesic ˛ to the two boundary components might be different.

Lemma 3.4. Suppose † is a nonorientable surface and �W † ! † a pseudo-

Anosov homeomorphism with associated flat metrics „ D ¹�t º. Let hW Y ! †

denote a map of an open Euclidean cylinder into † which for some �t 2 „, is

a local isometry away from a finite number of branched points. Further assume

that the modulus of Y is strictly greater than 2. Then h.Y / is either a Euclidean

cylinder or a Euclidean half-pillowcase and M.h.Y /; �t / � M.Y /
2

.

Proof. Letting g W †0 ! † denote the orientation double cover, we claim that h

lifts to h0W Y ! †0. To see this, let †0 � † and Y0 � Y denote the complements

of the branched points and their preimages, respectively, so that hjY0
is a local

diffeomorphism. Since the orientation double cover of †0 is the orientation

bundle (that is, it is the bundle Pƒ2T .†0/), a choice of orientation on Y0 defines

a lift of hjY0
to the orientation double cover. Since † is orientable in a disk

neighborhood of the cone points, this lift extends to all of Y . A pseudo-Anosov

homeomorphism on a torus or sphere with four marked points cannot be a lift of
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a pseudo-Anosov homeomorphism of a nonorientable surface: this follows from

[20, Proposition 2.3], for example, where it is shown that lifts of pseudo-Anosov

homeomorphisms from a nonorientable surface have stretch factors that are not

Galois conjugates, while stretch factors of pseudo-Anosov homeomorphisms of

the torus and sphere with four marked points are quadratic irrational algebraic

integers, and hence their inverses are their Galois conjugates. Therefore, by

Lemma 3.2, h0.Y / � †0 is either a Euclidean cylinder or half-pillowcase with

the required lower bound on modulus.

Since g is a two-fold covering, there is another lift h00W Y ! †0. We claim

that h0.Y / and h00.Y / are disjoint, and hence the restriction of g to h0.Y / is

a homeomorphism onto h.Y /, which by Lemma 3.2 will complete the proof.

Therefore we suppose h0.Y / \ h00.Y / ¤ ; and obtain a contradiction. The

map h00 differs from h0 by composing with the order two covering transformation

� W †0 ! †0, which is orientation reversing. Thus, there is a point z of h0.Y / for

which �.z/ 2 h0.Y /.

If h0.Y / is a cylinder, we denote it A D h0.Y /. If h0.Y / is a half-pillowcase,

then since h0.Y / \ h00.Y / is an open set, we can assume that z and �.z/ lie in the

Euclidean cylinder surrounding the core segment between the cone points. By our

assumption, this cylinder has modulus strictly greater than 1, and we denote it A.

In either case, A is a Euclidean cylinder of modulus greater than 1 containing z

and �.z/.

Choose an oriented orthonormal basis e1; e2 on A so that e1 is tangent to the

core curves of A. The derivative d�z W Tz.A/ ! T�.z/.A/ is orientation reversing,

hence a reflection. Since the stable/unstable foliations are preserved by � , the line

of reflection must be tangent to one of these foliations. Since these foliations are

orthogonal, and neither has closed leaves, we see that the lines of reflection are

not spanned by either e1 or e2. It follows that � must send the core geodesic of

A through z transverse to the core geodesic through �.z/. Since the modulus of

A is greater than 1, the core geodesic is shorter than the distance between the

boundary components, which is a contradiction. Therefore, h0.Y / and h00.Y / are

disjoint, completing the proof. �

We also need to understand what the preimage of cylinders look like under a

branched cover pW S ! †.

Lemma 3.5. Given S and d > 0 there exists B D B.S; d/ > 0 with the following

property. Suppose that pW S ! † is a branched covering of degree at most d ,

f W S ! S a lift of the pseudo-Anosov �W † ! †, Q D ¹qtº and „ D ¹�t º are

the associated, compatible flat metrics, and Y � † is a maximal open Q-cylinder

with maximal modulus M.Y; „/. Then there is a sub-cylinder Y0 � Y so that

p�1.Y0/ is a union of Euclidean cylinders in S , each with maximal modulus at

least BM.Y; „/.
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Proof. Fix the metrics �t and qt at the balance time t of the core curve of Y . By

the Riemann-Hurwitz Theorem, there is a bound b > 0 on the number of branched

points of p, in terms of d and �.S/, and we set B D 1
d.bC1/

. Since Y contains

at most b branch points, there are at least b C 1 open Euclidean sub-cylinders in

Y disjoint from the branch points so that the boundaries of the closures in † are

either in the boundary of the closure of Y or else contain a branched point. The

sum of the moduli of these is precisely the modulus of Y , and consequently one

of them, call it Y0, has modulus at least M.Y;„/
bC1

D M.Y;�t/
bC1

. The preimage p�1.Y0/

is a Euclidean cylinder and for any component zY0 � p�1.Y0/ the restriction of p,

pj zY0
W zY0 �! Y0;

is a covering map of degree at most d . Therefore, M. zY0; Q/ � M.Y;„/
d.bC1/

D
BM.Y; „/, as required. �

4. Pseudo-Anosovs from Dehn twists.

Suppose c1; c2; : : : ; cn are curves that fill a surface S D Sg with g � 2 so that

i.ci ; ciC1/ ¤ 0 for all 1 � i � n and with 1 � i C 1 � n taken modulo n. Let

k1; k2; : : : ; kn 2 Z. Our construction involves analyzing the mapping class

f D T k1
c1

T k2
c2

� � � T kn
cn

:

We first extend the finite sets of curves and integers to infinite sequences ¹cj º1
j D1

and ¹kj º1
j D1 by setting

cj D cj 0 and kj D kj 0

where 1 � j 0 � n and j � j 0 modulo n. Then for all j � 1 set

fj D T k1
c1

T k2
c2

� � � T kj
cj

:

Observe that for all m � 0, and j � 0 we have

fnmCj D f mfj : (1)

Now construct a new infinite sequence of curves ¹
j º1
j D1 by 
j D fj .cj /. For

all j � 1, since cj D cj Cn, (1) implies

f .
j / D ffj .cj / D fj Cn.cj Cn/ D 
j Cn: (2)

Thus, f acts as the nth power of the shift on the sequence ¹
j º1
j D1. Therefore,

we can extend the infinite sequence of curves to a bi-infinite sequence ¹
j ºj 2Z so

that (2) holds for all j 2 Z.
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Lemma 4.1. Given curves c1; : : : ; cn as above, there exists R > 0 and K > 0 so

that if jkj j � K for all j � 1, then

(i) i.
i ; 
j / ¤ 0 for all i; j 2 Z, i ¤ j ,

(ii) jd
`
.
i ; 
j / � jk`jj � R for all i; j; ` 2 Z with i < ` < j .

(iii) ¹
iº is an f -invariant, uniform quasi-geodesic in the curve complex.

From (iii), it follows that f is pseudo-Anosov, and ¹
j ºj 2Z is a quasi-geodesic

axis. Moreover, if we let �˙ denote the stable/unstable foliations of f , then

(iv) jd
j
.�C; ��/ � jkj jj � R C 2

for all j 2 Z.

The meaning of (iii) is that there exists constants A; B > 0, depending only on

c1; : : : ; cn, so that

1

A
ji � j j � B � d.
i ; 
j / � Aji � j j C B:

We have avoided cluttering the already lengthy statement by excluding explicit

mention of these constants.

Proof. We have already established the f -invariance of ¹
j º. In particular, it

suffices to prove the statements (i)–(iii) for positive indices.

First consider a triple of any three consecutive curves .
j �1; 
j ; 
j C1/. We want

to describe this triple of curves up to homeomorphism. By applying a sufficiently

high positive power of f , we can assume that j > 1. Then applying f �1
j �1 to this

triple we get

f �1
j �1.
j �1; 
j ; 
j C1/ D f �1

j �1.fj �1.cj �1/; fj .cj /; fj C1.cj C1//

D .cj �1; T
kj
cj

.cj /; T
kj
cj

T
kj C1
cj C1

.cj C1//

D .cj �1; cj ; T
kj
cj

.cj C1//

Since the sequences ¹cj º and ¹kj º are n-periodic, we see that up to homeomor-

phism, any consecutive triple looks like

cj �1; cj ; T
kj
cj

.cj C1/;

for 1 � j � n and the other two indices 1 � j �1; j C1 � n taken modulo n. Since

consecutive curves intersect nontrivially, we can apply the triangle inequality for

projection distances to obtain

jdcj
.cj �1; T

kj
cj

.cj C1// � dcj
.cj C1; T

kj
cj

.cj C1//j � dcj
.cj �1; cj C1/:

The right hand side is uniformly bounded by n-periodicity, and we claim that

jdcj
.cj C1; T

kj
cj

.cj C1// � jkj jj � 3:
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This follows from the triangle inequality, the fact that both �cj
.cj C1/ and

�cj
.T

kj
cj

.cj C1// have diameter at most 1, and the fact that the kth power of a Dehn

twist translates any arc by at most k C 1 on the curve graph of the annulus (note

that some arcs are translated more than k because there is more than one lift of

the twisting curve). Therefore, taking R0 > 0 to be at least three more than that

uniform bound implies

jdcj
.cj �1; T

kj
cj

.cj C1// � jkj jj � R0:

Applying the homeomorphism fj �1 to all curves in this inequality, we obtain

jd
j
.
j �1; 
j C1/ � jkj jj � R0: (3)

For now, assume K � R0 C 16 (later we will increase the lower bound on K). If

jkj j � K, it then follows that we also have

d
j
.
j �1; 
j C1/ � 16:

Consequently, i.
j �1; 
j C1/ ¤ 0 (and hence, 
j �1; 
j ; 
j C1 pairwise intersect).

Claim. If i < j , then i.
i ; 
j / ¤ 0 and for all i < ` < j , we have d
i
.
`; 
j / � 3

and d
j
.
i ; 
`/ � 3.

Proof. We prove the claim by induction on j � i . For j � i D 1 there is no such `,

and the nonzero intersection number statement is a consequence of the description

of triples. If j � i D 2, then the triples description implies i.
i ; 
j / ¤ 0, and by

Proposition 2.2, it follows that d
i
.
`; 
j / � 3 and d
j

.
i ; 
`/ � 3. These serve

as the base cases.

Now suppose the statement is true whenever the difference in indices is at most

m, and suppose j � i D m C 1. Without loss of generality, we may assume that

m C 1 � 3. Let i < ` < j be any index. Suppose first that

i < ` � 1 < ` < ` C 1 < j:

Then by induction 
`; 
`C1; 
j pairwise intersect, 
i ; 
`�1; 
` pairwise intersect,

and

d
`
.
`C1; 
j / � 3 and d
`

.
i ; 
`�1/ � 3:

By the triangle inequality, we have

d
`
.
i ; 
j / � d
`

.
`�1; 
`C1/ � d
`
.
`�1; 
i / � d
`

.
`C1; 
j / � 16 � 3 � 3 D 10:

In particular, 
i and 
j nontrivially intersect. Furthermore, by Proposition 2.2, we

have

d
i
.
`; 
j / � 3 and d
j

.
i ; 
`/ � 3;

as required.
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If we do not have i < ` � 1 < ` < ` C 1 < j , then it must be that either

` C 1 D j or ` � 1 D i , and we can argue similarly. For example, if i D ` � 1,

then ` C 1 < j and by induction

d
`
.
`C1; 
j / � 3 and d
`

.
i ; 
`C1/ � 16:

So d
`
.
i ; 
j / � 13, thus i.
i ; 
j / ¤ 0, and applying Proposition 2.2 we have

d
i
.
`; 
j / � 3 and d
j

.
i ; 
`/ � 3

as required. The case ` C 1 D j is similar. This completes the induction, and

hence proves the claim. 4

Observe that part (i) follows from the first part of the claim. For part (ii), let

i < ` < j . Then by the claim and the triangle inequality we have

jd
`
.
i ; 
j / � d
`

.
`�1; 
`C1/j � d
`
.
`�1; 
i/ C d
`

.
`C1; 
j / � 6:

So, setting R D R0 C 6, part (ii) of the lemma follows from Inequality (3).

To prove part (iii), we first prove

Claim. For any j 2 Z, the curves 
j C1; 
j C2; : : : ; 
j Cn fill S .

Proof. By applying an appropriate power of f , and cyclically permuting the

original indices 1; 2; : : : ; n, it suffices to prove that 
1; : : : ; 
n fill S . For this, we

show that for any 1 � j � n, the subsurface Xj filled by 
1; : : : ; 
j is the same as

the subsurface Zj filled by c1; : : : ; cj . We do this by induction on j .

The base case is j D 1, and then 
1 D c1, so X1 D Z1 is the annular

neighborhood. Now suppose that Xj �1 D Zj �1 for some j � 2 and we prove

Xj D Zj . First observe that

fj �1 D T k1
c1

� � � T kj �1
cj �1

is supported on Zj �1 D Xj �1 since c1; : : : ; cj �1 are contained in Zj �1. If

cj � Zj �1, then Zj D Zj �1, while on the other hand


j D fj �1T
kj
cj

.cj / D fj �1.cj / � Zj �1 D Xj �1

and hence Xj D Xj �1 D Zj �1 D Zj . Thus if cj � Zj �1, we are done. So,

suppose cj 6� Zj �1. Then Zj is determined by Zj �1 and the isotopy classes of

arcs of cj � Zj �1 in S � Zj �1. We will be done if we can show that these isotopy

classes of arcs are the same as those of 
j � Xj �1 in S � Xj �1 D S � Zj �1.

For this, observe that as above 
j D fj �1.cj /, and since fj �1 is supported on

Xj �1 D Zj �1, fj �1 cannot change the isotopy classes of arcs of cj �Zj �1. Hence


j � Xj �1 D 
j � Zj �1 is isotopic to cj � Zj �1, as required. This proves the

claim. 4
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Now observe that by f -invariance, if jj � i j � n, then d.
i ; 
j / � A0 for some

constant A0. In particular, d.
i ; 
j / � A0jj � i j for 0 < jj � i j � n. By the triangle

inequality, d.
i ; 
j / � A0jj � i j for all i; j .

At this point we further assume that K � R0C16CM , where M is the constant

from Proposition 2.1. Consider any geodesic � in C.S/ from 
i to 
j and list the

vertices consecutively as 
i D ˛0; ˛1; : : : ; ˛r D 
j from 
i to 
j . The bound on K

implies d
`
.
i ; 
j / > M , for all i < ` < j . So by Proposition 2.1 there is a vertex

˛s of � which is disjoint from 
`. There may be more than one, but there can be at

most 3 since � is a geodesic (if there were more than three, two would be distance

at least 3 apart, which is impossible since they are distance 1 from 
`). For each

such `, let ˛s.`/ be the vertex closest to 
j which is disjoint from 
`. As in [3,

Lemma 4.4], s.`/ � s.`0/ if ` � `0. On the other hand, since every n consecutive

curves fill, we have s.`/ < s.` C n/. Consequently, the number of vertices in �

between 
i and 
j is at least j �1
n

and hence the distance is at least

d.
i ; 
j / � j � i

n
� 1:

This provides the desired lower bound, and hence ¹
j º is a uniform quasi-geodesic.

Finally, for part (iv), we note that since ¹
j ºj 2Z is a quasi-geodesic, and is

f -invariant, f must be pseudo-Anosov, and we have

lim
j !˙1


j D �˙;

in the Hausdorff topology on S , after throwing away any isolated leaves of the

limit. Therefore, for every ` 2 Z, every arc of �
`
.�C/ [ �
`

.��/ is a limit

of arcs in �
`
.
j / [ �
`

.
�j /, as j tends to infinity. Since some limits of arcs

in the latter set can disappear (since isolated leaves of the Hausdorfff limits are

discarded), the difference in diameters between the former and latter sets (for j

sufficiently large) is at most 2. Part (iv) now follows from part (ii). �

Now suppose c1; : : : ; cn are as above, �1; : : : ; �n 2 ¹˙1º, and m � K, with K

as in Lemma 4.1. Let kj .m/ D �j m for 1 � j � n, and extend this to ¹kj .m/ºj 2Z

as above. Construct a sequence of homeomorphisms ¹fmW S ! Sº1
mD1 by

fm D T k1.m/
c1

T k2.m/
c2

� � � T kn.m/
cn

: (4)

Proposition 4.2. Let ¹fmW S ! Sº1
mDK be a sequence of pseudo-Anosov home-

omorphisms defined as in equation (4), Q.m/ D ¹qt .m/º the associated flat met-

rics, and ¹
j .m/ºj 2Z the associated fm-invariant collection of curves, for each m.

Then for all j ,

M.
j .m/; Q.m// � m � R � 6

2
;

where R is the constant from Lemma 4.1. Furthermore, there is a constant D > 0

so that for any m and curve 
 62 ¹
j .m/ºj 2Z,

M.
; Q.m// � D:
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Proof. Let �˙.m/ denote the stable/unstable foliations of fm. Since jkj .m/j D
m � K, ¹
j .m/ºj 2Z satisfies the conclusion of the Lemma 4.1. Combining this

with Proposition 3.1 we have

M.
j .m/; Q.m// �
d
j .m/.�

C.m/; ��.m//

2
� 3 � m � R � 6

2
:

This proves the first statement.

Let Xfm
denote the mapping torus of fm equipped with its hyperbolic metric,

and zXfm
the cover of Xfm

corresponding to the fiber subgroup �1.S/. Appealing

to the Short Curve Theorem of Minsky [16] (see also the Length Bound Theorem

from Brock-Canary-Minsky’s [5]), the curves 
j .m/ all have length in zXfm
tending

to zero as m tends to infinity. Being fm-invariant, they push down to n closed

geodesics in Xfm
.

The geometric limit of the sequence of hyperbolic 3-manifolds Xfm
is the

cusped hyperbolic 3-manifold X1 obtained by drilling out the n curves, real-

ized on n different fibers of Xfm
(see [21]) and Xfm

is obtained from X1 by

.1; kj .m//-Dehn filling on X1 for all m > 0 as in [10]. The geometric conver-

gence ensures that there is a uniform lower bound to the length of any curve in

Xfm
which is not one of the n curves, and hence there is a uniform lower bound

(independent of m) to the length of any curve 
 in zXfm
which is not in ¹
j .m/ºj 2Z.

By the Short Curve Theorem again, it follows that d
 .�C.m/; ��.m// is uniformly

bounded, independent of m and 
 . By Propostion 3.1, the modulus Mt .
/ of any

qt .m/-Euclidean cylinder with core curve isotopic to 
 is uniformly bounded, in-

dependent of m and 
 , as required. �

The following provides a useful mechanism for deciding when a pseudo-

Anosov f W S ! S constructed as above is not a virtual lift.

Theorem 4.3. Suppose ¹fmW S ! Sºm is a sequence of pseudo-Anosov home-

omorphisms as in equation (4), ¹¹
j .m/ºj 2Zºm are the associated sequences of

curves, and that the stretch factors �.fm/ have degree greater than 2 over Q. Then

there exists a positive integer N � K, so that if m � N and fm is a virtual lift

of some �mW †m ! †m via a branched covering pmW S ! †m, then there are

representatives of the curves 
j .m/ so that p�1
m .pm.
j .m/// D 
j .m/ for all j .

The choice of representative 
j .m/ is a convenience for the statement: for an

arbitrary representative, all components of the preimage of the image will be seen

to be isotopic.

Proof. To begin, assume N is large enough so that if m � N , then Proposition 4.2

ensures that for all j , M.
j .m/; Q.m// > 0 and hence 
j .m/ is a cylinder curve.

Suppose that pmW S ! †m is a branched covering and �m a map that lifts to

a power of fm. Since �.fm/ is not quadratic irrational, †m is not a sphere with
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four marked points or a torus. Let „.m/ D ¹�t .m/º and Q.m/ D ¹qt .m/º be the

associated compatible family of flat metrics. By Lemmas 3.2 and 3.4, for each

j , we can choose a representative of 
j .m/ so that pm.
j .m// is a cylinder curve

with

M.pm.
j .m//; „.m// � M.
j .m/; Q.m//

2
:

On the other hand, by the Riemann–Hurwitz Theorem, there is a bound d on the

degree of pm. Let B D B.S; d/ be the constant from Lemma 3.5. Then there is

a sub-cylinder Yj .m/ of the cylinder about pm.
j .m// so that each component of
zYj .m/ D p�1

m .Yj .m// is a Euclidean cylinder and has maximal modulus at least

BM.pm.
j .m//; „.m// � BM.
j .m/; Q.m//

2
:

One component of zYj .m/ is contained in the original cylinder with core curve


j .m/. Without loss of generality, we may choose 
j .m/ so that pm.
j .m// �
Yj .m/, and hence 
j .m/ � p�1

m .pm.
j .m/// � zYj .m/.

Let D > 0 be the constant from Proposition 4.2. We choose N > K so that if

m � N , then for all j
B.m � R � 6/

4
> D:

Then if 
j .m/0 is any component of p�1
m .pm.
j .m///, and zY 0

j .m/ � zYj .m/ is the

component containing it, then the bound above on the maximal modulus of zY 0
j .m/

combined with Proposition 4.2 implies

M.
j .m/0; Q.m// � BM.
j .m/; Q.m//

2
� B.m � R � 6/

4
> D:

Consequently, 
j .m/0 must be one of the curves 
j 0.m/. However, the direction of


j .m/ and 
j .m/0 in the Euclidean cone metric are the same, while if j 0 ¤ j , the

curves 
j 0.m/ and 
j .m/ intersect nontrivially by Lemma 4.1. Therefore, 
j .m/0

and 
j .m/ must either be equal or isotopic.

Thus, all the components of p�1
m .pm.
j .m/// are isotopic to 
j .m/, and are

hence contained in a single cylinder. By Lemma 3.2, either pm restricted to this

cylinder is a covering map—in which case, p�1
m .pm.
j .m/// D 
j .m/, and we

are done—or the image of the cylinder is a half-pillowcase. If the latter happens,

then we take 
j .m/ to be the unique core curve in the cylinder that projects to the

core geodesic segment of the half-pillowcase, we get p�1
m .pm.
j .m/// D 
j .m/,

as required. �

Corollary 4.4. In addition to the assumptions from Theorem 4.3, suppose that

i.cj ; cj C1/ D 1 for some j . If m � N , and fm is a virtual lift of some

�mW †m ! †m via a branched covering pmW S ! †m, then †m is the quotient by

an orientation preserving involution preserving the isotopy classes of c1; : : : ; cm.
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Proof. Choose representatives 
i .m/ for the isotopy classes, for all i , as in Theo-

rem 4.3. Note that i.
j .m/; 
j C1.m//D i.cj ; cj C1/D 1. Since p�1
m .pm.
i .m///D


i .m/ for all i , it follows that if x D 
j .m/ \ 
j C1.m/, then p�1
m .pm.x// D ¹xº.

Since the image of the cylinders about 
j .m/ are either cylinders or half-pillow-

cases, the local degree of pm near x must be 1 or 2. The degree cannot be 1 since

the definition of virtual lift requires a branched cover of degree greater than 1.

Therefore, the degree is 2 and hence the branched covering is regular (since in-

dex 2 subgroups are always normal). The covering group is thus generated by an

orientation preserving involution � .

Since p�1
m .pm.
i .m/// D 
i .m/ for all i , it follows that �.
i .m// D 
i .m/.

We now show that �.ci / D ci for each i D 1; : : : ; n. For i D 1, note that

c1 D 
1.m/. We use this as the base case for induction. Assuming �.ci / D ci

for all 1 � i � ` < n, we prove that �.c`C1/ D c`C1. For this, observe that


`C1.m/ D T k1.m/
c1

� � � T k`.m/
c`

T
k`C1.m/
c`C1

.c`C1/ D T k1.m/
c1

� � � T k`.m/
c`

.c`C1/

since Tc`C1
fixes c`C1. Therefore, we have

T �k`.m/
c`

� � � T �k1.m/
c1

.
`C1.m// D c`C1:

Since � preserves each of c1; : : : ; c`, it commutes with T D T
�k`.m/
c`

� � � T �k1.m/
c1

,

thus the equations T .
`C1.m// D c`C1 and �.
`C1.m// D 
`C1.m/ imply

�.c`C1/ D �T .
`C1.m// D �T ��1�.
`C1.m// D T .
`C1.m// D c`C1:

This completes the proof. �

4.1. Strenner’s construction. The key to obtaining the required degree for the

dilatation is the following special case of a result of Strenner [19, Theorem 5.3],

building on a theorem of Penner [17].

Theorem 4.5 (Strenner). Suppose A D a1 [ : : : [ an and B D b1 [ � � � [ bn

are multicurves that fill the surface S , and let N D .i.ai ; bj //ij be the matrix of

intersection numbers and G the associated (bipartite) adjacency graph (with a

vertex for every ai and every bj and an edge between ai and bj if i.ai ; bj / ¤ 0).

Suppose

(1) rk.N / D r > 0,

(2) ai1bi1ai2bi2 � � � aid bid ai1 are the vertices of a closed, contractible loop in G

visiting every vertex.

Then for all m > 0 sufficiently large, the mapping classes

fm D T m
ai1

T �m
bi1

� � � T m
aid

T �m
bid

are pseudo-Anosov and �.fm/ has degree 2r .
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We note that Strenner’s theorem from [19] states that the degree of the stretch

factor should be the rank of the intersection matrix, whereas Theorem 4.5 states

that the degree should be twice the rank. The discrepancy comes from the fact

that in [19], Strenner considers the matrix of intersection numbers of all pairs of

curves. Since i.ai ; aj / D i.bi ; bj / D 0 for all i; j , Strenner’s intersection matrix

is given by
�

0 N

N T
0

�

;

where the 0’s are appropriately sized zero-matrices. Strenner’s matrix thus has

rank exactly twice the rank of N .

5. Proof of the main theorem

We will apply the results of the preceding section to a particular pair of multic-

urves. For this, we start with a particular pair of simple closed curves a; b that fill a

genus 3 surface X with one boundary component and intersect in exactly 5 points

with the same sign (after orienting them appropriately). This pair is described in

Figure 2.

ˇ2 ˇ4 ˇ1 ˇ5 ˇ3

ˇ1 ˇ2 ˇ3 ˇ4 ˇ5

˛1 ˛2 ˛3 ˛4 ˛5 ˛1

x

Figure 2. The curves a and b are cut into arcs a D ˛1 [ � � � [ ˛5 and b D ˇ1 [ � � � [ ˇ5 at

the points of intersection a \ b. The surface X of genus 3 with one boundary component is

shown, cut open along essential arcs meeting each of the arcs ˇ1; : : : ; ˇ5 and ˛1 as labelled.

The point x is the fixed point of an involution � of X leaving each of a and b invariant. The

thick line represents an essential arc ı meeting b in the arc ˇ1.

Lemma 5.1. Up to isotopy, the surface X admits exactly one orientation preserv-

ing involution � leaving both a and b invariant.

Proof. Let � W X ! X denote the “obvious” involution of X , evident in Figure 2,

given by rotation about the point x—it is straightforward to check that the rotation

extends over the gluing of the arcs in the reconstruction of X . To see that � is the

only orientation preserving involution preserving a and b, we note that such an

involution would define a graph automorphism of a [ b, viewed as a four-valent
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graph with 5 vertices, and would preserve the cyclic ordering around each vertex.

Any such nontrivial graph automorphism would necessarily fix one of the vertices,

and would be determined by which vertex it fixed. It is now easy to show that the

only such nontrivial graph automorphism is � . �

We now prove the following theorem, which implies the Main Theorem in the

introduction.

Theorem 5.2. For each integer r > 1 and closed orientable surface S D Sg with

g � r C 2, there exists a pseudo-Anosov homeomorphism f W S ! S with stretch

factor �.f / of degree 2r and orientable foliations that is not a virtual lift.

Proof. Embed the surface X of genus 3 with one boundary component as an

essential subsurface of Sg . The complement Z is a surface of genus g � 3 with

one boundary component. Let a1 D a and b1 D b as constructed above. The arc

ı from Figure 2 can be connected to a nonseparating arc ı0 in Z to construct an

essential simple closed curve we denote a2, that has intersection number 1 with

b1 and 0 with a1.

If r D 2, then we choose any essential simple closed curve b2 in Z which fills

with ı0 so that all k intersection points have the same sign, which is possible since

ı0 is a nonseparating arc in Z. The intersection matrix is

.i.ai ; bj // D
�

5 1

0 k

�

:

This has rank 2. Now consider the sequence of mapping classes defined by:

fm D T m
a1

T �m
b1

T m
a2

T �m
b2

T m
a2

T �m
b1

:

On the one hand, the sequence ¹fmº1
mD1 satisfies the hypothesis of Theorem 4.5,

and so for m sufficiently large, the fm are pseudo-Anosov, and have stretch factors

�.fm/ having degree 4 over Q. On the other hand, consecutive curves in the

sequence a1; b1; a2; b2; a2; b1 intersect nontrivially (cyclically), and i.b1; a2/ D 1.

Consequently, the sequence ¹fmº also satisfies Corollary 4.4, and so by taking m

larger if necessary, it follows that if fm is a virtual lift via a branched covering

pmW S ! †m, then pm has degree two, and †m is the quotient by an orientation

preserving involution � preserving a1; b1; a2; b2. The involution � must restrict to

� on X (up to isotopy) by Lemma 5.1. However, � does not preserve the isotopy

class of ı in X , and so � cannot preserve b1, a contradiction. Therefore, there is

no such involution � , and hence f is not a virtual lift.

From Penner’s construction, the invariant foliations are carried by bigon tracks

obtained by smoothing the points of intersection. In our construction the curves

can be oriented so the intersection points have all the same sign, and so these

tracks are orientable. Therefore, the invariant foliations are orientable.
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If r > 2, we proceed in a similar fashion, choosing a curve b2 that intersects

a2 once and is disjoint from all other curves. Note that this is possible since ı0

was a nonseparating arc in Z. We continue, choosing a3 intersecting b2 once and

disjoint from all other curves, b3 intersecting a3 once and disjoint from all other

curves, etc., until we obtain a set of curves

a1; b1; a2; b2; : : : ; ar�1; br�1; ar :

That this is possible follows from an Euler characteristic computation, and the

classification of surfaces. We finally choose br so that the union of all the curves

fills S and so that br is disjoint from all curves except ar , which it intersects in k

points, for some k > 0, all with the same sign. The r � r intersection matrix now

has the form

.i.ai ; bj // D

0

B

B

B

B

B

B

B

B

B

B

B

@

5 1 0 0 � � � 0 0 0

0 1 1 0 � � � 0 0 0

0 0 1 1 � � � 0 0 0

0 0 0 1 � � � 0 0 0
:::

:::
:::

:::
: : :

:::
:::

:::

0 0 0 0 � � � 1 1 0

0 0 0 0 � � � 0 1 1

0 0 0 0 � � � 0 0 k

1

C

C

C

C

C

C

C

C

C

C

C

A

This has determinant 5k, and so has rank r . As above, we can now use Theorem 4.5

and Corollary 4.4 to construct a sequence of pseudo-Anosov homeomorphisms

fm D T m
a1

T �m
b1

� � � T m
ar

T �m
br

T m
ar

� � � T m
a2

T �m
b1

;

and arguing exactly as in the case r D 2 to deduce that for m sufficiently large

�.fm/ has degree 2r over Q, and that fm is not a virtual lift. �

5.1. Veech groups and degree 4. Recall that the Veech group of a flat metric q

defined by a quadratic differential is the group of all mapping classes represented

by affine homeomorphisms with respect to q; see e.g. [8]. Since the proof of

the Main Theorem involves showing that there is no branched covering S ! †

so that the flat metric on S pulls back from one on †, it actually shows that no

pseudo-Anosov in the Veech group for that flat metric is a virtual lift. We do

not know, however, if there are any elements in the Veech group other than the

pseudo-Anosov homeomorphism (and its powers) which we constructed.

It turns out that to prove the theorem in the special case of d D 2r D 4, one

may bypass much of the technical machinery from Section 4 by appealing to the

Thurston construction; see [22, 9]. This has the added benefit that the Veech group

is nonelementary (and hence contains a nonabelian free, purely pseudo-Anosov

subgroup), no pseudo-Anosov element of which is a virtual lift.
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Theorem 5.3. For any genus g � 4, there exists a nonelementary Veech group G

in Mod.Sg/ so that no pseudo-Anosov element of G is a virtual lift.

Proof. To begin, for every g � 4, we will construct a pair of multicurves A D
a1 [ a2 and B D b1 [ b2 with i.a1; b1/ D 5, i.a1; b2/ D 1 D i.a2; b1/, and

i.a2; b2/ D k, where

k D

8

ˆ

<

ˆ

:

0 for g D 4,

3 for g D 5,

2g � 8 for g � 6.

To do this, we again embed the genus 3 surface with one boundary component X

in Sg , and take a1 D a and b1 D b, so that i.a1; b1/ D 5. Next, we describe how

to construct the curves a2 and b2. The intersection of these curves with X will be

the thick horizontal arc and the dashed vertical arc from Figure 2, respectively. In

particular, i.a1; b2/ D 1 D i.a2; b1/. From the figure we see that the endpoints of

these two arcs alternate around the boundary of X (i.e. the endpoints of one arc

link with the endpoints of the other). In the complement, Sg n X , we construct a

pair of arcs whose endpoints also alternate around the common boundary @X and

fill Sg n X as follows. First, on a closed surface of genus g � 3, take a minimally

intersecting, filling pair of curves; see e.g. [1]. If g � 3 D 1, then this is a pair

of curves intersecting once; when g � 3 D 2 this is a pair of curves intersecting

4 times; and on a genus g � 3 � 3 surface, this is a pair of curves intersecting

2.g � 3/ � 1 D 2g � 7 times. Now at one of the points of intersection removing

a small disk produces a pair of arcs on a surface of genus g � 3 that intersect k

times, with k as above. We identify this surface with Sg n X so that the arcs glue

up and produce the curves a2; b2. Thus i.a2; b2/ D k, as required.

Next, we recall that from A and B , the Thurston construction produces a flat

metric q from a quadratic differential so that the multitwists TA D Ta1
Ta2

and

TB D Tb1
Tb2

have affine representatives with respect to q. The derivatives in

preferred local coordinates for q, which are well-defined up to sign, are given by

DTA D
�

1 �

0 1

�

and DTB D
�

1 0

�� 1

�

;

where �2 is the spectral radius of the matrix NN T , and N is the intersection

matrix

N D
�

5 1

1 k

�

:

Since N is symmetric, � is the spectral radius of N , and so computing we find

� D 1
2
.5 C k C

p

.5 � k/2 C 4/.

Letting G denote the Veech group of q, hTA; TBi is a nonelementary subgroup

of G. By the chain rule the derivative of elements in G in preferred local coor-

dinates defines a homomorphism DW G ! PSL.2;R/, and an element f 2 G
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is pseudo-Anosov if and only j Trace.Df /j > 2. In this case, �.f / is equal to

the spectral radius of Df , and the associated 1-parameter family of flat metrics

associated to f are all affine deformations of q. For example, for the element

f0 D TAT �1
B , we can compute Trace.Df0/ D 2 C �2 > 2. Thus f0 is pseudo-

Anosov, and �.f0/ is the largest root of x2 � .2 C �2/x C 1.

Next we claim that the number � (and hence �2) is quadratic irrational. For

this, it suffices to prove that .5�k/2 C4 is not a perfect square, z2, for an integer z.

If it were, then z2 � .5 � k/2 D 4. But the only pair of squares that differ by 4 are

0 and 4. However, from the description of k above (depending on g), we see that

k is never equal to 5, so .k � 5/2 C 4 is never a square. Therefore, � and �2 are

quadratic irrational numbers, and hence so is Trace.Df0/ D 2 C �2.

According to [8, Theorem 28] (see also [15, Corollary 9.6]) for any other

pseudo-Anosov element f 2 G, Trace.Df / will also be a quadratic irrational

and generate the same extension Q.�2/ D Q.�/ over Q. Since (up to sign)

the stretch factor � D �.f / and its inverse ��1 are roots of the polynomial

x2 � Trace.Df /x C 1, it follows that either � and ��1 are Galois conjugates

and have degree 2 over Q.�/ and degree 4 over Q, or else they are not Galois

conjugates, they lie in Q.�/ and so have degree 2 over Q. We claim that the

latter case cannot happen. To see this, note that � is a unit in the ring of integers,

and hence its minimal polynomial has the form x2 � kx ˙ 1 for some k 2 Z.

Since � and ��1 are not Galois conjugates, it follows that � and ���1 are Galois

conjugates, and hence so are ��1 and ��. However, considering the branched

cover orienting the foliations, the lifted pseudo-Anosov is orientation preserving

and hence both � and ��1 or both �� and ���1 are roots of the characteristic

polynomial of the action of the lift on homology. Since the minimal polynomial

divides this polynomial, we see that all four numbers ˙� and ˙��1 are roots

of this polynomial. On the other hand exactly one of � or �� is the unique

root of maximal modulus for this polynomial [15]. Since j�j D j � �j, this is

a contradiction. Therefore, � and ��1 have degree 4 and are Galois conjugates.

According to [20, Proposition 2.3] no pseudo-Anosov f 2 G can be a lift of a

pseudo-Anosov homeomorphism on a nonorientable surface. Therefore, we need

only consider branched covers of S over orientable surfaces.

Claim 5.4. There is no nontrivial branched covering pW S ! † where † is

orientable and admits a flat metric � from a quadratic differential � so that

p�� D q.

Note that if we prove this, then no pseudo-Anosov element in G can be a virtual

lift since the associated 1-parameter of flat metrics on S are affine deformations

of q, and so those on † would have to be affine deformations of a metric � with

p�� D q.
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Before we get to the proof of the claim, we first recall that the Thurston

construction produces the metric q so as to have horizontal and vertical foliations

defining complete cylinder decompositions with core curves representing the

isotopy classes of a1; a2 and b1; b2, respectively. Furthermore, by symmetry, the

heights of the cylinders can be chosen to be V1 for both a1 and b1 and V2 for a2 and

b2, where .V1; V2/ is an eigenvector for the eigenvalue � of N . Since � is quadratic

irrational, one can see that V2=V1 is irrational. Every time ai crosses bj , it picks

up length Vj (and bj picks up length Vi ), and hence the q-length of a1 and b1 is

5V1CV2, while the q-lengths of a2 and b2 are V1CkV2. So, the moduli of a1 and b1

is V1

5V1CV2
and the moduli of a2 and b2 is V2

V1CkV2
. From Thurston’s construction,

the ratio of these moduli is rational, but since V1

V2
is irrational. Therefore, the

ratio r D 5V1CV2

V1CkV2
of the q-lengths of a1 and a2 is irrational (as is the ratio of the

q-lengths of b1 and b2).

Now, to prove the claim, suppose on the contrary that we have a nontrivial

branched covering pW S ! † as in the claim with metric � on †. Since the

horizontal and vertical foliations of q define a complete cylinder decomposition,

so must the horizontal and vertical foliations of �. In fact, away from the finite

set of branch points, the core curves of the q-cylinders must push down to core

curves for the �-cylinders. Furthermore, because the ratio of the lengths of the a1

and a2 curves is irrational, the a1 and a2 cylinders must each (branched) cover a

cylinder or half-pillow case whose interiors are disjoint (and likewise for the b1

and b2). Thus, for all four q-cylinders C (the two vertical and two horizontal),

we have p�1.p.int.C /// D int.C / (c.f. §3). Since i.a1; b2/ D 1, arguing as

in Corollary 4.4, the degree of p must be 2, and there must be an orientation

preserving involution of S leaving each of a1, a2, b1, and b2 invariant. We now

complete the argument as in the proof of the Main Theorem: up to isotopy the

involution must send X to itself and the arc of a2 intersecting X to itself. Since

there is a unique involution of X leaving a and b invariant by Lemma 5.1, and

since this involution does not preserve the arc of intersection of a2 with X , we

have a contradiction.

Therefore, no pseudo-Anosov element of G is a virtual lift. �

Remark 5.5. The referee has pointed out that the pseudo-Anosov mapping classes

f from Theorem 4.5 have the property that � D �.f / and ��1 are Galois con-

jugates. Therefore, such f cannot be a virtual lift from a non-orientable surface,

as was argued in this last proof, appealing to [20, Proposition 2.3]. This means

that one could avoid Lemma 3.4 in the proof of the Main Theorem, shortening the

argument. Since that lemma is elementary and may be of independent interest, we

have opted to keep the original proof.
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