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Abstract. We survey recent work on profinite rigidity of residually finite groups.

1. Introduction

It is an old and natural idea to try to distinguish finitely presented groups via their finite quotients,
and recently, there has been renewed interest, especially in the light of recent progress in 3-manifold
topology, in the question of when the set of finite quotients of a finitely generated residually finite
group determines the group up to isomorphism. In more sophisticated terminology, one wants to
develop a complete understanding of the circumstances in which finitely generated residually finite
groups have isomorphic profinite completions. Motivated by this, say that a residually finite group

Γ is profinitely rigid, if whenever ∆̂ ∼= Γ̂, then ∆ ∼= Γ (see §2.2 for definitions and background on
profinite completions).

It is the purpose of this article to survey some recent work and progress on profinite rigidity,
which is, in part, motivated by Remeslennikov’s question (see Question 4.1) on the profinite rigidity
of a free group. The perspective taken is that of a low-dimensional topologist, and takes advantage
of the recent advances in our understanding of hyperbolic 3-manifolds and their fundamental groups
through the pioneering work of Agol [2] and Wise [68].

Standing assumption: Throughout the paper all discrete groups considered will be finitely gen-
erated and residually finite.
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out M.R. Bridson for particular thanks in this regard. He would also like to thank M. Boileau, S.
Friedl, D. D. Long, A. Lubotzky and P. Zalesskii for many helpful and stimulating conversations on
topics related to this work.

2. Preliminaries

We begin by providing some background discussion on profinite groups and profinite completions
of discrete groups. We refer the reader [53] for a more detailed account of the topics covered here.

2.1. Profinite groups. A directed set is a partially ordered set I such that for every i, j ∈ I there
exists k ∈ I such that k ≥ i and k ≥ j. An inverse system is a family of sets {Xi}{i∈I}, where I is
a directed set, and a family of maps φij : Xi → Xj whenever i ≥ j, such that:

• φii = idXi
;

• φijφjk = φik, whenever i ≥ j ≥ k.
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Denoting this system by (Xi, φij , I), the inverse limit of the inverse system (Xi, φij , I) is the set

lim←−Xi = {(xi) ∈
∏
i∈I

Xi|φij(xi) = xj , whenever i ≥ j}.

If (Xi, φij , I) is an inverse system of non-empty compact, Hausdorff, totally disconnected topolog-
ical spaces (resp. topological groups) over the directed set I, then lim←−Xi is a non-empty, compact,

Hausdorff, totally disconnected topological space (resp. topological group).
In addition, if (Xi, φij , I) is an inverse system, a subset J ⊂ I is defined to be cofinal, if for each

i ∈ I, there exists j ∈ J with j ≥ i. If J is cofinal we may form an inverse system (Xj , φj , J)
obtained by omitting those i ∈ I \ J . The inverse limit lim←−Xj can be identified with the image of

lim←−Xi under the projection map
∏
i∈I Xi onto

∏
j∈J Xj .

2.2. Profinite completion. Let Γ be a finitely generated group (not necessarily residually finite
for this discussion), and let N denote the collection of all finite index normal subgroups of Γ. Note
that N is non-empty as Γ ∈ N , and we can make N into directed set by declaring that

for M,N ∈ N ,M ≤ N whenever M contains N.

In this case, there are natural epimorphisms φNM : Γ/N → Γ/M , and the inverse limit of the inverse

system (Γ/N, φNM ,N ) is denoted Γ̂ and defined to be to the profinite completion of Γ.

Note that there is a natural map ι : Γ→ Γ̂ defined by

g 7→ (gN) ∈ lim←−Γ/N,

and it is easy to see that ι is injective if and only if Γ is residually finite.
An alternative, perhaps more concrete way of viewing the profinite completion is as follows. If,

for each N ∈ N , we equip each Γ/N with the discrete topology, then
∏
{Γ/N : N ∈ N} is a compact

space and Γ̂ can be identified with j(Γ) where j : Γ→
∏
{Γ/N : N ∈ N} is the map g 7→ (gN).

2.3. Profinite Topology. It will also be convenient to recall the profinite topology on a discrete

group Γ, its subgroups and the correspondence between the subgroup structure of Γ and Γ̂.
The profinite topology on Γ is the topology on Γ in which a base for the open sets is the set of

all cosets of normal subgroups of finite index in Γ.
Now given a tower T of finite index normal subgroups of Γ:

Γ > N1 > N2 > . . . ..... > Nk > . . .

with ∩Nk = 1, this can be used to define an inverse system and thereby determines a completion of

Γ̂T (in which Γ will inject). If the inverse system determined by T is cofinal (recall §2.1) then the

natural homomorphism Γ̂ → Γ̂T is an isomorphism. That is to say T determines the full profinite
topology of Γ.

The following is important in connecting the discrete and profinite worlds (see [53] 3.2.2, where
here we use [43] to replace “open” by “finite index”).

Notation. Given a subset X of a profinite group G, we write X to denote the closure of X in G.

Proposition 2.1. If Γ is a finitely generated residually finite group, then there is a one-to-one
correspondence between the set X of subgroups of Γ that are open in the profinite topology on Γ, and

the set Y of all finite index subgroups of Γ̂.
Identifying Γ with its image in the completion, this correspondence is given by:

• For H ∈ X , H 7→ H.
• For Y ∈ Y, Y 7→ Y ∩ Γ.

If H,K ∈ X and K < H then [H : K] = [H : K]. Moreover, K / H if and only if K / H, and
H/K ∼= H/K.
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Thus Γ and Γ̂ have the same finite quotients. The key result to formalize the precise connection

between the collection of finite quotients of Γ and those of Γ̂ is the following. This is basically
proved in [22] (see also [53] pp. 88-89), the mild difference here, is that we employ [43] to replace
topological isomorphism with isomorphism. To state this we introduce the following notation:

C(Γ) = {Q : Q is a finite quotient of Γ}

Theorem 2.2. Suppose that Γ1 and Γ2 are finitely generated abstract groups. Then Γ̂1 and Γ̂2 are
isomorphic if and only if C(Γ1) = C(Γ2).

Given this, we make the following definition—this definition is taken, by analogy with the theory
of quadratic forms over Z, where two integral quadratic forms can be locally equivalent (i.e. at all
places of Q), but not globally equivalent over Z.

Definition 2.3. The genus of a finitely generated residually finite group Γ is: G(Γ) = {∆ : ∆̂ ∼= Γ̂}.

In addition, if P is a class of groups, then we define GP(Γ) = {∆ ∈ G(Γ) : ∆ ∈ P}. For
convenience we restate the definition of profinite rigidity.

Definition 2.4. Let Γ be a finitely generated group. Say that Γ is profinitely rigid if G(Γ) = {Γ}.

For convenience we often say that Γ is profinitely flexible if it is not profinitely rigid.
In addition when Γ = π1(M) where M is a compact 3-manifold we occasionally abuse notation

and refer to M as being profinitely rigid or flexible.

The basic questions we are interested in are the following (and also within classes of groups P).

Question 2.5. Which finitely generated (resp. finitely presented) groups Γ are profinitely rigid
(resp. profinitely flexible)?

Question 2.6. How large can |G(Γ)| be for finitely generated (resp. finitely presented) groups?

Question 2.7. What group theoretic properties are shared by (resp. are different for) groups in the
same genus?

These questions (and ones where the class of groups is restricted) provide the motivation and
focus of this article, with particular attention paid to Question 2.5.

2.4. Inducing the full profinite topology. Let Γ be a finitely generated residually finite group
and H < Γ. The profinite topology on Γ determines some pro-topology on H and therefore some
completion of H. To understand what happens in certain cases that will be of interest to us, we

recall the following. Since we are assuming that Γ is residually finite, H injects into Γ̂ and determines

a subgroup H ⊂ Γ̂. Hence there is a natural epimorphism Ĥ → H. This need not be injective.
For this to be injective (i.e. the full profinite topology is induced on H) it is easy to see that the
following needs to hold:

(*) For every subgroup H1 of finite index in H, there exists a finite index subgroup Γ1 < Γ such that
Γ1 ∩H < H1.

A important case where the full profinite topology is induced is when the ambient group Γ is LERF,
the definition of which we recall here. Suppose that Γ is a group and H a subgroup of Γ, then Γ
is called H-separable if for every g ∈ G rH, there is a subgroup K of finite index in Γ such that
H ⊂ K but g /∈ K; equivalently, the intersection of all finite index subgroups in Γ containing H
is precisely H. The group Γ is called LERF (or subgroup separable) if it is H-separable for every
finitely-generated subgroup H, or equivalently, if every finitely-generated subgroup is a closed subset
in the profinite topology.
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Lemma 2.8. Let Γ be a finitely-generated group, and H a finitely-generated subgroup of Γ. Suppose
that Γ is H1-separable for every finite index subgroup H1 in H. Then the profinite topology on Γ

induces the full profinite topology on H; that is, the natural map Ĥ → H is an isomorphism.

Proof. Since Γ is H1 separable, the intersection of all subgroups of finite index in Γ containing H1

is H1 itself. From this it easily follows that there exists Γ1 < Γ of finite index, so that Γ1 ∩H = H1.
The lemma follows from (*) above. tu

Immediately from this we deduce.

Corollary 2.9. Let Γ be a finitely generated group that is LERF. Then if H < Γ is finitely generated
then the profinite topology on Γ induces the full profinite topology on H; that is, the natural map

Ĥ → H is an isomorphism.

3. Two simple examples

We provide two elementary examples that already indicate a level of complexity in trying to
understand profinite rigidity and lack thereof. In addition, some consequences of these results and
techniques will be helpful in what follows.

Proposition 3.1. Let Γ be a finitely generated Abelian group, then G(Γ) = {Γ}.
Proof. Suppose first that ∆ ∈ G(Γ) and ∆ is non-abelian. We may therefore find a commutator
c = [a, b] ∈ ∆ that is non-trivial. Since ∆ is residually finite there is a homomorphism φ : ∆ → Q,
with Q finite and φ(c) 6= 1. However, ∆ ∈ G(Γ), so Q is abelian and therefore φ(c) = 1, a
contradiction.

Thus ∆ is Abelian, so we can assume that Γ ∼= Zr ⊕ T1 and ∆ ∼= Zs ⊕ T2, where Ti (i = 1, 2)
are finite Abelian groups. It is easy to see that r = s, for if r > s say, we can choose a large prime
p such that p does not divide |T1||T2|, and construct a finite quotient (Z/pZ)r that cannot be a
quotient of ∆.

In addition if T1 is not isomorphic to T2, then some invariant factor appears in T1 say, but not in
T2. One can then construct a finite abelian group that is a quotient of T1 (and hence Γ1) but not
of Γ2. tu

Remark 3.2. The proof of Proposition 3.1 also proves the following. Let Γ be a finitely generated
group, and suppose that ∆ ∈ G(Γ). Then Γab ∼= ∆ab. In particular b1(Γ) = b1(∆).

Somewhat surprsingly, moving only slightly beyond abelian groups (indeed Z) to groups that are
virtually Z, the situation is dramatically different. The following result is due to Baumslag [8].

Theorem 3.3. There exists non-isomorphic meta-cyclic groups Γ1 and Γ2 for which Γ̂1
∼= Γ̂2. Both

of these groups are virtually Z and defined as extensions of a fixed finite cyclic group F by Z.

A more precise form of what Baumslag actually proves in [8] is the following:

Let F be a finite cyclic group with an automorphism of order n, where n is different from 1, 2, 3,
4 and 6. Then there are at least two non-isomorphic cyclic extensions of F , say Γ1 and Γ2 with

Γ̂1
∼= Γ̂2.

A beautiful, and useful observation, that is used in the proof that the constructed groups Γ1 and
Γ2 lie in the same genus is the following that goes back to Hirshon [34]: Suppose that A and B are

groups with A× Z ∼= B × Z, then Â ∼= B̂.

Remark 3.4. Moving from meta-cyclic to meta-abelian provides even more striking examples of
profinite flexibility. In [46] Pickel constructs finitely presented meta-abelian groups Γ for which G(Γ)
is infinite.
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4. Profinite rigidity and flexibility in low-dimensions

In connection with Question 2.5 perhaps the most basic case is the following that goes back to
Remeslennikov [51, Question 15] and remains open:

Question 4.1. Let Fn be the free group of rank n ≥ 2. Is Fn profinitely rigid?

The group Fn arises in many guises in low-dimensional topology and affords several natural ways
to generalize. In the light of this, natural generalizations of Question 4.1 are the following (which
remain open):

Question 4.2. Let Σg be a closed orientable surface of genus g ≥ 2. Is π1(Σg) profinitely rigid?

As we will discuss in more detail below, profinite rigidity in the setting of 3-manifold groups is
different, however, one generalization that we will focus on below is the following question:

Question 4.3. Let M be a complete orientable hyperbolic 3-manifold of finite volume. Is π1(M)
profinitely rigid?

In this section we describe some recent progress on Questions 4.1, 4.2 and 4.3, as well as other
directions that generalize Question 4.1. However, we begin by recalling some necessary background
from the geometry and topology of 3-manifolds.

4.1. Some 3-manifold topology. For the purposes of this subsection, M will always be a compact
connected orientable 3-manifold whose boundary is either empty, or consists of a disjoint union of
incompressible tori. The Geometrization Conjecture of Thurston was established by Perelman (see
[42] for a detailed account) and we state what is needed here in a convenient form. We refer the
reader to [11] or [61] for background on geometric structures on 3-manifolds.

Recall that M is irreducible if every embedded 2-sphere in M bounds a 3-ball, and if M is prime
(i.e. does not decompose as a non-trivial connect sum), then M is irreducible or is covered by
S2 × S1, in which case M admits a geometric structure modeled on S2 × R.

Theorem 4.4. Let M be an irreducible 3-manifold.

(1) If π1(M) is finite, then M is covered by S3.
(2) If π1(M) is infinite, then M is either:

(i) hyperbolic and so arises as H3/Γ where Γ < PSL(2,C) is a discrete torsion-free subgroup
of finite co-volume, or;

(ii) a Seifert fibered space and has a geometry modeled on E3, H2 × R, NIL or S̃L2, or;

(iii) a SOLV manifold, or;

(iv) a manifold that admits a collection of essential tori that decomposes M into pieces that
are Seifert fibered spaces with incompressible torus boundary, or have interior admitting a
finite volume hyperbolic structure. In this case, we will say that M has a non-trivial JSJ
decomposition.

An important well-known consequence of geometrization for us is the following corollary.

Corollary 4.5. Let M be compact 3-manifold, then π1(M) is residually finite.

A manifold M that admits a geometric structure modeled on E3, S2×R, H2×R, NIL or SOLV
all virtually fiber. That is to say, given M admitting such a structure then there is a finite cover
Mf → M with Mf constructed as the mapping torus of a surface homeomorphism f : Σg → Σg,
where g = 0 in the case of S2 × R, g = 1 in the case of E3, NIL or SOLV and g > 1 when the
geometry is H2×R. If M is a compact Seifert fibered space with incompressible torus boundary, then
M also virtually fibers. On the other hand, it is known (see [25]) that closed manifolds admitting

a geometric structure modeled on S̃L2 do not virtually fiber.
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Regarding virtual fibering of hyperbolic manifolds, a major breakthrough came with Agol’s work
in [1], which, taken together with work of Agol [2] and Wise [68] (see also [28]) leads to the following.

Theorem 4.6 (Virtual fibering). Let M be a finite volume hyperbolic 3-manifold. Then M has a
finite cover that fibers over the circle.

For manifolds with a non-trivial JSJ decomposition, it was known previously that there were
graph manifolds (i.e. all pieces in the decomposition are Seifert fibered spaces) that do not virtually
fiber [44], whilst more recently it was shown in [49] that mixed 3-manifolds (i.e. those in Theorem
4.4 2(iv) that have a decomposition containing a hyperbolic piece) are all virtually fibered.

4.2. Profinite completions of 3-manifold groups after Agol and Wise. The remarkable
work of Agol [2] and Wise [68] has had significant implications on our understanding of the profinite
completion of the fundamental groups of finite volume hyperbolic 3-manifolds. We refer the reader
to the excellent book [6] for a detailed discussion of the many consequences of [2] and [68] for 3-
manifold groups. One such concerns LERF (recall §2.4). The following result summarizes work of
Scott [55] for Seifert fibered spaces, Agol [2] and Wise [68] in the hyperbolic setting, and Sun [59]
who showed that non-geometric irreducible 3-manifolds had non-LERF fundamental group

Theorem 4.7. Let M be an irreducible 3-manifold (as in §4.1). Then π1(M) is LERF if and only
if M is geometric (i.e covered by Theorem 4.4 1, 2(i), (ii), (iii)).

Lemma 2.8 together with Theorem 4.7 yields the following consequence.

Corollary 4.8. Let M be a finite volume hyperbolic 3-manifold and H < π1(M) a finitely generated
subgroup. Then the full profinite topology on H is induced by the profinite topology of π1(M). In

particular the closure of H in π̂1(M) is isomorphic to Ĥ.

We now turn to goodness in the sense of Serre [58]. Let G be a profinite group, M a discrete G-
module (i.e. an abelian group M equipped with the discrete topology on w hich G acts continuously)
and let Cn(G,M) be the set of all continous maps Gn →M . One defines the coboundary operator d :
Cn(G,M)→ Cn+1(G,M) in the usual way thereby defining a complex C∗(G,M) whose cohomology
groups Hq(G;M) are called the continuous cohomology groups of G with coefficients in M .

Now let Γ be a finitely generated group. Following Serre [58], we say that a group Γ is good if for
all q ≥ 0 and for every finite Γ-module M , the homomorphism of cohomology groups

Hq(Γ̂;M)→ Hq(Γ;M)

induced by the natural map Γ → Γ̂ is an isomorphism between the cohomology of Γ and the

continuous cohomology of Γ̂.

Example 4.9. Finitely generated free groups are good.

In general goodness is hard to establish, however, one can establish goodness for a group Γ that
is LERF (indeed a weaker version of separability is all that is needed) and in addition has a ”well-
controlled splitting of the group” as a graph of groups [29]; for example that coming from the virtual
special technology [68]. In addition, a useful criterion for goodness is provided by the next lemma
due to Serre (see [58, Chapter 1, Section 2.6])

Lemma 4.10. The group Γ is good if there is a short exact sequence

1→ N → Γ→ H → 1,

such that H and N are good, N is finitely-generated, and the cohomology group Hq(N,M) is finite
for every q and every finite Γ-module M .
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Coupled with Theorem 4.6 (the virtual fibering theorem) and commensurability invariance of
goodness [29], this proves that the fundamental groups of all finite volume hyperbolic 3-manifolds
are good. Indeed, more is true using [2] and [68] (as noticed by [21], see also [52]):

Theorem 4.11. Let M be a compact 3-manifold, then π1(M) is good.

Several notable consequences of this are recorded below.

Corollary 4.12. Let M be a closed irreducible orientable 3-manifold, and N a compact 3-manifold

with π̂1(M) ∼= π̂1(N). Then:

(1) π̂1(M) is torsion-free.
(2) N is closed, orientable and can have no summand that has finite fundamental group.

Proof. Let Γ = π1(M) and ∆ = π1(N). Since cd(Γ) = 3, H3(Γ,Fp) 6= 0 for every prime p, and
Hq(Γ,M) = 0 for every Γ-module M and every q > 3. By goodness, these transfer to the profinite
setting in the context of finite modules. It follows from standard results about the cohomology of

finite groups, that goodness forces π̂1(M) to be torsion-free. Hence ∆ is also torsion-free, and so N
cannot have a summand that has finite fundamental group.

In addition, N must be closed, since H3(Γ,F2) 6= 0 implies H3(Γ̂,F2) 6= 0, and if N is not closed

we have, H3(∆,F2) = H3(∆̂, F2) = 0. Orientability follows in a similar fashion using H3(Γ,Fp) 6= 0
for p 6= 2. tu

Remark 4.13. In [40], it is shown that there are torsion-free subgroups Γ < SL(n,Z) (n ≥ 3) of

finite index, for which Γ̂ contains torsion of all possible orders. It follows that SL(n,Z) is not good
for n ≥ 3).

4.3. Profinite flexibility of 3-manifold groups. We now describe some recent progress on iden-
tifying 3-manifold groups by their profinite completions restricted to the class of 3-manifold groups.
To that end let

M = {π1(M) : M is a compact 3-manifold}.
We note that unlike in the previous subsection M need not be prime, can be non-orientable, may
have boundary other than tori and this boundary may be compressible. By capping off 2-sphere
boundary components with 3-balls, we can exclude S2 boundary components (and RP2 boundary
components). Also note that included in M are the fundamental groups of non-compact finite
volume hyperbolic 3-manifolds where such a manifold is viewed as the interior of a compact 3-
manifold with boundary consisting of tori or Klein bottles.

Example 4.14 (Profinitely flexible Seifert fibered spaces). We record a construction of Hempel [33]
that provides examples of closed Seifert fibered spaces M1 and M2 that are not homeomorphic but

π̂1(M1) ∼= π̂1(M2). This builds on the idea of Baumslag mentioned in §3.
Let f : S → S be a periodic, orientation-preserving homeomorphism of a closed orientable surface

S of genus at least 2, and let k be relatively prime to the order of f . Let Mf (resp. Mfk) denote

the mapping torus of f (resp. fk), and let Γf = π1(Mf ) (resp. Γfk = π1(Mfk)).

Hempel shows that Γ̂f ∼= Γ̂fk by proving that Γf × Z ∼= Γfk × Z (c.f. the example of Baum-
slag in §3). The proof is elementary group theory, but Hempel also notes that, interestingly, the
isomorphism Γf × Z ∼= Γfk × Z follows from [37] where it is shown that (in the notation above)

Mf × S1 ∼= Mfk × S1.
Of course some additional work is needed to prove that the groups are not isomorphic, but in fact

typically this is the case as Hempel describes in [33]. Note that these examples admit a geometric
structure modeled on H2 × R.
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More recently it was shown by Wilkes [64] that the construction of Hempel is the only occasion
in which profinite rigidity fails in the closed case (there are also results in the bounded case). More
precisely:

Theorem 4.15 (Wilkes). Let M be a closed Seifert fibered space with infinite fundamental group.
Then GM(π1(M)) = {π1(M)} unless M is as in Example 4.14 and the failure is precisely given by
the construction in Example 4.14. In this case, GM(π1(M)) is finite.

The proof of this relies on some beautiful work of Wilton and Zalesskii [66] that remarkably
detects geometric structure from finite quotients. We discuss this in more detail below in §4.4. but
first give some other examples of profinite flexibility in the setting of closed 3-manifolds.

Example 4.16 (Profinitely flexible torus bundles). Profinite flexibility for the fundamental groups
of torus bundles admitting a SOLV geometry was studied in detail in [24]. These torus bundles
arise as the mapping torus of a self-homeomorphism f : T 2 → T 2 which can be identified with an

element of

(
a b
c d

)
∈ SL(2,Z) with |a + d| > 2. In [24] it is shown that for any m ≥ 2 there exist

m torus bundles admitting SOLV geometry whose fundamental groups have isomorphic profinite
completions but are pairwise non-isomorphic.

A particular pair of examples of such torus bundles are give by the mapping tori of the following
homeomorphisms:

f1 =

(
188 275
121 177

)
and f1 =

(
188 11
3025 177

)
.

The methods of proof are very different from that used in Example 4.14. In particular it does
not use the ideas in Baumslag’s examples in §3, using instead, number theoretic techniques arising
in understanding ”local conjugacy” of matrices in SL(2,Z). Briefly, the fundamental groups of
torus bundles Mf and Mg have isomorphic profinite completions if and only if the cyclic subgroups
< f >,< g >⊂ SL(2,Z) are locally conjugate, namely their images modulo m are conjugate in
GL(2,Z/mZ), for any positive integer m (see [24]).

Interestingly, as described in [24] the issue of profinite flexibility in this case is related to problems
arising from understanding quantum TQFT invariants of the torus bundles.

Example 4.17 (Profinitely flexible 3-manifolds with non-trivial JSJ decomposition). The funda-
mental groups of the manifolds occurring in Theorem 4.4 2(iv) were investigated in [63]. We will
not go into this in any detail here, other than to say that it is shown in [63] that there are non-
homeomorphic closed graph manifolds whose fundamental groups have isomorphic profinite com-
pletions, and that graph manifolds can be distinguished from mixed 3-manifolds by the profinite
completion of their fundamental groups. In addition it is shown that if M is a graph manifold that
is profinitely flexible, then |GM(π1(M))| <∞.

4.4. Profinite completions of 3-manifold groups and geometric structures. We now turn
to the work of Wilton and Zalesskii [66] and [67] that describes a beautiful connection between the
existence of a particular geometric structure on a 3-manifold and the profinite completion of its
fundamental group. We begin with a mild strengthening of [66, Theorem 8.4]

Theorem 4.18 (Wilton-Zalesskii). Let M be a closed orientable 3-manifold with infinite fundamen-
tal group admitting one of Thurston’s eight geometries and let N ∈ M with π1(N) ∈ GM(π1(M)).
Then N is closed and admits the same geometric structure.

Proof. This is proved in [66, Theorem 8.4] with N assumed to be closed, orientable and irreducible.
However, the version stated in Theorem 4.18 quickly reduces to this. Briefly, by Theorem 4.11
π1(M) is good, so immediately we have N is closed and orientable by Corollary 4.12.

Furthermore, π̂1(M) is torsion-free by Corollary 4.12 and so if N is not prime, the summands
must all have torsion-free fundamental group. However, in this case we can use the fact that the
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first L2-betti number b
(2)
1 is a profinite invariant by [15], and this, together with the work of Lott

and Lück [39] shows that aspherical geometric 3-manifolds have b
(2)
1 = 0, whilst manifolds that are

not prime and have torsion-free fundamental group have b
(2)
1 6= 0. Note that their theorem is stated

only for orientable manifolds but this is not a serious problem because, by Lück approximation [41],
if X is a non-orientable compact 3-manifold with infinite fundamental group and Y → X is its

orientable double cover, then b
(2)
1 (Y ) = 2 b

(2)
1 (X). We can now use [66] to complete the proof. tu

Given Theorem 4.18, Theorem 4.15, is reduced to the consideration of Seifert fiber spaces. How-
ever, the proof still entails some significant work using [15] as well as the delicate issue of recovering
the euler number of the Seifert fibration from the profinite completion.

In the context of hyperbolic manifolds, a corollary of Theorem 4.18 that is worth recording is.

Corollary 4.19. Let M be a closed orientable hyperbolic 3-manifold and N ∈ M with π1(N) ∈
GM(π1(M)), then N is closed orientable and hyperbolic.

More recently Wilton and Zalesskii [67] have established a cusped version of this result, namely.

Theorem 4.20. Let M be a finite volume non-compact orientable hyperbolic 3-manifold and N ∈M
with π1(N) ∈ GM(π1(M)), then N is a finite volume non-compact orientable hyperbolic 3-manifold.

The proofs of Theorems 4.18 and 4.20 also use the work of Agol and Wise, as well as crucially
using ”nice” actions of profinite groups on profinite trees which are transferred from the discrete
setting using LERF and other parts of the virtual special technology of [68] (see [66] and [67] for
details).

Actually what is really at the heart of Corollary 4.19 is a profinite analogue of the Hyperbolization
Theorem, which asserts that M is hyperbolic if and only if π1(M) does not contain a copy of Z⊕Z.
The main part of the proof of Corollary 4.19 is to show that if M is a closed hyperbolic 3-manifold,

then π̂1(M) does not contain a subgroup isomorphic to Ẑ⊕ Ẑ.

Remark 4.21. One might wonder about the extent to which the full profinite completion of the
fundamental group of a hyperbolic 3-manifold is actually needed to distinguish the fundamental
group. With that in mind, it is easy to give infinitely many examples of links L ⊂ S3 (so-called
homology boundary links) with hyperbolic complement for which π1(S3 \L) all have the same pro-p
completion (namely the free pro-p group of rank 2) for all primes p, see [17, Section 8.4] for an
explicit example.

4.5. Profinite rigidity amongst 3-manifold groups. We now turn to the issue of profinite
rigidity. Given the discussion in §4.3 about the failure of profinite rigidity (even amongst 3-manifold
groups) for Seifert fibered spaces, torus bundles admitting SOLV geometry, and manifolds admitting
a non-trivial JSJ decomposition, the case that needs to be understood is that of finite volume
hyperbolic 3-manifolds. We focus on this case in the remainder of this section. We first deal with
the case of GM(π1(M)), where M is a finite volume hyperbolic 3-manifold. In the light of Theorem
4.6, a natural class of hyperbolic 3-manifolds to attempt to establish rigidity for are hyperbolic
3-manifolds that fiber over the circle, since, as we now explain, this can be used to help organize an
approach to profinite rigidity of the fundamental groups of hyperbolic 3-manifolds.

Proposition 4.22. Suppose that for any orientable finite volume hyperbolic 3-manifold M that
fibers over the circle we have GM(π1(M)) = {π1(M)}. Then if N is a finite volume hyperbolic
3-manifold and Y a compact 3-manifold with π1(Y ) ∈ GM(π1(N)), then Y is commensurable to N .

Proof. Note that from Corollary 4.19 and Theorem 4.20, Y is a finite volume hyperbolic 3-manifold.
By Theorem 4.6, we can pass to finite covers Nf and Yf of N and Y respectively, that are both

fibered, and with π̂1(Nf ) ∼= π̂1(Yf ). By the ”rigidity hypothesis” of Theorem 4.22, it follows that
π1(Nf ) ∼= π1(Yf ), and so N and Y share a common finite sheeted cover Nf ∼= Yf . tu
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Thus, it is natural to focus on the case of surface bundles. The following rigidity result is proved
in [19] (see also [18] and [9] for the the case of the figure-eight knot complement). This is the first
family of hyperbolic 3-manifolds that fiber over the circle for which the rigidity required in Theorem
4.22 has been carried to completion. An approach to handle other fibered hyperbolic 3-manifolds is
described in [19].

Theorem 4.23. Let M be a once-punctured torus bundle over the circle (hyperbolic or otherwise).
Then GM(π1(M)) = {π1(M)}.

Some ideas in the proof: We only discuss the hyperbolic case, and refer the reader to [19] for the
remaining (simpler) cases. In this case b1(M) = 1. From Theorem 4.20 we can assume that if N
is a compact 3-manifold with π1(N) ∈ GM(π1(M)), then N is a cusped hyperbolic 3-manifold with
b1(N) = 1 (recall Remark 3.2). The proof can be broken down into two main steps as follows:

Step 1: Prove that N is fibered with fiber a once-punctured torus.

Step 2: Since M is a once-punctured torus bundle, given Step 1, a simple analysis gives finitely many
possibilities for N . Distinguish these finitely many.

We will make no further comment on Step 2 and refer the reader to [19]. The proof of Step 1 follows
[18] and we briefly comment on this (a different proof of this is given in [9]). The main difficulty
is in establishing that N is fibered. Once this is done, the fact that the fiber is a once-punctured
torus follows routinely.

Note that in [18] the cases that N is hyperbolic or not hyperbolic were treated separately (since
Theorem 4.20 was unavailable at the time of writing). As noted above, using Theorem 4.20 we can
now reduce to the case that N is hyperbolic. Regardless of this development, we still need to follow
the argument of [18] to complete the proof. The key point is that if N is not fibered, then using
[23] we can build a surface subgroup H < K = ker{π1(N) → Z} (this homomorphism is unique

since b1(N) = 1). By Corollaries 4.8 and 2.9 we deduce that Ĥ ∼= H < K < π̂1(N). Now by
uniqueness of the homomorphism π1(M) → Z, which has kernel a free group F of rank 2, we get

Ĥ < K ∼= F̂ . However, using cohomological dimension in the context of profinite groups (see [58])

we get a contradiction: the cohomological dimension of Ĥ is 2 and it is 1 for F̂ . tu

Since [19] was written, the fact that fibering is a profinite invariant has been established by Jaikin-
Zapirain [35] without the restriction on b1(M). The proof of this uses very different methods to
those outlined above.

Theorem 4.24 (Jaikin-Zapirain). Let M be a compact irreducible 3-manifold and let Γ = π1(M).

(1) If Γ̂ is isomorphic to the profinite completion of free-by-cyclic group, then M has non-empty
boundary consisting of a disjoint union of incompressible tori and Klein bottles, and fibers
over the circle with fiber a compact surface with non-empty boundary.

(2) If Γ̂ is isomorphic to the profinite completion of the fundamental group of a closed 3-manifold
that fibers over the circle, then M is a surface bundle over the circle with fiber a closed
surface.

One can distill from the cohomological dimension argument used at the end of the proof of
Theorem 4.23 the following useful proposition.

Proposition 4.25. Let Γ be a finitely generated residually finite group that contains a subgroup

H ∼= π1(Σg) for some g ≥ 1 and for which H ∼= Ĥ in Γ̂. Then Γ /∈ G(Fn) for any n ≥ 2.
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Remark 4.26. It is worth remarking that F̂n contains a subgroup isomorphic to some π1(Σg) which

is dense in F̂n (see [12]).

4.6. A profinitely rigid Kleinian group. At present it still remains open as to whether there
is any finite volume hyperbolic 3-manifold M = H3/Γ with G(Γ) = {Γ}. However in recent work
of the author with Bridson, McReynolds and Spitler [20] if we allow Γ to be a Kleinian group (i.e.
a discrete subgroup of PSL(2,C)) containing torsion then this can be done. As far as we can tell,
this seems to be first example (indeed we give two) of a group ”similar to a free group” that can
be proved to be profinitely rigid, and can be viewed as providing the first real evidence towards
answering Question 4.3 (and 4.1) in the affirmative. Namely we prove the following theorem in [20]
(where ω2 + ω + 1 = 0).

Theorem 4.27. The Kleinian groups PGL(2,Z[ω]) and PSL(2,Z[ω]) are profinitely rigid.

The case of PGL(2,Z[ω]) follows from that of PSL(2,Z[ω]), and we so we limit ourselves to briefly
indicating the strategy of the proof of Theorem 4.27 for PSL(2,Z[ω]).

There are three key steps in the proof which we summarize below.

Theorem 4.28 (Representation Rigidity). Let ι : Γ → PSL(2,C) denote the identity homomor-
phism, and c = ι the complex conjugate representation. Then if ρ : Γ→ PSL(2,C) is a representation
with infinite image, ρ = ι or c.

Using Theorem 4.28 we are able to get some control on PSL(2,C) representations of a finitely

generated residually finite group with profinite completion isomorphic to Γ̂, and to that end we
prove:

Theorem 4.29. Let ∆ be a finitely generated residually finite group with ∆̂ ∼= Γ̂. Then ∆ admits
an epimorphism to a group L < Γ which is Zariski dense in PSL(2,C).

Finally, we make use of Theorem 4.29, in tandem with an understanding of the topology and
deformations of orbifolds H3/G for subgroups G < Γ. Briefly, in the notation of Theorem 4.29, the
case of L having infinite index can be ruled out using Teichmüller theory to construct explicit finite
quotients of L and hence ∆ that cannot be finite quotients of Γ. To rule out the finite index case we
make use of information about low-index subgroups of Γ, together with the construction of L, and
3-manifold topology to show that L contains the fundamental group of a once-punctured torus bun-
dle over the circle of index 12. We can then invoke [19] to yield the desired conclusion that ∆ ∼= Γ. tu

5. Virtually free groups, Fuchsian groups and Limit groups

We now turn from the world of 3-manifold groups to other classes of groups closely related to
free groups; virtually free groups (i.e. contains a free subgroup of finite index), Fuchsian groups
which are discrete subgroups of PSL(2,R) and limit groups which we define below. All three classes
of these groups contain the class of free groups amongst them. As already noted even groups that
are virtually Z can fail to be profinitely rigid. In [32] this is extended to give examples of virtually
non-abelian free groups in the same genus, as well as providing cases where they show that certain
virtually free groups are the only groups in the genus when restricted to virtually free groups.

5.1. Some restricted genus results. Regarding Fuchsian groups, the following is proved in [15].

Theorem 5.1. Let L denote the collection of lattices in connected Lie groups and let Γ be a finitely
generated Fuchsian group. Then GL(Γ) = {Γ}.
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Using the profinite invariance of b
(2)
1 [15], it turns out that the hard case of Theorem 5.1 is ruling

out non-isomorphic Fuchsian having isomorphic profinite completions. The main part of the proof
of this step is to rule out ”fake torsion” in the profinite completion, and uses the technology of
profinite group actions on profinite trees (see [15] for details).

By a limit group we mean a finitely-generated group Γ that is fully residually free; i.e. a finitely
generated group in which every finite subset can be mapped injectively into a free group by a group
homomorphism. In connection with Question 4.1, Wilton [65] recently proved the following:

Theorem 5.2. Let Γ be a limit group that is not a free group, and let F be a free group. Then Γ̂

is not isomorphic to F̂ .

The key point in the proof of Theorem 5.2 (and indeed the main point of [65]) is to construct a
surface subgroup in a non-free limit group. One can then follow an argument in [15] that uses [64]
(which proves LERF for limit groups) and Proposition 4.25 to complete the proof.

5.2. Profinite genus of free groups and one-ended hyperbolic groups. We close this section
with a discussion of possible groups in the genus for free groups. As noted above, Theorem 5.2 uses
the existence of surface subgroups to show that non-free limit groups do not lie in the same genus as
a free group. The next result from [15] takes up this theme, and connects to two well-known open
problems about word hyperbolic groups, namely:

(A) Does every 1-ended word-hyperbolic group contain a surface subgroup?
(B) Is every word-hyperbolic group residually finite?

The first question, due to Gromov, was motivated by the case of hyperbolic 3-manifolds, and in
this special case the question was settled by Kahn and Markovic [36]. Indeed, given [36], a natural
strengthening of (A) above is to ask:

(A′) Does every 1-ended word-hyperbolic group contain a quasi-convex surface subgroup?

Theorem 5.3. Suppose that every 1-ended word-hyperbolic group is residually finite and contains a
quasi-convex surface subgroup. Then there exists no 1-ended word-hyperbolic group Γ and free group

F such that Γ̂ ∼= F̂ .

Proof. Assume the contrary, and let Γ be a counter-example, with Γ̂ ∼= F̂ for some free group F .
Let H be a quasi-convex surface subgroup of Γ. Note that the finite-index subgroups of H are also
quasi-convex in Γ. Under the assumption that all 1-ended hyperbolic groups are residually finite,
it is proved in [3] that H and all its subgroups of finite index must be separable in Γ. Hence by

Lemma 2.8, the natural map Ĥ → H < Γ̂ ∼= F̂ is an isomorphism, and can use Proposition 4.25 to
complete the proof. tu

Corollary 5.4. Suppose that there exists a 1-ended word hyperbolic group Γ with Γ̂ ∼= F̂ for some
free group F . Then either there exists a word-hyperbolic group that is not residually finite, or there
exists a word-hyperbolic group that does not contain a quasi-convex surface subgroup.

6. Profinite rigidity and flexibility in other settings

Although our attention has been on groups arising from low-dimensional geometry and topology
we think it worthwhile to include a (far from complete) survey of profinite rigidity and flexibility
for other classes of finitely generated or finitely presented groups.

6.1. Nilpotent and polycyclic groups. As is already evident from Baumslag’s examples of meta-
cyclic groups in §3, the case of nilpotent groups already shows some degree of subtlety. The case of
nilpotent groups more generally is well understood due to work of Pickel [45]. We will not discuss
this in any detail, other than to say that, in [45] it is shown that for a finitely generated nilpotent
group Γ, G(Γ) consists of a finite number of isomorphism classes of nilpotent groups, and moreover,
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examples where the genus can be made arbitrarily large are known (see for example [56] Chapter
11). Examples of profinitely rigid nilpotent groups of class 2 are constructed in [30].

Similar results are also known for polycyclic groups and we refer the reader to [31] and [56].
Note that in the case of nilpotent groups it is straightforward to prove that any finitely generated
residually finite group in the same genus as a nilpotent group is nilpotent. The same holds for
polycyclic groups (see [54]), but this is a good deal harder.

These results should be compared with the examples of the meta-abelian groups (which are
solvable) of Pickel given in Remark 3.4 where the genus is infinite.

6.2. Lattices in semi-simple Lie groups. Let Γ be a lattice in a semi-simple Lie group, for exam-
ple, in what follows we shall take Γ = SL(n,Rk) where Rk denotes the ring of integers in a number
field k. A natural, obvious class of finite quotients of Γ, are those of the form SL(n,Rk/I) where
I ⊂ Rk is an ideal. Let Γ(I) denote the kernel of the reduction homomorphism Γ→ SL(n,Rk/I). By
Strong Approximation for SLn (see [47] Chapter 7.4 for example) these reduction homomorphisms
are surjective for all I. A congruence subgroup of Γ is any subgroup ∆ < Γ such that Γ(I) < ∆ for
some I. A group Γ is said to have the Congruence Subgroup Property (abbreviated to CSP) if every
subgroup of finite index is a congruence subgroup.

Thus, if Γ has CSP, then C(Γ) is known precisely, and in effect, to determine C(Γ) is reduced to
number theory. Expanding on this, since Rk is a Dedekind domain, any ideal I factorizes into powers
of prime ideals. If I =

∏
Paii , then it is known that SL(n,Rk/I) =

∏
SL(n,Rk/Pai

i ). Thus the finite
groups that arise as quotients of SL(n,Rk) are determined by those of the form SL(n,Rk/Pai

i ).
Hence we are reduced to understanding how a rational prime p behaves in the extension k/Q. This
idea, coupled with the work of Serre [57] which has shed considerable light on when Γ has CSP
allows construction of non-isomorphic lattices in the same genus. We refer the reader to [4], [5] and
[52] for further details.

6.3. Grothendieck’s Problem. A particular case of when discrete groups groups have isomorphic
profinite completions is the following (which goes back to Grothendieck [27]).

Let Γ be a residually finite group and let u : P ↪→ Γ be the inclusion of a subgroup P . Then

(Γ, P ) is called a Grothendieck Pair if the induced homomorphism û : P̂ → Γ̂ is an isomorphism but
u is not.

We say that Γ is Grothendieck Rigid if no proper finitely generated subgroup u : P → Γ gives a
Grothendieck Pair.

Grothendieck [27] asked about the existence of Grothendieck Pairs of finitely presented groups
and the first such pairs were constructed by Bridson and Grunewald in [16]. The analogous problem
for finitely generated groups had been settled earlier by Platonov and Tavgen [48] (see also [7]).
Using different methods, Pyber [50] gave a construction of continuously many finitely generated
groups Γα with subgroups Hα for which (Γα, Hα) are Grothendieck Pairs.

The constructions of [48] and [16] rely on versions of the following result (see also [13]). We remind
the reader that the fibre product P < Γ × Γ associated to an epimorphism of groups p : Γ → Q is
the subgroup P = {(x, y) | p(x) = p(y)}.

Proposition 6.1. Let 1 → N → Γ → Q → 1 be a short exact sequence of groups with Γ finitely
generated and let P be the associated fibre product. Suppose that Q 6= 1 is finitely presented, has no
proper subgroups of finite index, and H2(Q,Z) = 0. Then

(1) (Γ× Γ, P ) is a Grothendieck Pair;
(2) if N is finitely generated then (Γ, N) is a Grothendieck Pair.

More recently in [14], examples of Grothendieck Pairs were constructed so as to provide the first
examples of finitely-presented residually finite groups Γ that contain an infinite sequence of non-
isomorphic finitely presented subgroups Pn so that (Γ, Pn) are Grothendieck Pairs. In particular,
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this provides examples of finitely presented groups Γ for which G(Γ) is infinite. These examples are
non-solvable in contrast to those of Pickel in Remark 3.4

Note that if a H is a subgroup of a group Γ and Γ is H-separable then it is easy to see that (Γ, H)
cannot be a Grothendieck Pair (since H is not dense in the profinite topology). This was noticed
in [48] to observe that free groups and Fuchsian groups were Grothendieck Rigid. For 3-manifolds
Grothendieck Rigidity was shown in [38] for the fundamental groups of closed geometric 3-manifolds
and finite volume hyperbolic 3-manifolds without appealing to LERF in the hyperbolic case. In [21]
and [52] this was extended to the fundamental groups of all closed irreducible 3-manifolds (as a
consequence of Theorem 4.11). This program has been completed by Boileau and Friedl [10] who
proved:

Theorem 6.2. The fundamental group of any compact, connected, irreducible, orientable 3-manifold
with empty or toroidal boundary is Grothendieck Rigid.

7. Final remarks and further questions

As should be clear from this article, the questions posed in §4 remain stubbornly open, and even
questions about the nature of GM(π1(M)) for M a finite volume hyperbolic 3-manifold seem hard
to resolve. Never the less, these open problems can be used as platforms for other, perhaps more
approachable problems. We discuss a few, other problems for other classes of groups can be found
in [52].

Question 7.1. Let Γ denote the fundamental group of the figure-eight knot complement. It is
well-known that Γ has index 12 in the group PSL(2,Z[ω]) of Theorem 4.27. Is Γ is profinitely rigid?

As noted in §4.5, it was shown in [18] and [9] that GM(Γ) = {Γ}.

Question 7.2. Let MW denote the Weeks manifold. This is the smallest volume hyperbolic 3-
manifold [26]. Is GM(π1(MW ) = {π1(MW )}?

Indeed, one might wonder whether the techniques of [20] (as described in Theorem 4.27) can be
brought to bear in this example since π1(MW ) exhibits a certain amount of representation rigidity.

Question 7.3. In §4.5 it was pointed out that recently [35] showed that being fibered is a profinite
invariant. Given this, a natural question is:

Is the Thurston norm ball a profinite invariant? That is to say, if M is a closed hyperbolic
3-manifold and N a closed hyperbolic 3-manifold with π1(N) ∈ GM(π1(M)) are the Thurston norm
balls isomorphic?

Some progress on this is given in [9] under an additional condition on the isomorphsim between
profinite completions. However, it seems unlikely that this condition will hold in general.

Question 7.4. Is the volume a profinite invariant? That is to say, if M is a finite volume hyperbolic
3-manifold and N a finite volume hyperbolic 3-manifold with π1(N) ∈ GM(π1(M)) does vol(M) =
vol(N)?

It follows from well-known properties of the set of volumes of hyperbolic 3-manifolds [60] that if
Question 7.4 has a positive answer then |GM(π1(M))| is finite.

There does appear to be some conjectural evidence to support a positive answer. Briefly, it is
conjectured (roughly) that if {Γn} is a cofinal sequence of subgroups of finite index in π1(M) (as
above), then:

log |Tor(H1(Γn,Z))|
[π1(M) : Γn]

→ 1

6π
vol(M) as n→∞.

Note that Tor(H1(Γn,Z)) is visible in the profinite completions Γ̂n and so if the above conjecture
is true, this would allow one to deduce π1(N) ∈ GM(π1(M)) implies vol(M) = vol(N).
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