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1. Introduction

A Fuchsian group is a discrete subgroup of PSLð2;RÞ. As such it acts discontinuously
on H2 (the upper half plane model of the hyperbolic plane) by fractional linear transfor-
mations. This action induces an action on the real line. It is well known that if an isometry
of H2 fixes a point of the real line then the point is one of a pair, in the case that the iso-
metry is hyperbolic or the isometry in question is parabolic and the point in question is
unique. Points fixed by parabolic elements of a Fuchsian group G shall be referred to as
the cusps of G. If G < PSLð2; kÞ and k is the smallest such field, then consideration of the
equation which must be satisfied by a fixed point shows that a cusp must always lie inside
kW fyg. A classical case where the cusp set is completely understood is the case when
G ¼ PSLð2;ZÞ, and the cusp set coincides with QW fyg. More generally determining the
cusp set has been hard to do, with only some moderate success—there is a large literature
on this type of problem, see for example [10], [11], [15] and [16] to name a few.

Recall that Fuchsian or Kleinian groups G1 and G2 are commensurable if G1 has a
subgroup of finite index which is conjugate to a subgroup of finite index in G2. This paper is
motivated by the following question:

Question. Let F denote either R or C. If G1 and G2 are finite covolume subgroups of
PSLð2; FÞ with the same cusp set, are they commensurable?

Notice that in dimension 3 ifM ¼ H3=G is a fibered manifold with a single cusp, with
fiber group F, then using the fact that F is normal in G, it is easy to see that F and G have
the same cusp set. Thus in this case finite volume cannot be dropped. In dimension 2, it is
su‰cient that one has finite co-volume and the second is finitely generated (see below).

Our main result is the somewhat surprising:
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Theorem 1.1. There is a finite coarea discrete group GePSLð2;QÞ not commensu-
rable with the modular group whose cusp set is precisely QW fyg.

In fact we will exhibit four mutually noncommensurable such groups; we do not
know whether there are infinitely many such commensurability classes.

Note that the condition on the cusp set of G implies that its limit set will coincide with
that of PSLð2;ZÞ, namely the whole of RW fyg and hence one needs only stipulate that
such a group is finitely generated to ensure that H2=G has finite area.

For our purposes, it is slightly more convenient to work with a subgroup
DePGLð2;QÞ for which H2=D is topologically a torus with a single cusp; we will have
an identification of G with the subgroup of index four defined by the canonical kernel
kerfp1ðH2=DÞ ! H1ðH2=D;Z2Þg.

A complete hyperbolic surface H2=D arising from a discrete group DePGLð2;QÞ
which is not commensurable with PSLð2;ZÞ and has cusp set precisely QW fyg we shall
call a pseudomodular surface and D a pseudomodular group.

The existence of pseudomodular surfaces has various interesting corollaries. For ex-
ample they provide a kind of nonstandard Euclidean algorithm for the rational numbers as
well as a pseudo-Farey tessellation of the hyperbolic plane. We shall show elsewhere that
they can be used to construct new generalizations of Dedekind sums.

The paper is organized as follows. In §2 we introduce a family of groups Dðu2; 2tÞ
each of which defines a finite area complete torus for 0 < u2 < t� 1. Roughly speaking, u2

is a degree of freedom coming from the placement of a single cusp and 2t measures the
translation length of the parabolic element stabilising infinity. If u2 and t are chosen to be
rational, then the cusp set of Dðu2; 2tÞ will be contained in the rational numbers. We note
in passing that it follows from results in [7] (see Chapter 9, Theorem 1.4.2) that the groups
Dðu2; 2tÞ are all quasiconformal deformations of the punctured torus group inside the mod-
ular group.

In this paper we focus on what appear to be the two simplest cases, namely 2t ¼ 4; 6.

Our normalization is such that Dð1; 6Þ is the modular torus arising as a subgroup of
index 6 in PSLð2;ZÞ. In fact we are able to analyse completely the values for which the
groups Dðu2; 6Þ and Dðu2; 4Þ are arithmetic; there are only finitely many, we give the (small)
list in Theorems 2.2 and 2.3.

The main theorem is proved in 2.1; there it is shown that for certain values of ðu2; 2tÞ,
the group Dðu2; 2tÞ is a nonarithmetic group whose cusp set is precisely the rational num-
bers, as promised by Theorem 1.1. Specifically, we show:

Theorem 1.2. The groups Dðu2; 2tÞ for ðu2; 2tÞ in the set

fð5=7; 6Þ; ð2=5; 4Þ; ð3=7; 4Þ; ð3=11; 4Þg

are all pseudomodular and noncommensurable.
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We examine various aspects of the group Dð5=7; 6Þ, including giving an estimate for
its Hurwitz constant and proving some comparison theorems for the size of a horoball at
the rational p=q coming from the groups PSLð2;ZÞ and Dð5=7; 6Þ. In §3.3, we describe how
pseudomodular groups can be used to give di¤erent versions of the Farey tessellation of
H2.

In §4 we use these groups to prove some new results concerning the finitely generated
intersection property, giving negative answers to questions 11 and 12 of the problem list [2].
We show:

Theorem 1.3. Let V be the collection of all rational primes excluding 2 and 5. Then
SLð2;Z½S
Þ does not have fgip for any finite set of SHV of primes inverted.

The method of proof for 1.1 is to construct a certain covering of the reals by ‘‘killer
intervals’’; these intervals are associated to a certain finite collection of group elements
which yield a nonstandard version of the Euclidean algorithm. When such a covering exists
the group is pseudomodular.

In fact, general considerations show that for any value of ðu2; 2tÞ the killer intervals
form an open dense subset of the reals and a group may fail to be pseudomodular because
some rational lies outside this set. However, it seems worth noting that there are several
values of u2 for which there is very strong computer evidence that Dðu2; 2tÞ is pseudo-
modular but the computation seems to be a degree of di‰culty harder than that for the
values listed in the above theorem; such groups seem to suggest the possibility that there are
groups where the open dense set contains the rational numbers, but fails to be a covering.
In §5 we include some calculations for the groups Dðu2; 2tÞ for small values of u2 and
2t ¼ 4; 6 which illustrate these various behaviours.

In §6 we compile a list of open questions related to the groups Dðu2; 2tÞ. Finally, §7 is
an appendix containing the data for a calculation used in 2.1.

Acknowledgement. The authors are indebted to Ian Agol for carefully reading a
preliminary version of this manuscript and in particular for finding killer intervals for the
group Dð2=5; 4Þ. The authors also thank the referee for a careful reading of the manuscript
and Professor Masser for pointing out a nice argument for Theorem 2.2.

2. The groups D(u2, 2t)

In this section we exhibit a family of groups Dðu2; 2tÞ, each of which is H2=Dðu2; 2tÞ
a complete finite area once punctured torus. It is convenient to work in GLð2;RÞ. If u2 and
t are rational, then the group Dðu2; 2tÞ can be taken to lie inside GLð2;QÞ. Actually, we
prefer to allow nonrational matrices of determinant 1, but each such will be of the formffiffi
r

p
M forM A GLð2;QÞ and r A Q so that the passage to the canonical subgroup of index 4

has image in SLð2;QÞ.
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Consider the fundamental domain depicted in Figure 1.1 below.

Choose isometries g1 mapping the directed edge f�1; 0g to the directed edge fy; u2g and
g2 mapping fy;�1g to fu2; 0g. Any such choice will give a discrete group, abstractly
isomorphic to a free group of rank two as well as a hyperbolic metric on the quotient
H2=Dðu2; 2tÞ. In general this metric will not be complete; the completeness condition is
arranged by making choices so that the commutator is a parabolic element. A convenient
choice is

g1:g
�1
2 :g�11 :g2 ¼

�1 �2t
0 �1

� �
:

After a small computation, one finds that

g1 ¼
ð�1þ tÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ t� u2

p
u2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ t� u2

p

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ t� u2

p
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ t� u2

p
� �

and

g2 ¼
u=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ t� u2

p
u=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ t� u2

p

1=ðu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ t� u2

p
Þ ðt� u2Þ=ðu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ t� u2

p
Þ

� �
:

In this paper we will explore the cases that the parabolic is translation by 4 and 6;
other choices are, of course, possible, but they seem computationally more di‰cult.

Understanding the behaviour of the cusp sets of these groups for various values of u2

and t seems to be a di‰cult problem. We begin with some trivial observations.

Figure 1.1
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Lemma 2.1. (i) The group Dðu2; 6Þ is equivalent to the group Dð2� u2; 6Þ after re-
marking and conjugacy.

(ii) The group Dðu2; 4Þ is equivalent to the group Dð1� u2; 4Þ after remarking and
conjugacy.

Proof. For Dðu2; 6Þ, one checks that the traces of the triple fg1; g2; g1:g2g at the
value 2� u2 are the same as those of fg1:g�12 ; g�12 ; g1:g

�2
2 g at the value u2. Standard facts

[6] now imply that the image groups are conjugate in SLð2;CÞ and hence in GLð2;QÞ, since
rational points are preserved.

A similar computation (applied to the same triple) also proves the result in the other
case. r

This lemma implies that we need never consider u2 outside the range 0 < u2 e 1 in
the first case and 0 < u2 e 1=2 in the second.

Notice that it is elementary that for most values of u2, the groups Dðu2; 2tÞ are
not commensurable with SLð2;ZÞ since there will be a trace in the canonical kernel which is
not a rational integer, for example in the group Dð2=3; 6Þ the trace of g21 ¼ 19=4.

The condition that Dðu2; 2tÞ is commensurable with PSLð2;ZÞ is equivalent to the
statement that Dðu2; 2tÞ is arithmetic; it turns out that we can analyse this situation com-
pletely for the groups in which we are interested:

Theorem 2.2. When 0 < u2 e 1, the group Dðu2; 6Þ is arithmetic precisely for

u2 ¼ 1; 1=5; 1=2:

Proof. It is well-known [18] that to check that a non-cocompact Fuchsian group G
of finite co-area is arithmetic it su‰ces to check that tr g2 A Z for all g A G. By [9], Corollary
3.2 it su‰ces to check tr g2 on a generating set (assuming the elements are not of order 2).
One checks easily that at these values the three traces trðg1:g1Þ, trðg2:g2Þ, trðg1:g2:g1:g2Þ are
rational integers so that those groups are arithmetic.

For the converse, we note that if we write trðg2:g2Þ ¼ l this yields the equation

0 ¼ u4ð2þ lÞ � ð4þ 2lÞu2 þ 9

and considering this as an equation in u2 it has discriminant 4ðlþ 2Þðl� 7Þ; so that
for a rational solution in u2, we need to find for which rational integers l one has that
ðlþ 2Þðl� 7Þ is a nonnegative square.

Clearly, there are solutions l ¼ 7;�2; henceforth we suppose that ðlþ 2Þðl� 7Þ is a
nonzero square.
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If we further suppose that ðlþ 2Þ and ðl� 7Þ are coprime to each other, then if
ðlþ 2Þðl� 7Þ is a square, we have

a2 ¼Gðlþ 2Þ

and

b2 ¼Gðl� 7Þ

for (coprime) integers a and b. In the case that both signs are positive, this implies
a2 ¼ 32 þ b2 and Pythagoras’ theorem implies that the only integer solutions are b ¼ 0
and b ¼ 4 corresponding to l ¼ 7; 23 respectively. If both signs are negative, we get
b2 ¼ 32 þ a2, so that a ¼ 0; 4 and corresponding to l ¼ �2;�18.

Finally, we suppose that a ¼ ðlþ 2Þ and b ¼ ðl� 7Þ are not coprime to each other.
Consideration of a� b shows that this prime must be 3.

Writing ðlþ 2Þ ¼ 3l1 and ðl� 7Þ ¼ 3l2, the hypothesis gives that 9l1l2 and hence
l1l2 is a square. Expressing this in terms of l2 we see that l2ðl2 þ 3Þ is a square.

In the case that l2 and ðl2 þ 3Þ are coprime to each other, the same analysis as above
shows that the only solutions are l2 ¼ 1;�4 which gives l ¼ 10;�5. If not, the prime is still
3 and an entirely analogous argument shows that l2 ¼ 0 which has been ruled out.

Examination of the solutions for u2 for these values of l implies the theorem. r

Remark. Professor Masser has pointed out that one can give an argument
without appealing to Pythagoras’ theorem: One may check that that if l > 23 then
ð2l� 6Þ2 < 4ðlþ 2Þðl� 7Þ < ð2l� 5Þ2 and so 4ðlþ 2Þðl� 7Þ cannot be a square. Simi-
larly for l < �18, then ð2l� 4Þ2 < 4ðlþ 2Þðl� 7Þ < ð2l� 5Þ2. One examines the inter-
mediate cases directly.

A similar analysis reveals

Theorem 2.3. When 0 < u2 e 1=2, the group Dðu2; 4Þ is arithmetic precisely for

u2 ¼ 1=5; 1=3; 1=2:

As observed in the introduction, it is clear that for u2 and 2t rational, the cusp set of
Dðu2; 2tÞ is a subset of the rationals. However one can show that for certain values, the
cusp set must be a proper subset of Q. A simple example is given by u2 ¼ 2=3 and 2t ¼ 6—
in this case we have

g2 ¼

1ffiffiffi
2

p 1ffiffiffi
2

p

3

2
ffiffiffi
2

p 7

2
ffiffiffi
2

p

0
BBB@

1
CCCA
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and one finds that the fixed point equation for this matrix (see below) is
ð2þQÞð�1þ 3QÞ ¼ 0; that is to say that the rationals �2 and 1=3 are fixed by g2. It is
a standard fact [4], that in a discrete group, a point fixed by a hyperbolic element of the
group cannot also be fixed by a parabolic element of the group, so that neither �2 or 1=3
can be cusps of Dð2=3; 6Þ.

Let G be a discrete subgroup of PSLð2;CÞ, and g A G a hyperbolic element, repre-
sented by the matrix:

a b

c d

� �
;

with c3 0. The fixed-point equation is given by cz2 þ ðd � aÞz� b ¼ 0, and solving gives
the two fixed points:

ða� dÞG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2 g� 4

p
2c

:

The case when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2 g� 4

p
lies in the trace-field of G seems intrinsically interesting in our

(and other) contexts, as in the case of the example above: we refer to them as special hy-
perbolics or if the context is clear, just as specials. Similarly, rationals fixed by a special
hyperbolic will be referred to as special (values).

In §5 we compile some values of u2 for which Dðu2; 2tÞ is known to contain a special
hyperbolic. In these cases one knows that the cusp set of the group is a proper subset of Q.

Remarks. Define Dð2Þ ¼ kerfD ! H1ðD;Z2Þg. Since the groups

Dð2Þðu2; 2tÞ < PSLð2;QÞ;

if g A Dðu2; 2tÞ is a special hyperbolic its fixed points will lie in Q. Since the cusp set of
PSLð2;ZÞ (and hence any group commensurable with PSLð2;ZÞ) is QW fyg, arithmetic
Fuchsian groups contain no special hyperbolics. Similarly, pseudomodular groups also
have no special hyperbolics.

2.1. Pseudomodular D(u2, 2t). Showing that a given value of ðu2; 2tÞ does give a
pseudomodular surface is a good deal more subtle and is accomplished by establishing a
reduction procedure which will move any rational toy (in essence a Euclidean algorithm).

Since each Dðu2; 2tÞ comes equipped with a version of the Euclidean algorithm com-
ing from the fundamental domain, it is relatively simple (with the aid of a computer) to find
candidate values of u2 by checking whether all the fractions p=q in the interval ½0; 2t
 (in
fact ½0; t
 su‰ces) with q fairly small can be moved to y by the group Dðu2; 2tÞ. The rig-
ourous proof that such candidate examples are in fact pseudomodular is harder. We illus-
trate the reduction principle in this section by showing:

Theorem 2.4. The group Dð5=7; 6Þ is pseudomodular.
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Notice that for Dð5=7; 6Þ, trðg22Þ ¼
117

15
and so Dð5=7; 6Þ cannot be commensurable

with SLð2;ZÞ.

The final step of this theorem involves some computation, but we provide in §7 all the
information so that this step can be easily reconstructed.

The principle lying at the heart of our procedure is the following. To economise on
notation we shall fix ðu2; 2tÞ ¼ ð5=7; 6Þ. We give two illustrative examples.

Example 1. One finds that

g1:g1:g
�1
2 ¼

47

3
ffiffiffi
5

p �2
ffiffiffi
5

p

3

28

3
ffiffiffi
5

p �
ffiffiffi
5

p

3

0
BBB@

1
CCCA

throws 5=28 toy. One computes that the action of this group element on a generic rational
p=q is given by

g1:g1:g
�1
2 ðp=qÞ ¼ 47p� 10q

28p� 5q
:

It follows that the solutions to the inequality j28p� 5qj < jqj form an interval about 5=28
of the form ð5=28� 1=28; 5=28þ 1=28Þ. We refer to this interval as the killer interval as-
sociated to the fraction 5=28; any rational in this interval will have its denominator strictly
decreased by application of the killer word g1:g1:g

�1
2 . Notice that the killer interval is de-

termined by the rational number since although there is an ambiguity in the group elements
which throw 5=28 to infinity, this ambiguity is completely accounted for by postmultipli-
cation by an element of stabðyÞ and this upper triangular subgroup does not alter denom-
inators. We note that killer intervals are only defined for those rational numbers which are
cusps.

Example 2. One finds that

g�11 g
�1
2 ¼

7
ffiffiffiffiffiffiffiffi
7=5

p
3

�4
ffiffiffiffiffiffiffiffi
5=7

p
3

�2
ffiffiffiffiffi
35

p

3

ffiffiffiffiffi
35

p

3

0
BBB@

1
CCCA

throws 1=2 to y. In this case one computes:

g�11 g
�1
2 ðp=qÞ ¼ �49pþ 20q

35ð2p� qÞ

and in this case the solutions of the inequality j35ð2p� qÞj < jqj still give rise to a killer

interval, but it is the much thinner interval
1

2
� 1

2�35 ;
1

2
þ 1

2 �35

� �
. We refer to the integer 35

as the contraction constant for 1=2.
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In general, given a word of the group w throwing a=b toy we obtain a killer interval
by solving an inequality of the form jcðbp� aqÞj < jqj; this is the region where the word w
is guaranteed to reduce denominators. We denote such a region by ða=b : cÞ.

It is this second behaviour which does not occur for the modular group; we sketch a
proof below that for the modular group the contraction factor for any rational number is 1.

Our reduction principle is easily summed up:

Theorem 2.5. Suppose that Dðu2; 2tÞ is such that the interval ½0; 2t
 can be covered by
killer intervals.

Then Dðu2; 2tÞ has cusp set all of QW fyg.

Proof. Given a rational number p=q it is equivalent by a translation in the group
(an operation which does not alter denominators) to a rational number in the interval
½0; 2t
, so we may as well assume p=q A ½0; 2t
. The existence of a killer interval about p=q
implies that there is a g1 A Dðu2; 2tÞ such that g1ðp=qÞ has denominator q 0 with q 0 < q. By
subsequent reductions via killer intervals and elements gi we get to denominator 0, and
hence a wordWðg1; . . . ; gnÞ A Dðu2; 2tÞ such thatWðg1; . . . ; gnÞðp=qÞ ¼ y as required. r

Remark. For any value of ðu2; 2tÞ the union of the killer intervals is always a dense
open subset of ½0; 2t
; it is not actually necessary for the union of the killer intervals to
cover ½0; 2t
 in order for the group to be pseudomodular, only that the complement of this
union contains no rational points.

We comment briefly on the situation when ðu2; 2tÞ ¼ ð1; 6Þ thereby giving the mod-
ular torus H2=Dð1Þ with Dð1Þ < PSLð2;ZÞ. Of course it is well-known in this case that the
cusp set is QW fyg.

Using the group Dð1; 6Þ, one easily computes that the integers between 0 and 5 all
have contraction constant 1 and this set of intervals covers ½0; 6
—the intervals have length
1 with integer endpoints. This then implies (after the fact) that all the contraction constants
are 1.

Indeed the task of covering the interval with killer intervals is simplified because
the groups Dðu2; 2tÞ are all hyperelliptic. It will follow from the lemma below, and (as re-
marked in the introduction), the fact that the cusp set is preserved by passage to a subgroup
of finite index, that it su‰ces to cover the interval ½0; t
.

The following lemma is well known:

Lemma 2.6. There exists a Z2-supergroup D0ðu2; 2tÞ of Dðu2; 2tÞ of signature
ð0; 2; 2; 2; 1Þ where the parabolic element is translation by t.

Proof. A punctured torus equipped with any complete hyperbolic metric admits a
hyperelliptic involution which acts as rotation by p around an axis through the puncture
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and meeting the surface in three points. The quotient orbifold is easily seen to be a 2-sphere
with 3 cone points of order 2, hence the claim about the signature of the supergroup. Now
a standard presentation for such a Fuchsian group is given by

hx; y; z; g j x2 ¼ y2 ¼ z2 ¼ 1; xyzg ¼ 1i;

where g is a parabolic element. Notice that g does not live in Dðu2; 2tÞ but its square does,
and so under the normalization for D0ðu2; 2tÞ we deduce that g acts as translation by t. r

In particular, the hyperelliptic involution to the torus induces an automorphism of
the free group of rank two given by gi ! g�1i for i ¼ 1; 2. It follows from the above argu-
ment that after applying this automorphism, a killer word for the interval ½0; t
 becomes
(possibly after translation by 2t) a killer word for the translated interval in ½t; 2t
. As sim-
ple examples of this, one checks easily that for Dð5=7; 6Þ, g�12 :g1 throws 0 toy while g2:g

�1
1

throws 3 to y.

Setting aside the arithmetic cases, for a given u2 the contraction constant can be ar-
bitrarily large, and can be large even for quite simple rationals, for example one finds that
when u2 ¼ 5=7, the contraction factor for 2=9 is 109375. Given ðu2; 2tÞ, it appears to be
quite di‰cult to predict what the contraction constant is for a given p=q, even assuming
that Dðu2; 2tÞ is pseudomodular.

The proof of Theorem 2.4 in the case ðu2; 2tÞ ¼ ð5=7; 6Þ is completed by exhibiting a
collection of killer intervals covering ½0; 3
; one such family is provided in the Appendix §7.

A complete list of noncommensurable nonarithmetic groups which have been proved
to be pseudomodular in this fashion is contained in:

Theorem 2.7. The groups Dðu2; 2tÞ for ðu2; 2tÞ in the set

fð5=7; 6Þ; ð2=5; 4Þ; ð3=7; 4Þ; ð3=11; 4Þg

are all pseudomodular and noncommensurable.

A covering by killer intervals in each of these cases is exhibited in §7. That the four
groups listed here are noncommensurable can be proved by simple denominator consid-
erations in all but one case; this case can be dealt with by computing the minimal element
in the commensurability class and applying results of Margulis.

We note that in addition, there are other choices (listed in §7) for which there is
extensive computer evidence that the group is pseudomodular, but an approach based on
finding a finite set of killer intervals seems to fail.

2.2. Groups containing special hyperbolics. An interesting (and apparently excep-
tional) case occurs for Dð3=4; 4Þ, where one can find the collection of killer intervals

fð0 : 4Þ; ð1 : 4Þ; ð2 : 4Þ; ð3=4 : 1Þ; ð5=4 : 1Þ; ð3=8 : 1Þ; ð13=8 : 1Þ; ð1=4 : 3Þ; ð7=4 : 3Þg:
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We recall the notation ðp=q : cÞ indicates a killer interval centred at p=q and with con-
traction constant c, that is to say, the interval

�
p=q� 1=ðc � qÞ; p=qþ 1=ðc � qÞ

�
.

This collection has the property that the closures of the intervals cover ½0; 2
, but the
interiors miss out the two points 1=2 and 3=2. This is a reflection of the fact that this group
contains specials fixing these points. The covering by killer intervals allows one to prove:

Theorem 2.8. (i) The group Dð3=4; 4Þ contains exactly one conjugacy class of special
hyperbolics.

(ii) Every rational number is either a cusp of Dð3=4; 4Þ or is equivalent to 1=2 or 3/2.

We conjecture this kind of phenomenon should happen much more generally.

This example also has the interesting feature:

Theorem 2.9. The rational p=q is a special value for Dð3=4; 4Þ if and only if q is even
and not divisible by 4.

Sketch of the proof. Since the killer intervals cover all of ½0; 2
, we can reduce the
denominator of any rational until it is either 1 or 2 (as in 2.8) and an elementary case-by-
case analysis with each generator shows that the property that p=q has q even and is not
divisible by 4 is preserved by the group. r

3. The group D(5/7,6)

3.1. The Hurwitz constant for the group D(5/7,6). In this section we examine some
aspects of the pseudomodular group Dð5=7; 6Þ ¼ D, in particular we estimate its Hurwitz
constant and compare its horoball pattern with that of the classical modular torus.

To estimate the Hurwitz constant we use the ideas of Vulakh, see [19]. We recall that
the Hurwitz constant in our setting is defined as follows. The Hurwitz constant h is the
largest constant so that for every irrational number a there are infinitely many group ele-
ments g A D with

ja� gðyÞj < h�1cðgÞ�2:

In [19] it is shown that if F denotes a Ford domain for D, then one can estimate h. For
convenience, we recall some of [19] in the context of F. Using the symmetry described in
§2.1, the Ford domain F is symmetric about the line x ¼ 3, and so to give the estimates it
su‰ces to consider only the part of the Ford domain lying over the interval ½0; 3
. This is
depicted in Figure 3.1. We claim that the four isometric circles centred at f0; 5=7; 2; 3g of

radii respectively

ffiffiffi
5

7

r
;
3

ffiffiffi
5

p

7
;
3ffiffiffi
7

p ;

ffiffiffi
5

7

r
define this part of the Ford domain of D.
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Referring to Figure 3.1, the result of [19] says that to obtain an estimate for h,
it su‰ces to find the height of the lowest vertex of the Ford domain. If hv denotes this
height, then Theorem 1 of [19] gives he 1=2hv. An exercise in trigonometry gives the height

of the lowest vertex in Figure 3.1 as

ffiffiffiffiffiffiffiffi
131

p

14
. Thus the Hurwitz constant for D

5

7

� �
satisfies

he

ffiffiffiffiffiffiffiffi
131

p

28
.

For more on how the Hurwitz constant varies over the moduli space of 1-punctured
tori, see [8].

3.2. The horoball patterns. We begin by recalling some facts about parabolic ele-
ments in PSLð2;QÞ which will be useful in what follows.

Lemma 3.1. Let p; q be co-prime integers, and g A PSLð2;QÞ a parabolic element
fixing p=q. Then g has the form

1� k2pq p2k2

�q2k2 1þ k2pq

� �

for some constant k with k2 A Q. Furthermore, there exists an integer 0 < nðgÞ such that
gnðgÞ A PSLð2;ZÞ.

Proof. Every p=q is PSLð2;QÞ-equivalent to infinity. The form of an element map-
ping infinity to p=q is:

pk 0

qk 1=pk

� �
;

Figure 3.1
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with k as above. Conjugating
1 1

0 1

� �
by the above element gives the form of g shown.

Now if m A Z, then gm has the form:

1�mk2pq mp2k2

�mq2k2 1þmk2pq

� �
:

Choosing an appropriate m ¼ nðgÞ to clear denominators of k2 proves the second state-
ment. r

We begin by proving that there is no uniform bound on the nðgÞ’s for parabolic ele-
ments in a pseudomodular group:

Theorem 3.2. Suppose that G is pseudomodular. Let Nðp=qÞ be the smallest integer
for which the generator of the parabolic subgroup of G stabilising p=q powers into the mod-
ular group.

Then the set fNðp=qÞ j p=q A Qg is unbounded.

Proof. Suppose to the contrary that this set were bounded, so that there would be a
uniform power K which worked for every rational. In particular, choosing a generator c for
the stabiliser of y in G we see that the elements gðcKÞg�1 A SLð2;ZÞ for every g A G. It
follows that the subgroup N say, generated by these elements is a subgroup of SLð2;ZÞ.
Clearly, N is simply the normal closure of cK in G, and in particular is a non-trivial normal
subgroup of G. However it follows from results of Bass (cf. [3], Prop. 2.8) that the presence
of a normal subgroup with all traces in Z implies the ambient group has traces which are all
algebraic integers, a contradiction in the pseudomodular case. r

We now examine the failure of the existence of any uniform power; it turns out that
for the group Dð5=7; 6Þ one can give a fairly elegant answer. To this end we recall that one
can define a maximal horoball in H2=G and that the preimage of this horoball in H2 gives a
complex of horoballs centred on the cusp set of G any pair of which are tangent or disjoint.
For the modular torus one sees rather easily that this complex is connected, a reflection of
the fact that the maximal horoball carries the entire fundamental group of the modular
torus.

This can fail for other values of ðu2; 2tÞ. In particular, in the case Dð5=7; 6Þ, one
sees that the maximal horoball centred at y in this group is tangent only to maximal
horoballs centred at 2 and �1 (and of course the translates of this pair by stabðyÞ). It fol-
lows that the set of horoballs which are connected toy is the orbit of the subgroup carried
by this complex in H2=D which one sees is hg1; g1g�12 g

�1
1 g2i ¼ hg1; g�12 g1g2i. We denote

this subgroup by Sy. Components of the horoball complex correspond to cosets of Sy in
Dð5=7; 6Þ. We claim:

Theorem 3.3. The group Sy inside Dð5=7; 6Þ contains a subgroup of finite index which
lies inside SLð2;ZÞ.

In particular, fNðp=qÞ j p=q A SyðyÞg is bounded.
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Proof. One checks that the traces of the elements g1:g1, ðg�12 g1g2Þ
2 and

ðg1g�12 g�11 g2Þ
2 are all rational integers and it follows that the canonical subgroup of index

four can be conjugated into SLð2;ZÞ. This conjugation carries rationals to rationals so
must lie inside GLð2;QÞ. By passing to a congruence subgroup deep enough to clear de-
nominators in the conjugating matrix, it follows that Sy contains a subgroup of finite index
which actually lies in SLð2;ZÞ. r

Remark. For Sy inside Dð5=7; 6Þ, one finds that a bound is 6.

We see immediately:

Corollary 3.4. For each fixed g A Dð5=7; 6Þ, the set fNðp=qÞ j p=q A gSyðyÞg is
bounded.

This analysis has another consequence. At each rational number, it makes sense to
consider two horoballs, namely the image of the maximal horoball coming from the mod-
ular torus and the image of the horoball coming from the pseudomodular torus. Suppose
that S is some set of rationals then we say that the modular torus and a pseudomodular
torus are quasicomparable on S if there is a distance D so that for every rational p=q A S,
the modular horoball at p=q is within distance D of the pseudomodular horoball at p=q.

Theorem 3.5. The modular torus and Dð5=7; 6Þ are quasi-comparable on SyðyÞ.

Proof. It follows from Theorem 3.3 that there is a subgroup N � e SLð2;ZÞ which is
normal and of finite index in Sy. Choosing some finite set of coset representatives we see
that there is a uniform bound on the size of denominators which can appear in Sy.

Note that if p=q A SyðyÞ, sayMðyÞ ¼ p=q, then M must have the shape

rp *
rq *

� �

for some rational r. The denominator of r is bounded by the above paragraph. Moreover,
writing M ¼ x � m�, where m� A N � and x is one of the fixed coset representatives, we see
that it is also possible to bound the numerator of r, for example by the determinant of the
integral matrix that one obtains by clearing fractions in x.

The image of a height 1 horoball centred at y under the matrix
a b

c d

� �
has ra-

dius 1=jcj2, so that the modular horoball centred at p=q has radius 1=jqj2 and the pseudo-
modular horoball has radius 1=jrqj2; however the above argument establishes bounds on r
and the result follows. r

3.3. A pseudo-Farey tessellation of the hyperbolic plane. We begin by recalling the
Farey tessellation of the hyperbolic plane, see [17] for more details. Let T denote the ideal
triangle in the hyperbolic plane with vertices f0; 1;yg. The images of T under SLð2;ZÞ
tessellate the hyperbolic plane, giving the so-called Farey tessellation of the hyperbolic
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plane. The vertices are QW fyg and two rationals p=q, p 0=q 0 are joined by an edge ofT if
and only if

p p 0

q q 0

� �
A GLð2;ZÞ:

The reason for the name is the connection with Farey sequences. The nth-Farey sequence
Fn is the set of rationals p=q with jpj; jqje n arranged in increasing order. Thus,

F1 is: �y;�1; 0; 1;y;

F2 is: �y;�2;�1;�1=2; 0; 1=2; 1; 2;y

and so on. If p=q < p 0=q 0 are consecutive rationals in some Farey sequence then
p 0q� pq 0 ¼ 1. Thus T can be constructed by drawing the vertical line through 0 and then
successively joining adjacent rationals in each Farey sequence.

Now consider a pseudomodular group Dðu2; 2tÞ, and the fundamental domain Qðu2;2tÞ
for such a group pictured in Figure 3.2. By definition of Dðu2; 2tÞ, the tessellation of the
hyperbolic plane given by the Dðu2; 2tÞ-images of Qðu2;2tÞ has vertex set precisely QW fyg.
We define this tessellation to be a pseudo-Farey tessellation. See Figure 3.2 for part of
Qð5=7;6Þ. Note Qð1;6Þ is essentially the Farey tessellation discussed above—the edge ½0;y

and its images needs inserting. However, it is more natural for the pseudomodular groups
to consider the tessellation Qðu2;2tÞ.

Giving a number theoretic description of the tessellation Fðu2;2tÞ, as was done for the
Farey tessellation, seems a good deal harder. Indeed an initial question could be: is there
such a description? However, one can use Qðu2;2tÞ to formally define pseudo-Farey sequences
of rationals fFnðu2; 2tÞg, as follows:

Figure 3.2
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First consider the Farey sequence fFng, F1 can be identified with a sequence of tri-
angles f�y;�1; 0g, f0; 1;yg, F2 can be identified with a sequence of triangles

f�y;�2;�1g; f�1;�1=2; 0g; f0; 1=2; 1g; f1; 2;yg;

and so on. For pseudomodular Dð5=7; 6Þ we can proceed as follows using quadrilaterals
(refer to Figure 3.2):

F1ð5=7; 6Þ is: �y;�1; 0; 5=7;y;

F2ð5=7; 6Þ is: �y;�16=7;�7=4;�1;�4=7;�5=14; 0; 5=16; 20=49; 5=7; 5=4; 2;y;

and so on.

Remark. If we consider groups I of the type defined in the proof of Corollary 4.1
below, observe that this group preserves both the Farey tessellation and any pseudo-Farey
tessellation Qðu2;2tÞ arising from a pseudomodular group.

4. The finitely generated intersection property

A group G is said to have the finitely generated intersection property if for any pair of
finitely generated subgroups H and K, HXK is also finitely generated. We abbreviate this
and say G has fgip. It is well known that if G is a finitely generated Fuchsian group, then G
has fgip.

4.1. We can use pseudomodular surfaces to show:

Corollary 4.1. The group PSLð2;QÞ (and hence PSLð2;RÞ) does not have the finitely
generated intersection property.

Proof. Let G denote the pseudomodular group given by Theorem 1.1. We claim that
the intersection I ¼ GXPSLð2;ZÞ cannot be finitely generated. The reason is this: Notice
that given a rational number, each group contains a parabolic element which stabilises it.
By Lemma 3.1 some power of the parabolic element in G stabilising p=q is in the group
PSLð2;ZÞ, that is to say, there is a parabolic subgroup in I which stabilises p=q. From this
it follows that the limit set of the group I is the entire circle at infinity.

From this it follows that if I were finitely generated, H2=I would be a finite area
surface and this surface obviously covers H2=D and H2=PSLð2;ZÞ. Since H2=D has finite
area both these coverings are finite, so that I must be of finite index in both groups, a
contradiction which completes the proof. r

This corollary gives negative answers to questions 11 and 12 of the problem list [2]. In
fact the following theorem can be proved in exactly the same way:

Theorem 4.2. Let G be a finitely generated Fuchsian group of the first kind containing
a parabolic element satisfying the following:
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(1) Gð2Þ ¼ kerfG ! H1ðG;Z2Þg is a subgroup of PSLð2;QÞ.

(2) There exists an element g A G such that trðg2Þ B Z.

Then GXPSLð2;ZÞ is infinitely generated.

Proof. We sketch some of the details, since the proof follows the argument in Cor-
ollary 4.1. Now G contains parabolic elements by assumption, and since Gð2Þ < PSLð2;QÞ,
the set of parabolic fix-points of Gð2Þ, and therefore G, is contained in QW fyg. It follows
by Lemma 3.1 that any parabolic element of G powers into PSLð2;ZÞ. The set of parabolic
fix-points of G is dense in RW fyg (else G is not finite coarea) and so it follows that the
limit set of GXPSLð2;ZÞ is RW fyg. The second condition implies that G and PSLð2;ZÞ
are not commensurable, and so the intersection is infinitely generated as before. r

4.2. The examples above allow us to construct certain S-arithmetic groups that do
not have fgip. Little seems known about fgip for lattices in general Lie groups. It is known
that SLðn;ZÞ does not have fgip for nf 4, as is easy to see by injecting the fundamental
group of a fibered hyperbolic 3-manifold in SLð4;ZÞ (e.g. the group of the Borromean rings
injects, by taking the obvious injection of SLð2;Z½i
Þ into SLð4;ZÞ). We do not know the
answer for n ¼ 3.

However, consider the pseudomodular group Dð5=7; 6Þ, and the subgroup G of index

4 discussed in the introduction. It is easy to check that G is contained in SL 2;Z
1

3
;
1

5

� �� �
.

Since SLð2;ZÞ is obviously a subgroup of SL 2;Z
1

3
;
1

5

� �� �
, we deduce easily from Corol-

lary 4.1

Corollary 4.3. SL 2;Z
1

3
;
1

5

� �� �
does not have fgip. r

Indeed, using pseudomodular groups we prove the following more general statement.

Theorem 4.4. Let V be the collection of all rational primes excluding 2 and 5. Then
SLð2;Z½S
Þ does not have fgip for any finite set of SHV of primes inverted.

Proof. It su‰ces to prove the theorem in the case of SL 2;Z
1

p

� �� �
for any prime

p A V . Write p ¼ 2l� 1, and consider the pseudomodular group Dð1=l; 6Þ. A direct check
shows that the group Dð2Þð1=l; 6Þ is a subgroup of SLð2;Z½1=p
Þ. Now SLð2;ZÞ is also ob-
viously a subgroup of SLð2;Z½1=p
Þ and so Theorem 4.2 applies to produce an infinitely
generated subgroup. Note that this uses the fact that p3 2; 5, for by Theorem 2.2, the
groups Dð1=2; 6Þ and Dð1=5; 6Þ are arithmetic. r

5. Small values of u2

We indicate below a table describing behaviour of the groups Dðu2; 4Þ and Dðu2; 6Þ
for small values of u2. All the candidates we know of have prime denominator.

A few comments are in order. Various groups are annotated as ‘‘conjecturally pseu-
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domodular’’; this is to say that extensive computer checking strongly suggests that such
groups are pseudomodular but the rigourous check of the nature of the pseudomodular
groups has failed to find a finite covering by killer intervals. Various behaviours might ex-
plain these examples. It seems plausible that these groups are pseudomodular but many
more killer intervals are required. Alternatively, the killer intervals might form a dense
open set which only omits irrational points.

The value ðu2; 2tÞ ¼ ð3=11; 6Þ is the first occurence where the behaviour is not even
conjecturally determined; there are rational numbers for which the Euclidean algorithm
does not seem to converge, but no special has been found. The first occurence of this be-
haviour for the other family is at ðu2; 2tÞ ¼ ð2=19; 4Þ.

Table 5.1. 2tF 4

0 < u2 e 1 structure 0 < u2 e 1 structure

1 arithmetic 1=9 special fixing 1=3

1=2 arithmetic 2=9 special fixing 1=3

1=3 arithmetic 4=9 special fixing 2=3

2=3 arithmetic 5=9 special fixing 1=3

1=4 special fixing 1=2 7=9 special fixing 1=3

3=4 special fixing 1=2 8=9 special fixing 2=3

1=5 arithmetic 1=10 special fixing 7=2

2=5 pseudomodular 3=10 special fixing 1=5

3=5 pseudomodular 7=10 special fixing 1=2

4=5 arithmetic 9=10 special fixing 6=5

1=6 special fixing 3=2 1=11 conjectural pseudomodular

5=6 special fixing 1=2 2=11 conjectural pseudomodular

1=7 conjectural pseudomodular 3=11 pseudomodular

2=7 conjectural pseudomodular 4=11 conjectural pseudomodular

3=7 pseudomodular 5=11 conjectural pseudomodular

4=7 conjectural pseudomodular 6=11 conjectural pseudomodular

5=7 conjectural pseudomodular 7=11 conjectural pseudomodular

6=7 conjectural pseudomodular 8=11 conjectural pseudomodular

1=8 special fixing 1=2 9=11 conjectural pseudomodular

3=8 special fixing 1=2 10=11 conjectural pseudomodular

5=8 special fixing 1=2

7=8 special fixing 1=2
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6. Open questions

The existence of pseudomodular groups raises many questions.

1. For which values of ðu2; 2tÞ are the groups Dðu2; 2tÞ pseudomodular?

2. Are there finitely many pseudomodular groups up to commensurability?

3. Can the killer intervals associated to Dðu2; 2tÞ cover ½0; t
 except possibly for some
irrational points?

Table 5.2. 2tF 6

0 < u2 e 1 structure 0 < u2 e 1 structure

1 arithmetic 1=9 special fixing �100=117

1=2 arithmetic 2=9 special fixing 545=1521

1=3 special fixing 1 4=9 special fixing �52=9

2=3 special fixing 1=3 5=9 special fixing �5=16

1=4 special fixing �5=8 7=9 special fixing 29=9

3=4 special fixing 3=2 8=9 special fixing �205=9

1=5 arithmetic 1=10 special fixing 5=52

2=5 special fixing 1=7 3=10 special fixing 1=2

3=5 conjectural pseudomodular 7=10 special fixing 1=2

4=5 conjectural pseudomodular 9=10 special fixing 6=5

1=6 special fixing �1=35 1=11 conjectural pseudomodular

5=6 special fixing �17=24 2=11 special fixing �266=4717

1=7 special fixing �37=14 3=11 undecided

2=7 conjectural pseudomodular 4=11 special fixing 1=5

3=7 special fixing 3=4 5=11 special fixing �1778=741

4=7 special fixing 2=7 6=11 special fixing 69=11

5=7 pseudomodular 7=11 special fixing 149=136

6=7 special fixing 5=3 8=11 special fixing �79=93

1=8 special fixing 1=14 9=11 conjectural pseudomodular

3=8 special fixing �15=2 10=11 special fixing 1=3

5=8 special fixing 7=4

7=8 special fixing 1=2

Long and Reid, Pseudomodular surfaces 95



This su‰ces to prove Dðu2; 2tÞ is pseudomodular. The example of the covering for
Dð3=4; 4Þ (see §7.5) shows that a covering may omit only a finite number of points.

4. Does Dðu2; 2tÞ always contain only finitely many conjugacy classes of special hy-
perbolic? Is there a way to predict which rationals will be fixed by some special hyperbolic?
More generally, for a fixed Dðu2; 2tÞ, is every rational equivalent to either a cusp or one of
a finite number of points fixed by a special hyperbolic?

We remark that it seems that this may not always be the case, for example the chaotic
example Dð3=11; 6Þ. However, the nonchaotic examples do appear to behave in this way.

5. Is there a recursive formula for Qðu2;2tÞ?

6. Which quadratic irrationals are the endpoints of hyperbolic elements in Dðu2; 2tÞ?

Our normalization is such that Dð2Þðu2; 2tÞHPSLð2;QÞ. Hence, if g A Dðu2; 2tÞ is
hyperbolic but not a special hyperbolic, it has an axis with endpoints lying in a real qua-
dratic number field. In the case of Dð1; 6Þ since it is of finite index in PSLð2;ZÞ, every real
quadratic number is a fixed point of some hyperbolic element in the group. We believe this
is well-known, but we cannot find a suitable reference. A proof is sketched below (see Prop-
osition 6.1). In connection with this question, we raise:

7. Can a nonarithmetic Dðu2; 2tÞ be isoaxial with SLð2;ZÞ?

Recall that two Fuchsian groups are defined to be isoaxial if they share the same set
of axes in H2. If both the Fuchsian groups are assumed arithmetic, then [12] shows they are
commensurable (without conjugating). There is considerable experimental evidence that
the pseudomodular groups we know of are not isoaxial with SLð2;ZÞ; for example it would
appear that if A denotes the axis of the element

1 1

1 2

� �
;

then Dð5=7; 6Þ contains no non-trivial element leaving A invariant. On the other hand,

2 1

1 1

� �4
¼ 34 21

21 13

� �

lies in Dð5=7; 6Þ.

A puzzling empirical observation is that in all of the cases that

M A SLð2;ZÞ � Dð5=7; 6Þ;

but Mk is in Dð5=7; 6Þ, then ke 36 and 4jk. Similar behaviour is exhibited in the other
examples.

Proposition 6.1. Let q be a real quadratic number. Then q is the fixed point of a
hyperbolic element of PSLð2;ZÞ.
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Proof. Let D be a square-free positive integer, and write q ¼ aþ b
ffiffiffiffi
D

p

c
, where

a; b; c A Z. We may assume without loss that ða; cÞ ¼ 1 and ðb; cÞ ¼ 1. Let q 0 denote the
non-trivial galois conjugate of q, and A½q;q 0 
 be the geodesic in H2 (unoriented) between q
and q 0. We claim there exists g A PSLð2;ZÞ such that the axis of g is A½q;q 0 
. This will prove
the proposition.

Associated to this geodesic is an integral quadratic form obtained from the quadratic

equation x2 � 2a

c
xþ a

2 � b2D
c2

, namely:

f ðX ;YÞ ¼ c2X 2 � 2acXY þ ða2 � b2DÞY 2:

It follows for example from the theory of automorphs of integral binary forms (cf. [5],
Chapter 12) or an argument from the theory of orders in quaternion algebras (cf. [14]) that
the set of elements of PSLð2;ZÞ preserving this form is infinite cyclic. Choosing any element
of this infinite cyclic subgroup will su‰ce. r

8. What sort of behaviours are possible in dimension 3?

An obvious candidate construction to provide examples of such a phenomenon is
that of mutation. The classical setting for this is the case of a link L in S3, and one mutates
S3nL by cutting-and-pasting along an embedded incompressible and boundary incompres-
sible 4-punctured sphere. However, one can show that the pair of mutant links in Figure 6.1
has di¤erent cusp sets as we now briefly describe.

Figure 6.1
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The link in Figure 6.1(a) has arithmetic complement being commensurable with
H3=PSLð2;O3Þ, (where O3 is the ring of integers in the number field Qð

ffiffiffiffiffiffiffi
�3

p
Þ) and so the

cusp set (for a suitable representation) of the link group is Qð
ffiffiffiffiffiffiffi
�3

p
ÞW fyg. By [13] muta-

tion does preserve the invariant trace-field, however, it can be shown that the mutant in
Figure 6.1(b) has a special fixing �3=2þ i

ffiffiffi
3

p
.

Another interesting feature of this example is that the link group of the mutant has
a non-integral trace, and so gives an example where mutation does not preserve integrality
of traces.

However, we have computer evidence that suggests there do exist analogues of pseu-
domodular groups in dimension 3.

7. Appendix: Killer intervals

For the convenience (?!) of the reader, we provide a list of killer intervals for the
groups we know to be pseudomodular. The notation in the list below is (rational number,
contraction constant) which specifies the killer interval completely. If this untiring reader
wishes to check for himself that these intervals work, the computation is two-fold. First one
needs to check that these intervals cover, an easy if tedious computation made somewhat
easier by the fact that they are in ascending order.

The second phase takes a little more work, one needs to check that the contraction
constants are as claimed; this is not di‰cult, one writes a short computer program which
performs the Euclidean algorithm with the given matrices.

7.1. Killer intervals for D(2/5,4).

fð0 : 5Þ; ð1=5 : 1Þ; ð2=5 : 1Þ; ð3=5 : 9Þ; ð7=10 : 1Þ; ð4=5 : 3Þ; ð1 : 5Þ; ð6=5 : 3Þ;
ð13=10 : 1Þ; ð7=5 : 9Þ; ð8=5 : 1Þ; ð9=5 : 1Þ; ð2 : 5Þg

7.2. Killer intervals for D(3/7,4).

fð0 : 7Þ; ð3=14 : 1Þ; ð3=11 : 7Þ; ð1=7 : 3Þ; ð2=7 : 9Þ; ð3=7 : 1Þ; ð4=7 : 3Þ; ð5=7 : 1Þ;
ð6=7 : 1Þ; ð1 : 7Þ; ð8=7 : 1Þ; ð9=7 : 1Þ; ð7=5 : 7Þ; ð10=7 : 3Þ; ð11=7 : 1Þ; ð12=7 : 9Þ;
ð25=14 : 1Þ; ð13=7 : 3Þ; ð2 : 7Þg

7.3. Killer intervals for D(3/11,4).

fð0 : 11Þ; ð1=11 : 3Þ; ð3=22 : 1Þ; ð2=11 : 36Þ; ð3=11 : 1Þ; ð4=11 : 9Þ;
ð45=121 : 1Þ; ð21=55 : 6Þ; ð711=1859 : 1Þ; ð207=539 : 1Þ; ð13=33 : 3Þ;
ð9=22 : 2Þ; ð5=11 : 3Þ; ð255=539 : 1Þ; ð27=55 : 1Þ; ð129=253 : 1Þ; ð17=33 : 6Þ;
ð585=1133 : 1Þ; ð177=341 : 1Þ; ð41=77 : 1Þ; ð6=11 : 4Þ; ð7=11 : 1Þ; ð8=11 : 6Þ;
ð9=11 : 1Þ; ð10=11 : 1Þ; ð1 : 11Þ; ð12=11 : 1Þ; ð13=11 : 1Þ; ð41=33 : 1Þ;
ð14=11 : 6Þ; ð15=11 : 1Þ; ð16=11 : 4Þ; ð113=77 : 1Þ; ð49=33 : 6Þ; ð61=41 : 11Þ;
ð377=253 : 1Þ; ð2345=1573 : 1Þ; ð83=55 : 1Þ; ð17=11 : 3Þ; ð11=7 : 11Þ; ð35=22 : 2Þ;
ð439=275 : 1Þ; ð53=33 : 3Þ; ð89=55 : 6Þ; ð115=71 : 11Þ; ð197=121 : 1Þ; ð18=11 : 9Þ;
ð19=11 : 1Þ; ð20=11 : 36Þ; ð41=22 : 1Þ; ð21=11 : 3Þ; ð2 : 11Þg
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7.4. Killer intervals for D(5/7,6).

fð0 : 7Þ; ð1=7 : 125Þ; ð5=28 : 1Þ; ð5=21 : 1Þ; ð2=7 : 25Þ; ð45=154 : 5Þ;
ð40=133 : 1Þ; ð5=16 : 7Þ; ð30=91 : 1Þ;
ð55=161 : 1Þ; ð130=371 : 1Þ; ð55=156 : 7Þ; ð3190=9023 : 1Þ;
ð255=721 : 25Þ; ð5735=16212 : 1Þ;
ð635=1792 : 1Þ; ð5=14 : 25Þ; ð35=97 : 7Þ; ð120=329 : 1Þ;
ð235=637 : 1Þ; ð115=308 : 1Þ; ð45=119 : 5Þ; ð155=406 : 1Þ; ð65=168 : 1Þ;
ð20=49 : 1Þ; ð3=7 : 25Þ; ð10=21 : 1Þ; ð85=161 : 1Þ; ð15=28 : 5Þ; ð65=119 : 1Þ;
ð55=98 : 1Þ; ð4=7 : 25Þ; ð5=7 : 1Þ; ð6=7 : 125Þ;
ð25=28 : 1Þ; ð13=14 : 5Þ; ð125=133 : 1Þ; ð20=21 : 5Þ; ð75=77 : 1Þ; ð125=126 : 1Þ;
ð1 : 175Þ; ð50=49 : 1Þ; ð270=259 : 1Þ; ð300=287 : 1Þ; ð1550=1477 : 1Þ;
ð125=119 : 25Þ; ð2825=2688 : 1Þ; ð2525=2401 : 1Þ; ð325=308 : 1Þ;
ð15=14 : 5Þ; ð25=23 : 7Þ; ð100=91 : 1Þ; ð125=112 : 1Þ; ð8=7 : 5Þ;
ð25=21 : 1Þ; ð5=4 : 7Þ; ð9=7 : 5Þ; ð10=7 : 1Þ; ð11=7 : 1Þ; ð12=7 : 5Þ; ð13=7 : 1Þ;
ð2 : 7Þ; ð15=7 : 1Þ; ð16=7 : 5Þ; ð17=7 : 1Þ; ð18=7 : 25Þ; ð37=14 : 1Þ; ð19=7 : 5Þ;
ð58=21 : 1Þ; ð453=161 : 1Þ; ð2033=721 : 1Þ; ð79=28 : 25Þ; ð1917=679 : 1Þ;
ð337=119 : 1Þ; ð20=7 : 5Þ; ð3 : 7Þg

7.5. Killer intervals for D(3/4,4).

fð0 : 4Þ; ð1 : 4Þ; ð2 : 4Þ; ð3=4 : 1Þ; ð5=4 : 1Þ; ð3=8 : 1Þ; ð13=8 : 1Þ; ð1=4 : 3Þ; ð7=4 : 3Þg
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