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Abstract

We discuss separability properties of discrete groups, and introduce a new property of groups that is motivated
by a geometric proof of separability of geometrically finite subgroups of Kleinian groups. This property appears
natural in that it provides a general framework for old questions in the geometry and topology of hyperbolic
manifolds and discrete groups.
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1. Introduction

We begin by recalling that if Γ is a group, and H a subgroup of Γ , then Γ is called H -separable if for
every g ∈ Γ \ H , there is a subgroup K of finite index in Γ such that H ⊂ K but g 6∈ K . The group Γ is
called subgroup separable (or LERF) if Γ is H -separable for all finitely generated subgroups H . As is
well-known LERF is a powerful property in the setting of low-dimensional topology which has attracted
a good deal of attention (see [3,34] for example), however, it is a property established either positively
or negatively for very few classes of groups. Much recent work has suggested that the correct condition
to impose on the subgroup is not finite generation but geometrical finiteness (or quasi-convexity in the
case of a negatively curved group) and this article takes this theme further by exploring a new related
condition which is even more relevant for topological applications and which is reminiscent of old and
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very classical topological considerations, namely map extension properties and ANRs. We begin with a
simple definition that underpins much of what follows.

Definition 1.1. Let Γ be a group and H a subgroup. Then a homomorphism θ : H −→ A extends over
the finite index subgroup V ≤ Γ if

• H ≤ V
• There is a homomorphism Θ : V −→ A which is the homomorphism θ when restricted to H .

One of the motivations in our setting for making this definition is the following straightforward theorem
proved in Section 3.

Theorem 1.2. Suppose that Γ is LERF, and H a finitely generated subgroup. Suppose θ : H → A is a
homomorphism onto a finite group. Then there is subgroup of finite index V of Γ containing H and a
homomorphism Θ : V → A with Θ |H = θ .

In other words, if the ambient group is LERF, then every homomorphism of a finitely generated subgroup
onto a finite group can be extended to some subgroup of finite index in Γ . We shall say that the
homomorphism θ virtually extends and that Γ has the local extension property for homomorphisms
onto finite groups. We shall show in Theorem 1.3 that, somewhat surprisingly, this extension property
comes close to characterising LERF, we refer the reader to Section 2 for the definitions.

Theorem 1.3. Let Γ be a word hyperbolic group which has the local extension property for
homomorphisms of quasi-convex subgroups onto Z/2.

Then Γ is almost separable on its quasi-convex subgroups.

It turns out that these extension properties give elegant expressions of several well established notions,
for example residual finiteness:

Theorem 1.4. Γ is residually finite if and only if Γ has the property that for each of its cyclic groups
there is a virtual extension of at least one of the maps onto a nontrivial (cyclic) group.

An important generalisation of the extension property is the following:

Definition 1.5. Let Γ be a group and H a subgroup. Then Γ virtually retracts onto H if there is a finite
index subgroup V of Γ with

• H ≤ V
• There is a homomorphism θ : V −→ H which is the identity when restricted to H .

The finite index subgroup V will be called a retractor. One should regard a virtual retraction as an
extension of the identity homomorphism H −→ H , to some finite index subgroup V of Γ and clearly,
given any such retraction, we can extend any homomorphism H → A over the finite index subgroup V .

Retractions are presumably somewhat rare, but one can ask for their existence in more restricted
circumstances, for example, we might require that H be a finite subgroup, or an infinite cyclic subgroup
or a geometrically finite (or quasiconvex) subgroup in some more geometric setting.

Motivated by this, we define a group Γ to have Property LR (it admits Local Retractions) if for every
finitely generated subgroup H < Γ , there is a finite index subgroup which retracts to it. If we wish to
restrict to some class of subgroups, we refer to Γ being LR over finite, cyclic, freely indecomposable etc
subgroups.
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Despite their rarity one can prove that retractions exist for several important classes of examples;
indeed, in the course of proving that finitely generated free groups are LERF, M. Hall showed that if F
is free and H a finitely generated subgroup of F then there is a finite index subgroup of F containing H
as a free factor, that is F has Property LR (see Section 5 for a detailed discussion). We show.

Theorem 1.6. Suppose that Γ is a finitely generated group which virtually embeds into an all right
hyperbolic Coxeter subgroup of Isom(Hn).

Then Γ virtually retracts to its geometrically finite subgroups.

That is to say, Γ is LR over geometrically finite subgroups, where for the purposes of this statement we
may allow infinite cyclic subgroups. We also note that it follows from [3] that the hypothesis holds for
the Bianchi groups.

Our interest comes from the geometric applications for which we have the especially important
conjecture:

Conjecture 1.7. Suppose that Γ is the fundamental group of a closed hyperbolic 3-manifold.
Then Γ virtually retracts to any of its cyclic subgroups.

There is some exploration of this question and its implications in Section 2.3. We note that although
this question is significantly stronger than the traditional virtually Haken conjecture, phrased in these
terms it places the question closer in spirit to questions about extensions of cyclic groups as in the notion
of residual finiteness as in the statement of Theorem 1.4. We note that it neither implies, nor is implied
by LERF.

Questions regarding subgroup separability often interact with difficult issues concerning Property T
and the congruence subgroup property and an advantage of the property of being LR over cyclic groups
is that one can often sidestep such issues and apply geometric methods. For example, despite the fact
little or nothing is known about subgroup separability in this context we are able to show using harmonic
methods:

Theorem 1.8. Let Γ be a co-compact torsion-free lattice in PU(n, 1). Let ∆ < Γ be isomorphic to a
lattice in PO0(m, 1) where m ≥ 3. Then Γ does not virtually retract to ∆.

Indeed, despite its powerful geometric consequences, the question of whether a group is LR over its
cyclic groups is stable in a way that subgroup separability is not; for example it is well known that LERF
is not preserved by Cartesian products of groups: in contrast, the property of being LR over Z is (see
Theorem 2.13).

The paper is organized as follows. In Section 2 we provide a quick review of separability properties,
and in Section 3 prove Theorem 1.2. In addition, and perhaps of note, we provide a partial converse to
Theorem 1.2, as well as give a characterization of residually finite in the language of extensions. We go
on to discuss retractions in detail and discuss how the theory of retractions can be used to see geometry
that, as yet, is undetected by LERF. In Section 3 we give an application of the theory of extensions to
3-manifold topology, and in particular we show:

Corollary 1.9. Let M = H3/Γ be a non-compact orientable arithmetic hyperbolic 3-manifold and H a
non-elementary subgroup of Γ of infinite index generated by two parabolic elements.

Then there is a finite index subgroup ΓH < Γ , a homomorphism φ : ΓH → Z for which H is
contained in kerφ.

In the final section we raise some questions that are closely connected to our work.
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2. Residual properties of groups and extensions

2.1. Background on subgroup separability

Let Γ be a group and H a subgroup. It will be convenient to record the following equivalent definitions
of Γ being H -separable. Define the subgroup H∗ of Γ to be

H∗
=

⋂
{K : H < K , [Γ : K ] < ∞}.

Then Γ is H -separable if and only H∗
= H . Closely related to this is that Γ is H -separable if and only

if H is closed in the profinite topology on Γ . We recall that in these terms, a group Γ is residually finite
if and only the trivial subgroup is separable in Γ .

When Γ is a group of hyperbolic isometries, a useful geometric version of LERF that will be important
for us, is GFERF. Recall that if Γ < Isom(Hn) then Γ is called GFERF if it is H -separable for every
finitely generated geometrically finite subgroup H .

Convention: All geometrically finite groups considered will be finitely generated, so that our definition
of geometrical finiteness is vol(Nη(C(Γ ))) < ∞ where C(Γ ) is the convex core of Hn/Γ .

In dimension 2, since there are no finitely generated geometrically infinite subgroups, it follows that
LERF coincides with GFERF. In dimension 3, Agol’s recent proof of tameness [2], shows that if a finite
co-volume Kleinian group is GFERF, it is also LERF; since an affirmative solution to the tameness
conjecture implies that every finitely generated geometrically infinite subgroup of a finite covolume
Kleinian group is virtually a fibre in a fibration over the circle (see [10, Corollary 8.3]). Such groups are
known to be separable by the work of Bonahon and Thurston (see [6,36]).

When Γ is a word hyperbolic group (in particular it is finitely generated) we can replace GFERF by
QCERF. That is, Γ is called QCERF if it is H -separable for every quasi-convex subgroup H . Note that
if H is a quasi-convex subgroup of a word hyperbolic group it is finitely generated (see [8] page 460).

2.2. Extensions

The following simple observation expressing a basic connection between extensions and LERF seems
to have gone unnoticed previously:

Theorem 2.1. Suppose that Γ is LERF, and H a finitely generated subgroup. Suppose θ : H → A is a
homomorphism onto a finite group. Then there is subgroup of finite index V of Γ containing H and a
homomorphism Θ : V → A with Θ |H = θ .

Proof. We can assume that H has infinite index in Γ . Let K = ker θ , a finite index subgroup of H , and
hence finitely generated.

Since Γ is LERF, there is a finite index subgroup K ′ < Γ such that K ′
∩ H = K . This is easily seen

by taking a finite index subgroup of Γ which contains K and excludes a set of coset representatives for
H/K .

Now define ∆ =
⋂

{hK ′h−1
: h ∈ H}. Note that since K is normal in H , K < ∆ and moreover,

since K has finite index in H , the above intersection consists of only a finite number of conjugates of K ′.
Hence ∆ has finite index in K ′ (and also Γ ). Let V denote the group generated by H and ∆. It is easy to
check that, by construction, ∆ is a normal subgroup of V , so that V = H.∆. The canonical projection
Θ : V → V/∆ defines the required extension. �
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A corollary of this is the following.

Corollary 2.2. Suppose that Γ is LERF and contains a free non-Abelian subgroup. Then given any finite
group G, there is a finite index subgroup ΓG of Γ and a surjection ΓG → G. �

Remark. 1. This corollary implies the well-known fact that lattices in semi-simple Lie groups that have
the Congruence Subgroup Property are not LERF.

2. There are many non-LERF groups that share the property stated in Corollary 2.2; the most well known
being the group F2 × F2.

Somewhat surprisingly, there is almost a converse to Theorem 2.1 in the negatively curved setting. To
this end, we recall (the terminology is that of [26], see also [31]) that a subgroup H is almost separable
if [H∗

: H ] < ∞. For many geometrical purposes, almost separability suffices, since the subgroup H∗

is visibly separable.

Theorem 2.3. Let Γ be a word hyperbolic group which has the local extension property for
homomorphisms of quasi-convex subgroups onto Z/2.

Then Γ is almost separable on its quasi-convex subgroups.

Proof. Let H be any quasi-convex subgroup of Γ whose limit set is a proper subset of the Gromov
boundary at infinity of Γ , denoted by ∂G. Using quite standard techniques (see [26] or [31] for example)
we may find an infinite cyclic subgroup C in Γ so that the group ∆ = 〈H, C〉 = H ∗ C has its limit set
being a proper subset of ∂G and in particular is quasi-convex.

Choose a surjective homomorphism θ : ∆ → Z/2 which kills H . By assumption, Γ has the local
extension property for homomorphisms onto Z/2, so θ may be extended to Θ : V −→ Z/2.

In particular, this shows that any such H has the property that it is engulfed; that is to say, it is
contained in some proper subgroup of finite index in Γ , in this case Θ−1(Identity) is proper and contains
H .

It now follows from the main result of [31] (extending the earlier work of [26]) that if H is any
quasi-convex subgroup of Γ then [H∗

: H ] is finite, that is to say, it is almost separable. �

We next prove that there is a simple characterization of residually finite in the language of extensions.

Theorem 2.4. Γ is residually finite if and only if Γ has the property that for each of its cyclic groups
there is an extension of at least one of the maps onto a nontrivial cyclic group.

Proof. If Γ has the stated extension property, then given a nonidentity g ∈ Γ we can extend some
homomorphism of 〈g〉 −→ Z/k to V −→ Z/k, where V has finite index in Γ . Then the kernel of this
map has finite index in Γ and excludes g so that Γ is residually finite. Conversely, suppose that Γ is
residually finite, and let some nonidentity g ∈ Γ be given. Choose some normal subgroup of finite index
in Γ , N say, which excludes g.

Then the map

N .〈g〉 −→ N .〈g〉/N ∼= 〈g〉/〈gk
〉

for some k. This extends the map 〈g〉 → Z/k, this map being nontrivial by choice of N . �
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2.3. Virtual retractions

We now discuss virtual retractions. These appear to be interesting for a variety of reasons that we
discuss further below. Despite their apparent rarity, one can prove that virtual retractions exist for an
important class of examples (see [3,34]). The result 2.6 motivated the definition, and our interest in
retractions. We first recall some definitions.

Definition 2.5. Let Γ be a group and H a subgroup. Then Γ virtually retracts H if there is a finite index
subgroup V of Γ with

• H ≤ V
• There is a homomorphism θ : V −→ H which is the identity when restricted to H .

Now let G be a finite graph (without loops and without multiple edges) with vertex set V (G) =

{s1, s2, . . . , sn}, and edge set E(G). A labelling of G is a function m : E(G) → {2, 3, . . .}. If e ∈ E(G)

has endpoints si and s j , we write m(e) = mi j , and by convention we set mi i = 1. Then the Coxeter
group C(G, m) associated to the labelled graph (G, m) is the group with presentation

〈s1, s2, . . . , sn | (si s j )
mi j = 1〉.

Thus there is a relation for every pair {si , s j } such that there is an edge e ∈ E(G) with endpoints si and
s j , together with the relations s2

i = 1, 1 ≤ i ≤ n. A Coxeter group is called an all right Coxeter group
if all finite labels are 2.

Theorem 2.6. Suppose that Γ is a finitely generated group which embeds into an all right hyperbolic
Coxeter subgroup of Isom(Hn).

Then Γ virtually retracts to any of its geometrically finite subgroups.

Proof. Let P be an all right polyhedron in Hn , G(P) the Coxeter group generated by reflections in the
faces of P and H a geometrically finite subgroup of G(P). As in the proof of Theorem 3.1 of [3] (see
also [34]), the geometric convex hull of H can be expanded to a tiling hull Y (H) coming from the all
right Coxeter group. Briefly, if C(H) denotes the convex hull of the limit set of H , then Y (H) is defined
to be the smallest convex union of copies of P which contains C(H) in its interior. It is easy to see that
Y (H) is H -invariant, and the key step in the separability argument of [3,34] is to show that the quotient
Y (H)/H continues to have finite volume.

The group generated by reflections in the sides of Y (H), denoted by K (H), is discrete with
fundamental polyhedron Y (H). By the H -invariance, it follows that K (H) is normalised by H and
K ∩ H = 1. Define V (H) = K (H) · H . Then V (H) visibly has the properties of a retractor, the only
issue being whether [G(P) : V (H)] is finite. This follows from the fact that Y (H)/H has finite volume
(see [3,34]). Thus V (H) is a retractor for H in G(P). If H is a subgroup of Γ , then Γ ∩ V (H) is a
retractor for H in Γ . �

Remark. 1. Examples of groups Γ as in Theorem 2.6 are plentiful (see [3,29]). All right Coxeter
subgroups as in Theorem 2.6 exist in dimensions 2 ≤ n ≤ 8.

2. Since Hall’s result that finitely generated free groups are LERF can be reproved using these techniques
(see [34]), it is perhaps not too surprising that a stronger statement than GFERF can be made under the
hypothesis of Theorem 2.6. However, until now, the full strength of the construction does not appear
to have been noticed.
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3. An interesting feature of this method, is that given the embedding into an all right Coxeter group
acting on Hn , to every geometrically finite subgroup one can canonically assign a subgroup of finite
index, namely the retractor subgroup.

4. Recently, Haglund [22] has extended the methods of [3] and [34] to the setting of quasi-convex
subgroups of abstract all right Coxeter groups. More precisely, he has shown that if C(G, m) is any
all right Coxeter group, then the quasi-convex subgroups are separable (there is no assumption made
about negative curvature). Furthermore, the method of proof in [22] closely resembles that of [3,
34], and one can deduce from it (see in particular Lemma 5.1, Theorem 4.5 and Corollary 4.6), the
following extension of Theorem 2.6.

Theorem 2.7. Suppose that Γ is a finitely generated group which embeds into an all right hyperbolic
Coxeter group. Then every quasi-convex subgroup H of Γ admits a virtual retraction. �

Note that F2 × F2 is a subgroup of finite index in an all right Coxeter group, and so although it is not
LERF, the geometrically well-behaved subgroups are separable by [22], and there are virtual retractions
onto quasi-convex subgroups.

An important corollary of 2.6 from the topological viewpoint is the following.

Corollary 2.8. Suppose that M = H3/Γ is a finite volume hyperbolic 3-manifold for which Γ embeds
into an all right hyperbolic Coxeter subgroup of Isom(Hn).

Then if γ ∈ Γ is any non-trivial element, there is a finite cover Mγ of M for which γ ∈ π1(Mγ ) and
γ represents a generator of an infinite cyclic factor of H1(Mγ ; Z).

Proof. Apply Theorem 2.6 to the infinite cyclic subgroup generated by γ . �

As far as the authors are aware these are the only examples of hyperbolic 3-manifolds for which it is
known that every non-trivial element virtually represents a non-trivial element in first homology.

This corollary motivates consideration of an important special case which we single out:

Definition 2.9. A group is LR over its cyclic subgroups, if given any cyclic subgroup, C , there is a virtual
retraction V −→ C .

It is a well known conjecture that a hyperbolic 3-manifold group is LR over some infinite cyclic
subgroup. We conjecture that actually a hyperbolic 3-manifold group is LR over all its cyclic subgroups.
This seems to be the correct conjecture as this stronger property behaves rather well. We note that it
follows immediately that if a group is LR over its cyclic subgroups, then it clearly satisfies Theorem 2.4,
so that it is residually finite.

We now discuss some properties of LR (and LR over cyclic subgroups) that are reminiscent of how
LERF behaves. In fact, Property LR behaves better in certain circumstances, as we now discuss. In the
following, to avoid the cumbersome clutter of multiple repetitions of the phrase “and LR over cyclic
subgroups” we shall suppress it and only point out occasions when there is any difference of note.

As with LERF (see [34]), Property LR is well behaved for subgroups. That is to say, if Γ has Property
LR and K ≤ Γ , then K has Property LR. For if H < K is a finitely generated subgroup and V a
subgroup of finite index in Γ which is a retractor for H , then V ∩ K is a retractor for H in K .

For finite supergroups there is also a similar result to [34] with some mild hypotheses:

Theorem 2.10. Suppose that Γ is a finitely generated linear group and K a subgroup of Γ of finite
index. If K has Property LR, then Γ has Property LR.
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Proof. We begin by noting that from the argument above, we may assume that K is normal in Γ . Given
an H in Γ , choose a retraction r : A −→ H ∩ K , where A has finite index in K . By the normality of
K , H acts by conjugacy on A while stablising H ∩ K , so that we may intersect all these conjugates and
restrict the original retraction, and we may suppose that A is normalised by H .

Choose a faithful linear representation ρ : H ∩ K → GL(V ), for some finite dimensional vector
space V . By composition with the retraction, we get a (nonfaithful) linear representation A → GL(V ).
Note that A.H/A ∼= H/(H ∩ A) is finite, so that we may induce upwards to get a representation
ρ∗

: A.H → GL(V ′).
Since A is normal in A.H , the restriction of the induced representation ρ∗ down to A gives [A.H : A]

copies of ρ which is therefore a faithful representation of H ∩ K . It follows that when ρ∗ is restricted to
H , it is faithful on a subgroup of finite index, namely H ∩ K . This forces ker ρ∗ to be finite.

We now remove this kernel as follows. Since Γ is linear, it contains a normal torsion-free subgroup
of finite index, and hence a homomorphism to a finite group which embeds all of the Γ torsion.

By using the left regular representation of this finite group, we get a homomorphism π : Γ −→

GL(V ′′) with finite image which embeds all of the Γ torsion. Now the homomorphism

ξ = (ρ∗
× π) : A.H −→ GL(V ′

× V ′′)

is faithful on the subgroup H and restricting to the subgroup ξ−1(ξ(H)) (which has finite index since it
contains ξ−1(H ∩ K ) which is at least A) we obtain the desired retraction. �

We note that linearity was really only used on the subgroup H so we can argue similarly to obtain:

Theorem 2.11. Suppose that Γ is a finitely generated group and K a subgroup of Γ of finite index.
Then if K has Property LR over its cyclic subgroups, then so does Γ .

We can use this theorem as follows.

Theorem 2.12. Suppose that A and B are LR over cyclic groups.
Then so is A ∗ B.

Proof. Given an element γ in A∗B, it can be uniquely expressed a1.b1.a2 . . . ak .bk where all but possibly
the first or last elements are nontrivial. If the element γ lies in either A or B, we use a projection
homomorphism to the appropriate A or B side and then compose with the retraction on this side coming
from the hypothesis. The composition is a retraction of the free product as required.

If not, using the fact that A and B are residually finite (Theorem 2.4), we can map A ∗ B → FA ∗ FB
where FA and FB are finite, so that none of the component elements of the image of γ are trivial. In
particular, the image of γ has infinite order since it is in reduced form. Now free groups are LR over
cyclic subgroups and the group FA ∗ FB is virtually free and so we can apply Theorem 2.11. �

Remark. It seems worthwhile pointing out that the situation actually improves upon taking free product:
One needs only assume that A and B are residually finite and it follows from the proof that A ∗ B is LR
at least over the infinite cyclic groups which do not conjugate into a vertex group.

As remarked above it is well-known that F2 × F2 is not LERF, however we have:

Theorem 2.13. Suppose that A and B are LR over cyclic subgroups.
Then so is A × B.
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Proof. If the element (a, b) has finite order in A × B, then we can use the retraction of A onto 〈a〉

and of B onto 〈b〉 to form a homomorphism from a subgroup of finite index onto a finite group
K A × K B → 〈a〉 × 〈b〉 and then pulling back the subgroup generated by (a, b) gives the required
retraction.

If (a, b) ∈ A × B is an element of infinite order, then both of a and b cannot have finite order, say
that b does not. Let K B be the retractor for B over 〈b〉 and let A × K B → 〈b〉 be the obvious map to Z
exhibiting A × K B as a retractor. �

We have already mentioned the connection with the classical virtual Betti number problem. In fact we
have more:

Theorem 2.14. Suppose that M is a hyperbolic n-manifold for which π1(M) has LR over its cyclic
subgroups.

Then M has infinite virtual first Betti number.

Proof. Suppose that the first Betti number of M is k and let γ be an element lying in the kernel of the
map π1(M) → H1(M). Let q : M̃ → M be a finite sheeted covering in which the lift of (some power
of) γ becomes an element of infinite order in H1(M̃).

By considering the transfer map, we see that with rational coefficients H1(M̃) ∼= H1(M) ⊕ ker(q∗)

and the element γ r lies in ker(q∗). It follows that H1(M̃) has rank at least k + 1. �

Remark. Thus LR proves infinite virtual first Betti number in a way which seems more natural than the
traditional approach of finding a surjection to a non-Abelian free group.

2.4. Retractions and geometry

Here we discuss the failure of Property LR for some classes of groups and subgroups. This seems
interesting as the examples illustrate that Property LR “sees” geometric features that LERF/GFERF as
yet cannot. Firstly, we remark that a group having Property LR is not implied by LERF. This follows
from:

Theorem 2.15. Let Γ be a hyperbolic 3-manifold group.
Then there are no retractions onto virtual fibre groups.

Proof. Let S be a virtual fibre group and suppose that V → S is a retraction. Let K be a subgroup of
finite index in Γ in which S is a genuine fibre group. Then K ∩ V has finite index in Γ and retracts to S
by restriction of the retraction from V . The group S is Hopfian so the kernel of the retraction must miss
S; however S is normal in K ∩ V and two normal subgroups in a hyperbolic group cannot be disjoint.

�

Note that the fundamental group of the figure eight knot complement is LERF (see Theorem 3.4), and
the methods of [3] shows that the fundamental group of the figure eight knot complement has a finite
index subgroup that injects in an all right Coxeter group acting on H6. This, together with Theorem 2.6
and the fact that the property of LR over geometrically finite subgroups is preserved by super groups of
finite index (cf. Theorem 2.10) shows that the fundamental group of the figure eight knot complement
retracts to every geometrically finite subgroup.
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2.5

We now turn our attention to lattices in rank 1 lie groups. Thus, let X = R, C, H or O be the
real numbers, complex numbers, Hamiltonian quaternions or the Octonians respectively and Hn

X the
hyperbolic space modelled on X . Then the full groups of isometries (holomorphic in the case of C) are
PO0(n, 1), PU(n, 1), PSp(n, 1) and F−20

4 respectively. Denote these by G(X). Apart from the cases of
Hn

R, n = 2, 3, no example of a lattice in G(X) is known to be LERF. Examples of lattices in G(X)

for X = R and 4 ≤ n ≤ 8 are known to be GFERF (see [3,28]), but nothing is known beyond this.
Given the fundamental difference between PO0(n, 1), PU(n, 1) and PSp(n, 1), F−20

4 , in that in the latter
two, all lattices are super-rigid and have Property T , and the former do not, one might expect lattices in
PSp(n, 1) and F−20

4 to fail to be LERF or GFERF. The case of PU(n, 1) seems unclear. However here
we prove two theorems illustrating the failure of LR. The first is a straightforward consequence of the
properties mentioned above.

Theorem 2.16. Let Γ be a torsion-free lattice in PSp(n, 1), n ≥ 2 or F−20
4 . Then Γ does not virtually

retract to any non-trivial subgroup of infinite index.

Proof. Let ∆ be a finitely generated subgroup of Γ of infinite index (6= 1). If Γ∆ is a retractor for ∆
then we have an epimorphism θ : Γ∆ → ∆. Now by assumption ∆ is linear, and Γ∆ is super-rigid
by [13]. Since the homomorphism θ is not faithful, the image is therefore finite by super-rigidity, hence
a contradiction. �

Property T can also be used here to show that a group Γ (as in Theorem 2.16) is not LR over a wide
class of subgroups.

Proposition 2.17. Let Γ be a finitely generated group with Property T. Then Γ does not virtually retract
to any infinite cyclic subgroup.

Proof. This is clear, since a group with property T cannot have any subgroup of finite index that admits
a surjection onto Z. �

Our second result distinguishes the behaviour of retractions of complex hyperbolic from real
hyperbolic examples.

Theorem 2.18. Let Γ be a cocompact torsion-free lattice in PU(n, 1). Let ∆ < Γ be isomorphic to a
lattice in PO0(m, 1) where m ≥ 3. Then Γ does not virtually retract to ∆.

Proof. Suppose to the contrary that Γ virtually retracts to ∆, that Γ∆ is a retractor for ∆ and θ : Γ∆ → ∆
is the associated retraction homomorphism. Abusing notation we will identify ∆ with its isomorphic
image in PO0(m, 1).

Let M = Hn
C/Γ∆ and N = Hm

R/∆. Note that since M and N are closed Riemannian manifolds of
negative curvature, they are aspherical. Hence the homomorphism θ is induced by a continuous map,
f : M → N . By a fundamental result of Eells and Sampson [16], the homotopy class of the map f
contains a harmonic representative, which we continue to denote by f . Since M is complex hyperbolic,
it is Kahler, and so we can apply results of Carlson and Toledo [11] (see Corollary 3.7 and Theorems 7.1
and 7.2), the relevant parts we summarize as:
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Theorem 2.19. In the notation above, then either f (M) is a closed geodesic in N, or f admits a
factorization f = h ◦ g where g : M → S is a holomorphic map to a compact Riemann surface S,
and h : S → N is a harmonic map.

Applying this in our setting, notice the first possibility cannot occur since θ(Γ∆) = ∆ 6= Z. To
handle the second possibility we argue as follows. By definition the map f induces θ and the second
possibility affords a factorization θ = h∗ ◦g∗ (where ∗ denotes the induced homomorphism). Restricting
θ to ∆ gives the identity homomorphism by property LR, and so we deduce that on restricting to ∆, g∗

is injective. However g∗ has image in a compact surface group, and ∆ cannot inject in this as it is the
fundamental group of a higher dimensional closed hyperbolic manifold. This contradiction completes
the proof. �

Remark. In the case when ∆ actually stabilizes a totally geodesic copy of Hm
R , it is easy to arrange using

standard arguments involving totally geodesic submanifolds (see [25]) that Γ is ∆-separable.

2.6

For convenience we include a collection of examples to which Theorem 2.18 applies. These are the
standard arithmetic lattices acting on Hn

C as described in [7].
Let k 6= Q be a totally real field with ring of integers Rk . Let α ∈ Rk be positive and all its Galois

conjugates negative. Let K = k(i), RK the ring of integers of K and let V be a vector space over K
equipped with the Hermitian form Fα defined to be

z0z0 + z1z1 + · · · + zn−1zn−1 − αznzn, n ≥ 2.

Note that this Hermitian form has signature (n, 1) at the identity embedding of k and signature (n +1, 0)

at the other embeddings. As is shown in [7], the group Γα = PU(Fα; RK ) defines a cocompact arithmetic
lattice in G(C).

Now the groups Γα contain as subgroups certain arithmetic groups arising from integral points of
orthogonal groups. Namely, define the quadratic form qα to be the form

x2
0 + x2

1 · · · + x2
n−1 − αx2

n , n ≥ 2

then it is easily seen that the group ∆α = PO0(qα; Rk) injects as subgroup of Γα acting cocompactly on
a totally geodesic copy of Hn

R inside Hn
C.

It is known that a Coxeter group cannot act as a lattice on Hn
C for n ≥ 2 (see [12] for a discussion).

Theorem 2.18 provides the following corollary.

Corollary 2.20. Let Γ < PU(n, 1), n ≥ 3 and suppose Γ contains a subgroup ∆ a lattice in PO0(m, 1)

stabilizing totally geodesic copy of Hm
R with m ≥ 3. Then Γ does not inject as a quasi-convex subgroup

of an all right Coxeter group.

Proof. If Γ admits such a injection in a Coxeter group C , then ∆ will also be a quasi-convex subgroup
of C . Hence Theorem 2.7 provides a retraction, and this is a contradiction to Theorem 2.18. �

2.7. Profinite groups

As mentioned in Section 2, the statement that a group G is H -separable is equivalent to H being closed
in the profinite topology on G. Thus in the context of Property LR, it is natural to ask whether there are
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obstructions to Property LR which come from the topology of the profinite completion, since general
considerations show that a surjective homomorphism θ : K −→ H gives rise to a continuous surjective
homomorphism θ̂ : K̂ −→ Ĥ between the profinite completions. We offer two simple observations in
this direction.

Theorem 2.21. Let H be a closed subgroup of a profinite group G.
Then the identity map id : H → H extends to a continuous map r : G → H.

That is to say, the identity map on a closed subgroup always extends at least as a continuous map. Of
course this has the immediate consequence:

Corollary 2.22. Let H be a closed subgroup of a finitely generated profinite group G.
Then every continuous map f : H → X extends to a continuous map F : G → X.

The proof of 2.21 uses the following result:

Theorem 2.23. Let G be a finitely generated profinite group.
Then there is a metric on G which has the property that for every g ∈ G and every non-negative real

number α, the set ∂ Bα(g) = {g | d(x, g) = α} is either empty or a single point.

Proof. Let {G/Ni }i≥1 be a listing of the finite quotients which define the group G. Using the left regular
representation, regard all these finite quotients as finite sets of {0, 1} matrices. We will put a metric of
the required type on the infinite product

∏
G/Ni and this will give a metric of the required type on G

by restriction.
For each n ≥ 1 fix once and for all, a norm φn on the n × n matrices with the properties.

• If M and N are matrices all of whose entries are 0 or ±1 and φn(M) = φn(N ), then M = ±N .
• φn(M) is approximately the number of ±1 entries in M when this matrix has all entries 0 or ±1.
• φn(M) ≤ n2 for any matrix all of whose entries are 0 or ±1.

For example, one can define such a norm by summing squares of the matrix entries, weighted by n2

rationally independent transcendentals, each a little less than 1.
Let αn be a sequence of positive reals which converges to 0 very rapidly, in the sense that it is

monotonic decreasing and in addition that for every t , αt �
∑

r>t αr d(r)2 where d(k) is the dimension
in the kth coordinate.

Define the distance between two sequences of matrices by

d((xk), (yk)) =

∑
k

αkφd(k)(xk − yk).

We claim that given (xk), there is at most one (yk) at any given distance from it, that is to say, given
(xk) and a distance d((xk), (yk)), one can recover (yk).

The way one does this is the following. The magnitude of d((xk), (yk)) gives the first value t for
which xt 6= yt ; in addition d((xk), (yk)) is then a mild perturbation of αtφd(t)(xt − yt ), so that we can
recover yt . And so on. �

Remark. Notice that this metric gives the same topology as the Tychonoff topology on the product. One
way to see this is that this metric and the more traditional metric have ball containments each way around
for e.g. ball neighbourhoods of g ∈ G.
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Proof of 2.21. As usual define d(x, H) to be the infimum of the numbers d(x, h) and by standard
arguments this infimum is attained on H . By using the metric of the previous theorem, there is a unique
point, denoted r(x) (necessarily on H ) for which d(x, r(x)) = d(x, H).

We claim the map G → H defined by x → r(x) is continuous. The reason is this: Suppose
that xn → x . By subconverging, we may suppose that the points r(xn) converge on H to some
point a ∈ H . The function x → d(x, H) is continuous, so d(xn, H) → d(x, H) which is to say
d(xn, r(xn)) → d(x, r(x)). But we also have that d(xn, r(xn)) → d(x, a), so d(x, a) = d(x, r(x)). By
uniqueness, r(x) = a and r is continuous, so that r is the required extension. �

Remark. Given the remark following 2.23 above, we can use the same function r and any metric on G
equivalent to the one constructed above (in particular the usual Tychonoff metric or a group invariant
metric) and see that r is still continuous.

The above result shows that there is never any topological obstruction for retracting from the whole
profinite group. The proof operated by constructing a special metric for which the map was given by the
nearest point retraction. Our next result shows that this is the general situation: If genuine retractions
exist, they are the nearest point retraction for special metrics on the profinite completion.

Theorem 2.24. Suppose that G is a finitely generated profinite group. Let H be a closed subgroup of G
and let r : V → H be a retraction from some finite index subgroup V of G.

Then the topology on V is given by a left invariant metric ρ with the property that ker(r) is precisely
the set of points r−1(I ).

Proof. We begin with the following crucial preliminary remark: It has been proved by Nikolov and
Segal [30] that in a finitely generated profinite group, every subgroup of finite index is open.

It follows from Corollary 1.21 in [15] that the abstract homomorphism r is in fact continuous and
therefore, since the subgroup ker(r) is a closed subgroup of a profinite group, it is therefore profinite.
In particular it is compact. Choose a left invariant metric ρ′

ker(r) on it. Similarly choose a left invariant
metric on H , denote this by ρH .

The group H acts on ker(r) by conjugacy and we define a new metric by

ρker(r)(a, b) =

∫
H

ρ′

ker(r)(hah−1, hbh−1)dµ

where µ is Haar measure on ker(r) and a, b ∈ ker(r). This new metric is visibly H -conjugacy invariant
and it continues to be ker(r) left invariant, since for every λ ∈ ker(r)

ρker(r)(λa, λb) =

∫
H

ρ′

ker(r)(hλah−1, hλbh−1)dµ =

∫
H

ρ′

ker(r)(hλh−1hah−1, hλh−1hbh−1)dµ

=

∫
H

ρ′

ker(r)(hah−1, hbh−1)dµ = ρker(r)(a, b).

Given two points of G, they can be uniquely written λ1h1 and λ2h2 and we define

ρ(λ1h1, λ2h2) = ρker(r)(λ1, λ2) + ρH (h1, h2).

One may check that this is a metric and in fact (using the fact that ρker(r) is H invariant) it is left invariant.
We claim that ρ induces the correct topology on V . We argue as follows.
Let X be any ρ-open neighbourhood of the identity in V . Pick a g ∈ X and notice that by left

invariance, g−1 X is also ρ-open in V so that by definition, there is an ε > 0 for which Bε(I ) ⊂ g−1 X .
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Since the topology on ker(r) came from ρker(r), the ε/2 ρker(r)-ball neighbourhood of the identity
inside ker(r) contains an open subgroup, K , of finite index in ker(r) which by shrinking if necessary,
we may suppose is normalised by H . Similarly, the ε/2 ρH -ball neighbourhood of the identity contains
a subgroup, L of finite index in H .

Now one may check that the subgroup K · L has finite index in V and is therefore open in the
profinite topology, since as we observed above every subgroup of finite index in V is open in the
topology coming from G. Its points are all of the form k · ` whose ρ-distance from the identity is
ρ(k · `, I ) = ρker(r)(1, k) + ρH (1, `) < ε. So, the open subgroup K · L is a subset of Bε(I ) ⊂ g−1 X ,
so that g ∈ g · (K · L) ⊂ X , which is to say, every ρ-open set is a union of (V, profinite) open sets and
therefore is also open in the profinite topology on V .

Now we finish off as usual, the above considerations mean that the identity map induces a continuous
map (V, profinite) → (V, ρ), the domain is compact the range is Hausdorff, so the map is a
homeomorphism and ρ is giving the correct topology.

Finally, notice that given any point λ ∈ ker(r), and any h ∈ H , ρ(λ, h) = ρker(r)(λ, 1) + ρH (1, h)

which is clearly minimised by taking h = I .
Moreover, if λ1h1 is any point of V , then ρ(λ1h1, h) = ρker(r)(I, λ1) + ρH (h1, h) is minimised by

taking h = h1, so that r−1(I ) is precisely ker(r). �

Remark. It is not in general possible to make the metric ρ bi-invariant.

3. Application of extensions

In this section we record an application of extensions in the context of 3-manifold topology.

3.1

Recall that if Γ is a finitely generated group, the rank of Γ is the cardinality of a minimal generating
set for Γ . By a compression body group we will mean a free product A ∗ B where A is free of some
rank n ≥ 0 and B is a free product of surface groups (i.e. the fundamental groups of closed surfaces).
Note this is somewhat non-standard, in that we allow non-orientable closed surfaces. However this will
be convenient in what follows.

Proposition 3.1. Let M = H3/Γ be a non-compact orientable finite volume hyperbolic 3-manifold and
assume that Γ is LERF. Let H and K be finitely generated subgroups of Γ with H < K < Γ and where
both [Γ : K ] and [K : H ] are infinite. Then there is a subgroup of finite index K0 in K , and a finite
group G with a surjective homomorphism θ : K0 → G such that:

• θ admits an extension θ̂ : Γ0 → G with θ̂ (H) = 1.
• If the rank of H is k, then H3/kerθ̂ has at least k + 1 cusps.

Proof. The group K has the structure of a (possibly trivial) free product A ∗ B where A is a compression
body group and B = π1(W1) ∗ · · · ∗ π1(Ws), with each Wi an orientable 3-manifold with π1(Wi )

freely indecomposable. Since M is orientable, Γ contains no Klein bottle group. Hence the free product
decomposition of K cannot contain any Klein bottle group. We now break the proof up into a discussion
of various cases depending on the above free product decomposition. We begin with the simplest cases.
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K is Z or Z ⊕ Z: Recalling that H is required to have infinite index, we see that the former case
implies H is trivial, the latter that H is trivial or rank one.

The result holds easily for H the trivial group (rank 0), since we can choose the trivial homomorphism
of K which extends over the whole group Γ . M (and all its coverings) have at least one cusp and this
completes the proof in this case.

If K = Z ⊕ Z, and H is infinite cyclic, then the group K is conjugate into a maximal peripheral
subgroup of Γ . By peripheral separability [27], there is a finite index subgroup Γ0 of Γ containing K ,
so that H3/Γ0 has at least two cusps. In this case, we may again take the homomorphism of K on to the
trivial group and the trivial extension to Γ0 to prove the proposition.

K is free of rank at least two: Hence H is a free subgroup of infinite index. Since free groups are
LERF, we can find infinitely many finite index subgroups of K containing H . Furthermore, we can
arrange that H is a free factor. Hence we can arrange that H is a free factor of a subgroup K0 = H ∗ Q
of finite index in K , with Q free of rank N (chosen very much larger than 2). Since Q surjects any group
which is N generator, applying Theorem 1.2, we have, for any finite group G which is N -generator, a
homomorphism θ : K0 → G with θ(H) = 1 which may be extended to a finite index subgroup of Γ .
This proves the first part of the proposition in this case. To complete the proof, we now specify a group
G so that the second part of Proposition 3.1 will also hold.

Fix p > k a prime and choose G = (Z/pZ)N . As above, we have an extension of θ to a
homomorphism θ̂ on a finite index subgroup Γ0 of Γ with θ̂ (H) = 1.

We claim that the cover corresponding to ker θ̂ does have at least k + 1 cusps. To see this consider
the preimage of a cusp C in the cover corresponding to ker θ̂ . Let P be the maximal peripheral subgroup
of Γ0 associated to C . Now θ̂ (P) is at worst Z/pZ ⊕ Z/pZ, which, by choice of N (being very much
larger than 2) has index at least p in G. Now covering space theory shows that the number of preimages
of the cusp in the cover corresponding to ker θ̂ is |G|/|θ̂ (P)|, and so this is at least p. By choice of p
this is at least k + 1 and so the result follows in this case.

K is a (non-free) compression body group: Thus K = A ∗ B where A is a free group and B is a free
product of non-trivial closed surface groups, all different from those of RP2 and the Klein bottle. The
above considerations also show that we may suppose that K does not consist of one copy of Z ⊕ Z.

Now since K is a subgroup of a LERF group, K is also LERF (in fact since free products preserve
LERF any compression body group is LERF). Since H is assumed to have infinite index in K , we can
find subgroups of arbitrarily large finite index in K containing H . By the Kurosh subgroup theorem,
these groups will also be compression body groups, and so every finite index subgroup of K is of the
form Fn ∗ Z where Fn is a free group of some rank n, and Z is a free product of a finite number of surface
groups. To complete the proof in this case we use the following.

Lemma 3.2. Given an infinite tower of finite index subgroups of Fn ∗ Z as above, then the first Betti
number goes to infinity in this tower.

Proof. If the rank of the free part goes to infinity then this is clear. Thus assume the rank of the free part
remains bounded and let Z = Σg1 ∗ · · · ∗Σgt where Σg j is a closed surface group of genus g j (orientable
or non-orientable). By the Kurosh subgroup theorem, a subgroup of finite index in Fn ∗ Z splits as a free
product of a free group and conjugates of subgroups of the surface subgroups. Since we are assuming
the rank of the free part is bounded, we can therefore assume that the subgroups arising from conjugates
of subgroups of Z must be finite index subgroups of the surface groups, and so themselves are surface
groups.
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Now in the cases under consideration, χ(Fn ∗ Z) is nonzero and since Euler characteristic is
multiplicative in finite covers, a subgroup of index N has Euler characteristic Nχ(Fn ∗ Z) and one
sees easily that if the rank of the free part remains bounded while N → ∞, then either the number of
surface components or the genus (orientable or non-orientable) of one of these components must increase
without bound. Either of these cases proves the lemma. �

With this lemma in hand, the proof of the proposition in this case is completed in a manner similar
to the previous case. As before, let p > k be a prime, choose N very large, say with N − k > 2, and
let G = (Z/pZ)N . Now from, Lemma 3.2 we can find a finite index subgroup K0 of K which contains
H and a homomorphism θ : K0 → G. Note in this case θ(H) need not be trivial, but θ(H) is at worst
(Z/pZ)k . Hence G/θ(H) ∼= (Z/pZ)N−k

6= 1 since N − k > 2. Indeed, by construction, (Z/pZ)N−k

contains a copy of (Z/pZ)3. Relabeling we can define a homomorphism θ : K0 → (Z/pZ)N−k in
which θ(H) = 1. By Theorem 1.2 we can find a finite index subgroup Γ0, an extension of θ to Γ0, and
as in the previous case we consider the preimage of a cusp C in the cover corresponding to ker θ̂ . The
argument is finished exactly as before.

K = π1(W ) is freely indecomposable: Since K < Γ , then K is LERF, and again, H is contained
in subgroups of K of arbitrarily large finite index. The result will follow in this case on showing that
the first Betti number in such a tower also goes to infinity. Note that ∂W 6= ∅ and cannot consist
only of tori. For if so, then the interior of W will admit a complete hyperbolic structure of finite
volume by Thurston’s uniformization theorem for Haken manifolds. This implies [Γ : K ] < ∞ which
contradicts our assumption on K (note also π1(W ) ∼= Z or Z ⊕ Z has been dealt with by our previous
considerations). Hence ∂W has some component of genus at least 2. Now, a standard argument in 3-
manifold topology shows the first Betti number of W is at least 1

2dim(H1(∂W )). We claim that this
must go to infinity in a tower of finite covers. This is clear if the number of boundary components
goes to infinity (by the above remark). If the number of boundary components stays bounded, for some
component of the boundary the genus must go to infinity (recall there is a component of genus at least
2). Hence this proves the claim. The argument is now completed exactly as in the previous cases.

The proof for the general case, that is, when K = A ∗ B where A is a compression body group and
B = π1(W1) ∗ · · · ∗ π1(Ws), with each Wi an orientable 3-manifold with π1(Wi ) freely indecomposable
can be handled using a combination of the above methods. �

3.2

Proposition 3.1 has the following consequence.

Theorem 3.3. Let M = H3/Γ be a non-compact orientable finite volume hyperbolic 3-manifold and H
a non-elementary subgroup of Γ of infinite index generated by two parabolic elements. If Γ is LERF,
then there is a finite index subgroup ΓH < Γ , and a homomorphism φ : ΓH → Z for which H is
contained in ker φ.

Before deducing Theorem 3.3 we note that given the hypothesis of Theorem 3.3, work of Canary
(see [10], Proposition 8.4) shows that the cover corresponding to H is tame. Tameness has recently been
established by Agol [2] and independently by Calegari and Gabai [9] without any hypothesis, but this
shows some of the power of LERF and extensions. On the other hand given the solution to tameness we
have from [3] (see the discussion in Section 2.2):
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Theorem 3.4. The Bianchi groups PSL(2, Od) are LERF. �

Hence we can apply Theorem 3.3 to deduce:

Corollary 3.5. Let M = H3/Γ be a non-compact orientable arithmetic hyperbolic 3-manifold and H
a non-elementary subgroup of Γ of infinite index generated by two parabolic elements. Then there is a
finite index subgroup ΓH < Γ , a homomorphism φ : ΓH → Z for which H is contained in kerφ. �

Proof of Theorem 3.3. We shall assume from here on that H = 〈x, y〉 is generated by 2 parabolic
elements x and y. A theorem of Jaco and Shalen [24] says that any 2-generator subgroup of Γ is either
finite index, free or Z ⊕ Z. Hence by assumption, H is forced to be free of rank 2.

Notation. Let Γ be a finite covolume Kleinian group and t ∈ Γ a parabolic element. Denote by Pt the
maximal peripheral subgroup of Γ containing t .

We may as well assume that M has first Betti number at most 2 otherwise we will be done. For if
M is a compact orientable 3-manifold with incompressible boundary consisting of a disjoint union of m
tori, then the first Betti number is at least m. In which case, since H has rank 2 there is a homomorphism
Γ → Γ ab

→ Z that kills H .
Let µ ∈ Γ \ H be a parabolic element. Note that such elements are easily seen to exist, for since H

is free, for every parabolic element t ∈ Γ , there exists at least an infinite cyclic subgroup of Pt which is
not contained in H . In particular there are (primitive) parabolic elements of Γ no power of which lie in
H . Denote by Γµ the subgroup of Γ generated by {x, y, µ}.

Now observe that if there is a µ ∈ Γ \ H such that both [Γ : Γµ] and [Γµ : H ] are infinite, then
Proposition 3.1 immediately implies the result in this case—we get a cover with at least 3 cusps.

Claim. If µ ∈ Γ \ H then [Γµ : H ] is infinite.

Proof. To see this, we argue as follows. If Γµ has finite index in Γ this is clear since H is free. Thus
suppose that Γµ has infinite index in Γ and H has finite index in Γµ. Now H is free and so Γµ is a
virtually free, torsion-free group, and hence it is free. Now H is free of rank 2 and so Euler characteristic
forces the index [Γµ : H ] = 1. But H = Γµ contradicts µ 6∈ H . �

From the remarks above, we can assume that [Γ : Γµ] has finite index for all µ 6∈ H . The remainder
of the proof deals with this case.

3.3

Here we record some results that will be needed to complete the proof of Theorem 3.3. The first being
from [17,32]. We include a proof for convenience.

Lemma 3.6. Let M1 = H3/Γ1 be 1-cusped finite volume hyperbolic 3-manifold, M2 = H3/Γ2 a
1-cusped finite volume hyperbolic 3-orbifold with a torus cusp, and Γ1 < Γ2. If Γ1 is generated by
parabolic elements, then the cover M1 → M2 is regular. In the case when M2 is a manifold, the cover is
cyclic.

Proof. Let P be a maximal peripheral subgroup of Γ2. Since M2 has a torus cusp, then P is Abelian.
Since both M1 and M2 have a single cusp, Γ2 = P.Γ1; that is every element in Γ2 can be expressed as
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a product p · γ for some p ∈ P and γ ∈ Γ1. Let g = p · γ be such an element, and x ∈ P ∩ Γ1. Then
since P is Abelian, notice that

g−1xg = γ −1 p−1xpγ = γ −1xγ.

This latter element lies in Γ1. Hence the normal closure of P ∩ Γ1 in Γ2 is contained in Γ1. Now Γ1 is
generated by parabolic elements, and so normally generated by P ∩ Γ1. It therefore follows that normal
closure of P ∩ Γ1 in Γ2 coincides with Γ1. Hence Γ1 is a normal subgroup of Γ2 as required. In the
case when M2 is a manifold, it is shown in [17] that H1(M2; Z) ∼= Z, and that the covering group is
isomorphic to P/(P ∩ Γ1) which is therefore cyclic. �

Lemma 3.7. Let M = H3/Γ be a finite volume hyperbolic 3-manifold. Assume that Γ is LERF and that
H is a finitely generated subgroup of infinite index in Γ with the property that every subgroup K of finite
index in Γ with H < K is normal in Γ . Then H is the fundamental group of a compact 2-manifold S
and M is virtually fibred over the circle with fibre S.

Proof. Since Γ is LERF, we have from above that H =
⋂

K where K ranges over all subgroups
of finite index containing H . Since each K is normal in Γ it follows that H is normal in Γ , and by
hypothesis Γ/H is infinite. It follows from [23] Theorem 11.1 that H is the fundamental group of a
compact 2-manifold. The virtual fibration statement also follows from Theorem 11.1 of [23]. �

A useful corollary of this in our setting is the following.

Corollary 3.8. Let M = H3/Γ and H be a free subgroup generated by two parabolics, where as above
Γ is LERF.

Then there is a non-normal subgroup of finite index in Γ containing H.

Proof. If not, then by Lemma 3.7, H is the fundamental group of a compact 2-manifold S and M is
virtually fibered over the circle with fibre S. However, this is a contradiction. For since H is generated
by two parabolics, it follows that the compact 2-manifold S is a twice-punctured disk. This has a unique
hyperbolic structure, in particular it is always totally geodesic. Therefore the group of such a manifold
cannot arise as a virtual fibre group. �

3.4

Returning to the proof of Theorem 3.3, we are assuming that Γµ has finite index in Γ .
Let Nµ = H3/Γµ denote the cover of M corresponding to Γµ. Recall that we are supposing that M

has at most two cusps. We will first reduce the 1-cusped case to the 2-cusped case. To this end, suppose
that M has a single cusp.

Claim 1. There is a 2-cusped cover N of M such that H < π1(N ).

Proof of Claim 1. Suppose that every cover N of M with H < π1(N ) has 1 cusp. Since Γ is LERF
there are subgroups of arbitrarily large finite index containing H , and furthermore, that every subgroup
containing H contains a subgroup of the form Γµ for some µ in Γ . Also, notice that, since each Γµ is
generated by parabolics, Lemma 3.6 shows that each of the covers Nµ → M is a finite cyclic cover.
Since every subgroup of finite index containing H contains some Γµ, it follows that all subgroups of
finite index in Γ containing H are normal subgroups of Γ . However, this contradicts Corollary 3.8.
Hence there exists a 2-cusped cover as required. �
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Thus we may as well now assume that M is 2-cusped and establish the lemma. We can also assume
that the groups Γµ are all 2-cusped, or again we are done. Since Γ is LERF we can pass to a subgroup
Γ0 of arbitrarily large finite index (index > 8 will suffice for our purposes) which contains H . Denote
by M0 = H3/Γ0, and let µ be a primitive parabolic element in Γ0 \ H . Note that we can arrange that µ

has the following properties:
(a) µ has length at least 2π in the Euclidean structure on the associated cusp torus, denoted by Tµ.

Call such a parabolic long.
(b) µ-filling on Tµ produces an irreducible 3-manifold with incompressible torus boundary.
To see this, consider a maximal peripheral subgroup P = 〈α, λ〉 ⊂ Γ0. If P ∩ H = 1, then it is clear

we can find infinitely many long parabolics. Furthermore, by Theorem 1.3 of [19] (see also Theorem
3.1 of [20]), the number of slopes that produce manifolds that are reducible or in which the boundary
compresses is at most 8. This allows us to choose the required µ in this case.

If P ∩ H is non-trivial, it is infinite cyclic, say P ∩ H = 〈t〉. Now t = α pλq for integers p and q
(not necessarily coprime). If either of p or q is zero, then it is clear how to find such an element. For
example, if q = 0, then any element α pλk for (k, p) = 1 will be primitive and eventually long. Such
an element cannot lie in H . If neither p or q are zero, we can find infinitely many integers k such that
(k + p, q) = 1 and so αk t is primitive and will be long for large k. As above, such an element cannot lie
in H .

Note this provides infinitely many long µ. Moreover, as above, an application of [19] allows
us to choose a k which produces an irreducible manifold and in which the boundary will remain
incompressible. This completes the proof of (b).

We can also assume that Pµ, and Px (say) are not Γ0-conjugate. For since there are two Γ0-conjugacy
classes of maximal peripheral subgroup, if Px and Py are Γ0-conjugate we choose some µ from the other
conjugacy class. If Px and Py are not Γ0-conjugate we choose µ in the conjugacy class of Py and not in
Px .

Claim 2. Px and Py cannot be Γµ-conjugate.

Proof of Claim 2. Assume to the contrary that Px and Py are Γµ-conjugate. By choice of µ, since there
are two cusps, Pµ cannot be Γµ-conjugate to Px . Perform µ-filling on the associated cusp torus of Pµ.
By (b) above, this results in an irreducible 3-manifold with a single torus boundary component, which is
incompressible. By (a), since µ is long, the resultant manifold will carry a metric of negative curvature
[21]. Let the manifold resulting from µ-filling on Nµ be denoted by N ′

µ. It follows that N ′
µ is a finite

volume hyperbolic 3-manifold with a single cusp. Moreover, x and y will remain parabolic after filling,
and so since µ has been killed, the fundamental group of N ′

µ is generated by two parabolic elements.
Appealing to a result of Adams [1] implies that N ′

µ is homeomorphic to the complement of a hyperbolic
2-bridge knot in S3. Now we can perform a µ orbifold filling on M , resulting in a 1-cusped orbifold M ′

with a torus cusp. We obtain an orbifold covering N ′
µ → M ′. By Lemma 3.6, this covering is regular. In

particular the covering group is a subgroup of the group of isometries of N ′
µ, a hyperbolic 2-bridge knot

complement. However this has order at most 8 (see [18] for example). But the choice of covering degree
was made very large and hence we have a contradiction. �

Thus we can now assume that Px and Py are not Γµ-conjugate. To complete the proof in this case we
argue as follows.
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By assumption, Pµ cannot be Γµ-conjugate to Px , it is therefore Γµ-conjugate to Py . Hence the cusps
are represented by the peripheral subgroups Px and Py . An application of LERF, together with another
application of the observation above that every subgroup of finite index contains some Γν allows us to
pass to a finite cover and to arrange that x is a primitive parabolic in some Γµ1 < Γµ.

Now perform x-filling on Nµ1 . If the result is hyperbolic, we can argue as above to obtain a
contradiction—for the covering degree of Nµ1 over the result of x-filling on M is still large. Thus
assume that the result of x-filling on Nµ1 , denoted by N ′

µ1
, is non-hyperbolic. In this case, y and µ1

remain peripheral. If the boundary torus is incompressible, then [5] Corollary 6 implies that N ′
µ1

is a
2-bridge torus knot. We will deal with this case below and assume first that the boundary torus of N ′

µ1
is

compressible.

Claim 3. π1(N ′
µ1

) is infinite cyclic.

Proof of Claim 3. N ′
µ1

has a single torus boundary component which, by hypothesis, is compressible.
Performing this compression results in a 2-sphere, if this 2-sphere bounds a homotopy ball we are done.
If not, the 2-sphere splits the manifold into a connect sum V #W where V is a solid torus and W a
compact 3-manifold. This yields a free product decomposition π1(N ′

µ1
) = Z ∗ B for some compact

3-manifold group B. Now π1(N ′
µ1

) is generated by (the images of) y and µ1, and so has rank at most 2.
Hence we are done unless B is a nontrivial cyclic group.

Observe that the homology of N ′
µ1

is noncyclic when computed with appropriate finite field
coefficients. In addition, since y and µ1 are peripheral in Nµ1 , they are peripheral in the surgered
manifold, so that by a standard Poincaré duality argument, the subgroup they generate in the homology
with finite field coefficients is at most a cyclic group. However, y and µ1 generate the whole fundamental
group of N ′

µ1
, a contradiction. Thus N ′

µ1
is a homotopy solid torus as required by the claim.

We now complete the proof in the case that the boundary torus of N ′
µ1

is compressible. By
Corollary 3.8, Γµ1 has a non-normal subgroup Λ of finite index containing H . Let ν be a parabolic
element in Λ which commutes with µ1. In particular Pν is not Λ-equivalent to Px . Now Λ contains the
group Γν with finite index.

Claim 4. Nν = H3/Γν has at least 3 cusps, and so the conclusion of Theorem 3.3 holds.

Proof of Claim 4. We can assume that Nν has 2 cusps. Performing x-filling on Nν determines a cover
of N ′

µ1
. Since π1(N ′

µ1
) is infinite cyclic, it follows that both have infinite cyclic fundamental group. We

therefore deduce that Nν → Nµ1 is a finite cyclic cover. Hence Nν → H3/Λ → Nµ1 is a cyclic cover,
so that Λ is a normal subgroup of finite index. This contradicts our choice of Λ. The claim follows. �

Claim 5. In the case when N ′
µ1

is a 2-bridge torus knot, the conclusion of Theorem 3.3 holds.

Proof of Claim 5. Note that N ′
µ1

, being a 2-bridge torus knot complement, it is a Seifert fibered space
over the disk with 2 exceptional fibers of order 2 and q with q odd. Denoting the free product of the
cyclic group of order 2 with a cyclic group of order q by Fq , we have epimorphisms:

Γµ1 → π1(N ′
µ1

) → Fq .

Note that since µ1 and y are peripheral, under the latter homomorphism the images remain peripheral;
that is conjugate into the subgroup generated by the homotopy class of the boundary of the disk.
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From [33], we can find infinitely primes p and surjections f p : Fq → PSL(2, Fp) with f p(µ1) and
f p(y) being elements of order p. Composing homomorphisms, we obtain for these p a homomorphism
Φp : Γµ1 → PSL(2, Fp) with Φp(x) = 1, Φp(y) and Φp(µ1) of order p. Let Hp = Φp(H) = Φp(y),
and Mp the cover of Nµ1 corresponding to Hp. By definition, H < π1(Mp) and we aim to show that
π1(Mp) has first Betti number at least 3. To do this we make use of following standard facts about the
groups PSL(2, Fp), where p is prime and Fp denotes the field with p elements (see [35] Chapter 3,
Section 6).

(i) For p odd, |PSL(2, Fp)| =
p(p2

−1)
2 .

(ii) For all p every Abelian subgroup A of PSL(2, Fp) of odd order is cyclic.

Choose p a very large odd prime, and consider the cover of N ′
µ1

corresponding to Hp. By construction
of the homomorphism f p and (ii) above, the image of the peripheral subgroup of π1(N ′

µ1
) coincides with

Hp, a cyclic group of order p. By (i) above, Hp has index (p2
−1)
2 , and so standard covering space theory

implies that the cover of N ′
µ1

corresponding to Hp has (p2
−1)
2 cusps. Hence for large p this is very much

larger than 3. It now follows that Mp has large first Betti number as required. �

4. Final comments and questions

1. The hypothesis of Theorem 2.6 is a powerful technique for proving that a finitely generated group
Γ is GFERF. However, Theorem 2.6 shows that this technique actually shows much more. For example
Theorem 2.6 shows that a group Γ as in Theorem 2.6 has a finite index subgroup surjecting Z. Of course
we are simply using the consequence that Γ is LR over its Z subgroups. For 3-manifolds, this implies
the existence of a surface group. With these comments we pose:

Question 4.1. Suppose Γ is an infinite word hyperbolic group which is LERF. Does Γ contain any finite
index subgroup surjecting onto Z? Is it in fact LR over its cyclic groups?

Considering only groups of hyperbolic isometries.

Question 4.2. Suppose Γ < Isom(Hn) is of finite covolume and LERF or GFERF. Does Γ contain a
finite index subgroup surjecting onto Z? Or LR over its cyclic groups?

Question 4.3. If the fundamental group of a closed hyperbolic 3-manifold is LERF or GFERF does the
manifold contain an (immersed) essential surface?

2. There is a notion of geometrically finite in the setting of discrete subgroups of PU(n, 1), PSp(n, 1)

and F−20
4 (see [4,14] for example). Hence we can define GFERF in these settings. As remarked lattices

in PSp(n, 1) or F−20
4 have Property T , and so are very different from lattices in PO0(n, 1) or PU(n, 1).

In particular there are no homomorphisms onto Z or splittings as a free product with amalgamation on
finite index subgroups. This is in contrast to the first question above.

Question 4.4. Does there exist a lattice in PU(n, 1) (resp. PSp(n, 1) or F−20
4 ) that is GFERF or LERF

(or not GFERF or LERF)?

3. More generally we can ask (and in contrast to Question 4.1).
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Question 4.5. If Γ is an infinite finitely generated group that is LERF, does Γ fail to have Property T?

Or put another way, does there exist an infinite group with Property T that is LERF?
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