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Chapter 1

Introduction

Elliptic Curves are special geometric objects that come equipped with a rich structure: one may
“add” points of an elliptic curve much in the same way that one adds two numbers.

The structure preserving maps between elliptic curves are just as important as the curves
themselves. These maps are called isogenies. The set of isogenies from an elliptic curve to itself
is called the endomorphism ring of the curve. A ‘generic’ elliptic curve has an endomorphism
ring that looks like a copy of the integers {. . . ,−2,−1, 0, 1, 2, . . . }. Some curves, however, possess
‘extra’ maps. They are said to have complex multiplication. Among all curves with complex
multiplication, some have so many ‘extra’ maps that they are given a name of their own: they are
known as supersingular curves: their endomorphism ring has the structure of a maximal order in
a rational quaternion algebra.

Every elliptic curve has a number attached to it, called a j-invariant, which classifies the curve up
to isomorphism. The j-invariant of a curve that has complex multiplication (resp. is supersingular)
is called a singular modulus (resp. supersingular modulus). Singular moduli of elliptic curves
defined over the complex numbers are associated to imaginary quadratic fields (these are obtained
by adjoining square roots of negative numbers to the rational numbers).

This paper studies the absolute norms of differences of singular moduli corresponding to elliptic
curves with complex multiplication by a ring of integers in an imaginary quadratic field. We
have affectionately called these norms Gross–Zagier numbers, after the two mathematicians whose
groundbreaking work has led us to an understanding of many properties of them (cf. [G–Z]).

Gross–Zagier numbers can be enormous, yet they appear to have extremely small prime factors.
For example, one such number is

− 19077542993352945680961028994697271308288000000000000

=− (28 · 34 · 54 · 112 · 232 · 292 · 383)3

Intuitively, the number 383 seems too paltry to be the largest prime factor dividing a 53-digit
monster. This phenomenon is ubiquitous among singular moduli. The goal of this thesis is to
answer a natural question: why?

It is known that, on average, the number of divisors of N , denoted d(N), is of order logN
(cf. [H–W, Theorem 319]). To give the reader some sense of how unusually divisible Gross–Zagier
numbers are, we have compiled a table with a few more examples (cf. Table 1.1). In all cases, d(N)
is rather large compared to logN . Moreover, a number with many divisors cannot have very big
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CHAPTER 1. INTRODUCTION 4

An imaginary The Gross–Zagier log(N) d(N)

quadratic field K number N(jK − 0)

Q(
√
−1) +(22 · 3)3 7.45 28

Q(
√
−7) −(3 · 5)3 8.12 16

Q(
√
−5) −(24 · 5 · 11)3 20.34 208

Q(
√
−6) −(24 · 32 · 17)3 23.41 364

Q(
√
−23) −(53 · 11 · 17)3 30.18 160

Q(
√
−13) −(24 · 32 · 52 · 23)3 33.97 2548

Q(
√
−163) −(26 · 3 · 5 · 23 · 29)3 40.11 4864

Q(
√
−21) −(28 · 35 · 47 · 59)3 56.90 6400

Q(
√
−133) −(28 · 34 · 54 · 112 · 232 · 292 · 383)3 120.38 5796700

Table 1.1: Some Gross–Zagier numbers

prime factors, so the table also supports the empirical claim that Gross–Zagier numbers have small
prime divisors.

The reader may wonder why this problem is worth pursuing. Many number theorists are likely
to find this problem beautiful in and of itself and hence a worthwhile question. Perhaps a more
satisfying answer, however, is the following. A good mathematical problem is one that raises
ten questions before it can be answered, and (hopefully) ten more questions after it is answered.
Moreover, a good problem should either require the development of new mathematical tools for
its solution, or it should bring together and connect seemingly unrelated areas of knowledge. Our
problem is of the latter kind.

The issue of primes dividing norms of singular moduli raises many questions. For example,
before we ask why the prime factors of Gross–Zagier numbers are small, we should wonder why
Gross–Zagier numbers are integers at all! There is no a priori reason to believe this is the case.

The full answer to our problem lies at the crossroads of many areas of mathematics. For
example, we will use analytical methods involving modular forms of weight zero to show singular
moduli are algebraic integers and in this way explain the integrality of Gross–Zagier numbers.
We will also carefully study the possible endomorphism rings of elliptic curves, with particular
attention to supersingular curves. This study will lead us into the realm of rational quaternion
algebras (of which Hamilton’s quaternions are an example) and a complete classification of them,
as well as the theory of formal groups, which we will use to establish a maximality property of
the endomorphism ring of a supersingular curve. Although the elliptic curves over the complex
numbers that give rise to Gross–Zagier numbers cannot be supersingular, they may reduce modulo
a prime to a curve (defined over a field of positive characteristic) which is supersingular. The
technique of reduction will play a fundamental role in the bound given in this paper for the primes
dividing Gross–Zagier numbers. Our journey will also take us through a specialized study of the
theory of complex multiplication, which, as an added bonus, will give a method for (educatedly)
guessing the Hilbert class field for a few imaginary quadratic fields of small class number.

Bounding the size of prime factors that divide Gross–Zagier numbers will only raise many more
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questions about these numbers. For example, given a singular modulus, how do we know which
primes divide it’s associated Gross–Zagier number? With what exponent does a prime divide this
number? We will not address these questions, but the interested reader may consult [G–Z].

We now give a brief outline of the paper. In Chapter 2 we review the general theory of elliptic
curves, with particular attention to the structure of their endomorphism rings. Chapter 3 contains
a discussion of elliptic curves with complex multiplication by the ring of integers of an imaginary
quadratic field as well as a proof of the integrality of singular moduli and an introduction to Gross–
Zagier numbers. Chapter 4 is intended to lay the foundations for a study of supersingular curves; in
it we consider rational quaternion algebras in the abstract (a theory which is quite beautiful) and
give a complete classification of them. Chapter 5 then proceeds with the study of supersingular
curves. The main result we prove is a maximality property of the endomorphism ring of such
a curve. Chapter 6 is a brief introduction to the theory of reduction elliptic curves defined over
number fields, with particular attention to curves that have supersingular reduction. In this chapter
we come back to Gross–Zagier numbers and give a bound for the primes that divide these numbers.
Specifically, we will show that if K and K ′ are imaginary quadratic fields with relatively prime
discriminants, then a prime p that divides N(jK − jK′) is at most equal to DD′/4, where D and
D′ are the discriminants of K and K ′, respectively.

To the best of the author’s knowledge, the material we present is somewhat scattered in the
literature and has heretofore not been accessible in a single source to the non-specialist. We have
reconstructed several proofs of “well-known” theorems in what we hope is a refreshing and welcome
presentation.



Chapter 2

Basic Theory of Elliptic Curves

In this chapter we recall some of the basic facts about elliptic curves. We only provide proofs
for a few theorems of latter importance to us. The reader is referred to the excellent books by
Silverman [Sil 1] (our main source for this section) and Husemöller [Hus] for more detailed and
complete treatments; a concise yet informative exposition can be found in [Shi, Ch. 4] or in [Ked,
Ch. 5].

Let K be a field. Our primary objects of study are special algebraic curves in P2(K). These are
projective algebraic sets defined over K by a principal ideal I ∈ K[X,Y, Z], or equivalently, they
are the sets of K-solutions to a single homogeneous polynomial equation

f(X,Y, Z) = 0.

Oftentimes we will focus on the restriction of an algebraic curve to the complement of the affine
hyperplane Z = 0. We set x = X/Z, y = Y/Z and Z = 1 to obtain an affine algebraic set given
by the zero set of the polynomial g(x, y) = f(X/Z, Y/Z, 1). This restriction is not too severe since
we will concentrate on elliptic curves, which only have one point ‘at infinity’, namely [0, 1, 0]. To
reverse this process and recover a projective curve from an affine algebraic set defined by a single
equation, we insert as many Z’s as ‘necessary.’ For example, when we refer to the projective curve

y2 = x3 + x

we really mean the variety in P2 given by the homogeneous equation

Y 2Z = X3 +XZ2.

2.1 Elliptic Curves

Assume for simplicity that K is a field whose characteristic is not 2 or 31. Then an elliptic curve
E defined over K (denoted E/K) is a nonsingular curve in the projective plane P2 of the form

y2 = 4x3 − g2x− g3, (2.1)
1Much of the theory of elliptic curves that we present in this chapter for fields of positive characteristic 6= 2, 3 also

applies to fields of arbitrary characteristic. For the more general theory, however, one needs a more general equation
than (2.1) to describe an elliptic curve. Silverman and Hüsemoller provide full treatments of elliptic curves over fields
of characteristic 2 and 3, cf. [Hus] and [Sil 1, Appendix A], especially.
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CHAPTER 2. BASIC THEORY OF ELLIPTIC CURVES 7

with g2, g3 ∈ K, whose only point on the line at infinity is O = [0, 1, 0]. Every elliptic curve
admits the structure of an abelian group; the coordinates of sum of two points are given by regular
functions. The point O plays the identity role in the group.

We say two elliptic curves E and E′ are isomorphic if there exists u ∈ K∗ such that g′2 = u4g2
and g′3 = u6g3. We define the discriminant ∆(E) of an elliptic curve E as ∆(E) = g3

2 − 27g2
3. The

nonsingularity of E is equivalent to ∆(E) 6= 0. The j-invariant of E is defined as the quantity

j(E) =
1728g3

2

∆(E)
.

The j-invariant of E classifies the elliptic curve up to isomorphism over K. For a given j0 ∈ K
there exists an elliptic curve defined over K(j0) with j-invariant equal to j0. For example,

for j0 = 0, take y2 = 4x3 − 1

for j0 = 1728, take y2 = 4x3 − 12x

for j0 6= 0, 1728, take y2 = 4x3 − 27j0
j0 − 1728

x− 27j0
j0 − 1728

.

2.2 Isogenies

An isogeny is a regular map between two elliptic curves φ : E1/K → E2/K such that φ(O) = O.
We say that φ is defined over K if it commutes with the action of the Galois group Gal(K/K),
i.e., if

φ(σ(P )) = σ(φ(P )) for all σ ∈ Gal(K/K).

For clarity, we will usually denote the action of a Galois group with a superscript, and write the
above equality, for example, as φ(P σ) = φσ(P ).

Every isogeny is in fact a homomorphism that respects the group law of the curves. A nontrivial
isogeny is surjective (a fact derived from the general theory of maps between smooth curves). The
set Hom(E1, E2) of isogenies between two elliptic curves has a torsion-free Z-module structure, with
rank at most equal to 4 (we will prove this later).

Remark 2.1. Whenever we refer to the sets of isogenies Hom(E1, E2) or EndE without further
qualification, it will be understood we refer to isogenies defined over K.

Example 2.1. One of the most important examples of isogenies are the ‘multiplication by m’
maps [m] : E → E given by P 7→ P + · · · + P (m times) where + is used to denote the group
law on the points of E. The kernel of these maps are precisely the subgroups of m-torsion points
on the curve and are denoted E[m], respectively. We will see that E[m] ∼= (Z/mZ) × (Z/mZ) as
abstract groups in characteristic 0. For most elliptic curves, the ‘multiplication by m’ maps are the
only nonconstant isogenies in End(E). Elliptic curves that possess extra endomorphisms are said
to admit complex multiplication.

Example 2.2. In a field of characteristic p > 0, the qth-power Frobenius automorphism x 7→ xq

(q = pr) induces an isogeny E → Eq where Eq is the elliptic curve

y2 = 4qx3 − gq2x− g
q
3.
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An isogeny φ induces an injection of elliptic function fields (i.e., function fields of elliptic curves)
φ∗ : K(E2) → K(E1) given by pulling functions back, i.e., if f ∈ K(E2) then φ∗f = f ◦ φ. We
define the degree of φ by

deg φ = [K(E1) : φ∗K(E2)].

The separable and inseparable degrees of φ (denoted degs φ and degi φ, respectively) are defined
similarly. We also say, for example, that φ is a separable map if K(E1) is a separable extension of
φ∗K(E2).

Theorem 2.2. Every isogeny φ : E1 → E2 over a field of positive characteristic factors as

E1
ψ−→Eq1

λ−→E2.

where q = degi φ, ψ is the qth-power Frobenius automorphism and λ is a separable map.

This theorem follows from the proposition that every extension can be written as a purely
inseparable extension of a separable extension, obtained by adjoining a certain qth root to the
separable extension, where q is the inseparable degree of the original extension.

The basic Galois theory of elliptic function fields can be found in Silverman’s book, cf. [Sil 1,
§ III.4]. We summarize Silverman’s treatment in the following useful theorems:

Theorem 2.3 (Galois theory of Elliptic Function Fields). Let φ be a nonconstant isogeny
between two elliptic curves E1/K and E2/K. Then for any Q ∈ E2

#φ−1(Q) = degs φ.

In particular, if φ is separable
# kerφ = deg φ,

moreover, K(E1) is a Galois extension of φ∗K(E2).

Theorem 2.4. Let E be an elliptic curve and let G be a finite group of point of E. There exists a
unique elliptic curve E′ and a separable isogeny φ : E → E′ with kerφ = G.

2.3 Invariant Differentials

The space of meromorphic differential forms on an elliptic curve E, denoted ΩE is the vector space
over the field K(E) generated by symbols df (where f ∈ K(E)) which are subject to the usual
formal rules

• d(f + g) = df + dg for all f, g ∈ K(E).

• d(fg) = f dg + g df for all f, g ∈ K(E).

• dc = 0 for all c ∈ K.

For a non-trivial isogeny φ : E1 → E2 the map φ∗ : K(E2) → K(E1) induces a map on
differentials, also denoted φ∗

φ∗ : ΩE2 → ΩE1

φ∗
(∑

fidxi

)
=
∑

(φ∗fi)d(φ∗xi).
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When working in characteristic zero, where all field extensions (and hence all isogenies) are
separable, the above map is actually injective. We record this criterion for future reference in the
following theorem (cf. [Sil 1, Theorem II.4.2(c)]).

Theorem 2.5. Let φ : E1 → E2 be a non-trivial isogeny. Then φ is separable if and only if the
map

φ∗ : ΩE2 → ΩE1

is injective.

We will be interested in those differentials on an elliptic curve defined by functions f ∈ K(E)
without poles, which are invariant under translation by a point on the curve. An example of
such differentials is given by ω = dx/2y = dy/(12x2 − g2). These objects are extremely useful
because they linearize the complicated addition law on the curve, as the following theorem illustrates
(cf [Sil 1, Theorem III.5.2]).

Theorem 2.6. Let E1 and E2 be two elliptic curves, let ω ∈ ΩE1 be an invariant differential and
let φ, ψ : E2 → E1 be two isogenies. Then

(φ+ ψ)∗ω = φ∗ω + ψ∗ω.

An easy corollary of this theorem is that the pullback of an invariant differential through the
‘multiplication by m’ isogeny is equal to scalar multiplication by m, i.e., [m]∗ω = mω. This means
[m] 6= [0], and from Theorem 2.5 it follows the multiplication by m maps are separable.

2.4 Elliptic Curves over C

We make a pause here in our study of elliptic curves over arbitrary fields and specialize to the case
K = C. The rich structure of the complex numbers allows one to use lattices to study elliptic
curves. The usefulness of such a tool will become apparent in our discussion of the theory of
complex multiplication over C. The reader is referred to [Cox, Sil 1, Hus] for a full treatment of
the subject.

As a complex analytic manifold, every elliptic curve defined over a subfield of C is isomorphic
to a one-dimensional complex torus C/Λ, where Λ is a lattice of C (i.e., a discrete submodule of
rank 2 over Z). To describe this isomorphism explicitly, we introduce the Weierstrass ℘-function

℘(z; Λ) = ℘(z) =
1
z2

+
∑

ω∈Λ−0

[
1

(z − ω)2
− 1
ω2

]
The ℘-function converges uniformly on compact subsets of C−Λ. It is an even function whose only
poles are the points of Λ. Furthermore, it is an elliptic function with respect to the lattice Λ, i.e.,
it is a meromorphic function such that ℘(z+ω) = ℘(z) for all ω ∈ Λ. The field of elliptic functions
of a lattice Λ is generated by the ℘-function and its derivative

℘′(z) = −2
∑

ω∈Λ−0

1
(z − ω)3

.
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The functions ℘(z) and ℘′(z) have Laurent series expansions around z = 0 given by

℘(z) =
1
z2

+
∑
2≤k

G2k(Λ)(2k − 1)z2k−2,

℘′(z) =
−2
z3

+
∑
2≤k

G2k(Λ)(2k − 1)(2k − 2)z2k−3,

where G2k(Λ) =
∑

ω∈Λ−0 ω
−2k is the Eisenstein series of weight 2k (cf. [Hus, §9.4]). Since ℘(z) and

℘′(z) are elliptic functions, the difference ℘′(z)2−4℘(z)3+60G4℘(z)+140G4 is also elliptic. However,
using the above expansions we note this difference has the form z · (holomorphic function). Now
note that a holomorphic elliptic function f is constant because it factors by continuous functions
C → C/Λ → C, and since C/Λ is compact, f is bounded, so Liouville’s theorem tells us f is
constant. Since the above difference vanishes at zero, we have shown the following theorem.

Theorem 2.7. The Weierstrass ℘-function satisfies the differential equation

℘′(z; Λ)2 = 4℘(z; Λ)3 − g2(L)℘(z; Λ)− g3(Λ),

where g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ).

It follows that the point (℘(z), ℘′(z)) is on the elliptic curve y2 = 4x3− g2(Λ)x− g3(Λ). In fact

Theorem 2.8. The map

C/Λ −→ EΛ/C : y2 = 4x3 − g2(Λ)x− g3(Λ)
z 7−→ (℘(z,Λ), ℘′(z,Λ)),

is an isomorphism of complex analytic manifolds. [cf. [Sil 2, Cor. 4.3 § I.4]]

Since we can associate an elliptic curve to a lattice by the above isomorphism, it is natural to
ask whether the converse is true: given an elliptic curve E/C, does there exist a lattice Λ ⊂ C such
that the above map is an isomorphism of complex analytic manifolds? The answer is yes; this is
known as the Uniformization Theorem (cf. [Sil 2, § I.4]). Furthermore, this lattice is unique up to
homothety; recall two lattices Λ1 and Λ2 are homothetic if there is an α ∈ C∗ such that αΛ1 = Λ2.

In this way an isogeny φ : E1 → E2 of elliptic curves over C gives rise to a holomorphic map
φ : C/Λ1 → C/Λ2 such that φ(0) = 0, where Λ1 and Λ2 are the lattices that correspond to E1 and
E2, respectively. The converse is also true: the natural inclusion

{isogenies φ : E1 → E2} −→ {holomorphic maps φ : C/Λ1 → C/Λ2 such that φ(0) = 0}

is a bijection. The set of holomorphic maps above is in turn in bijection with the set

{α ∈ C∗ |αΛ1 ⊂ Λ2}.

For a given α in the latter set, then map φα(z) = αz mod Λ2 is a holomorphic homomorphism that
preserves the origin. The map α 7→ φα gives the desired bijection of sets. We may summarize our
discussion in the following two theorems.

Theorem 2.9. Two elliptic curves E1 and E2 are isomorphic over C if and only if their associated
lattices Λ1 and Λ2, respectively, are homothetic.
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Theorem 2.10. Let EΛ/C be the elliptic curve associated to the lattice Λ by Theorem 2.8. Then

End(EΛ) ∼= {α ∈ C |αΛ ⊂ Λ}.

As a consequence of Theorem 2.10 we can show that an elliptic curve over C cannot be super-
singular (cf. Chapter 5). The reader should compare Theorem 2.11 with Theorem 2.17, which gives
a complete characterization of the endomorphism ring of an elliptic curve over an arbitrary field.

Theorem 2.11. Let E/C be an elliptic curve and let Λ = [1, τ ] be the lattice associated to E. Then
EndE ∼= Z or EndE is isomorphic to an order in a the quadratic imaginary field Q(τ).

Proof. We know from Theorem 2.10 that EndE ∼= {α ∈ C |αΛ ⊂ Λ}. Since [1, τ ] is a basis for Λ,
for any α ∈ EndE there are integers a, b, c, d such that

α = a+ bτ and ατ = c+ dτ.

We eliminate τ and obtain
α2 − (a+ d)α+ (ad− bc) = 0,

from which it follows that EndE is an integral extension of Z. If EndE is not isomorphic Z then
take α ∈ EndE − Z (i.e. b 6= 0). Then eliminating α above gives

bτ2 − (a− d)τ − c = 0.

This means Q(τ) is an imaginary quadratic field, and EndE is an integral extension of Z contained
in this field, i.e., it is an order of Q(τ).

2.5 Dual Isogenies and Tate Modules

We now resume our study of elliptic curves over an arbitrary field K.
Let E1, E2 be two elliptic curves over a field K. To every isogeny φ : E1 → E2 of degree m we

may associate a unique dual isogeny φ̂ : E2 → E1 such that φ̂ ◦ φ = [m]. If φ = [0], we set φ̂ = 0.
The existence and uniqueness of such a homomorphism is checked with Picard groups (cf. [Sil 1,
§ III.6]).

Theorem 2.12 (Properties of the dual isogeny). Let φ : E1 → E2 be an isogeny of degree m,
and let ψ : E1 → E2, λ : E2 → E3 be two other isogenies. Then

(i) φ ◦ φ̂ = [m] on E2.

(ii) λ̂ ◦ φ = φ̂ ◦ λ̂.

(iii) φ̂+ ψ = φ̂+ ψ̂; in particular ˆ[n] = [n] for all n ∈ Z and deg[n] = n2.

(vi) deg φ̂ = deg φ.

(v) ˆ̂
φ = φ.
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If charK = 0 or is prime to the integer m, then the map [m] ∈ EndE is separable, so # ker[m] =
deg φ (cf. Theorem 2.3). In other words #E[m] = m2. The equality is true if we replace m by a
positive divisor of it; since E[m] is a finite abelian group, by the structure theorem for such groups
it follows that

E[m] = Z/mZ× Z/mZ.

If, on the other hand, charK = p, then letting φ be the p-th power Frobenius isogeny, Theorem 2.3
tells us that

#E[pn] = degs[p
n] = (degs φ̂ ◦ φ)n;

since the Frobenius map is purely inseparable, it follows that #E[pn] = (degs φ̂)n. If φ̂ is inseparable
as well then degs φ̂ = 1. Otherwise degs φ̂ = p. We collect all our results in the following theorem.

Theorem 2.13. Let E/K be an elliptic curve and let m be a nonzero integer.

(i) If charK = 0 or is prime to m then

E[m] ∼= Z/mZ× Z/mZ

(ii) Otherwise K has characteristic p and

E[pe] ∼= {O} for all positive integers e, or
E[pe] ∼= Z/peZ for all positive integers e.

If charK = 0 or is prime to the integer m, then the Galois group Gal(K/K) acts on E[m] since
for each σ ∈ Gal(K/K) and P such that [m]P = O we have [m]P σ = ([m]P )σ = O. This action
gives a representation Gal(K/K)→ AutE[m] ∼= GL2[Z/mZ]. The Tate module provides a means
for fitting these representations together as m ranges through prime numbers l to obtain a useful
representation over a matrix ring over a field of characteristic zero.

Definition 2.1. Let E be an elliptic curve and l ∈ Z a prime number. The l-adic Tate module of
E is defined as

Tl(E) = lim←−
n

E[ln]

where the inverse limit is taken with respect to the maps

[l] : E[ln+1]→ E[ln].

The Tate module has a Zl-module structure because each E[ln] is a Z/lnZ-module. In fact,
from the above remarks on the structure of E[m], we see that

Tl(E) ∼= Zl × Zl if l 6= charK,
Tl(E) ∼= {0} or Zp if charK = p > 0.

Since the action of Gal(K/K) commutes with the multiplication by l maps used to take the
inverse limit, it follows that Gal(K/K) also acts on Tl(E). In this way we obtain the desired
representation

ρ : Gal(K/K)→ Aut(Tl(E)).
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The Tate module is a useful tool to study isogenies between two elliptic curves. An isogeny
φ : E1 → E2 gives rise to maps

φ : E1[ln]→ E2[ln],

and thus induces a Zl-linear map
φl : Tl(E1)→ Tl(E2).

In other words, we obtain a homomorphism

Hom(E1, E2)→ Hom(Tl(E1), Tl(E2)).

Theorem 2.14. Let E be an elliptic curve over a field K, and let l be a prime number distinct
from charK. Then the natural map

Hom(E1, E2)⊗ Zl → Hom(Tl(E1), Tl(E2))
φ 7→ φl

is injective. See [Sil 1, III.7.4]

This strong proposition will be of great use for us. In particular, when E1 = E2 we obtain the
following important result which we had mentioned.

Corollary 2.15. The endomorphism ring of an elliptic curve EndE is a free Z-module of rank at
most 4.

Proof. If there exists an isogeny φ ∈ EndE together with a nonzero integer m such that [m]◦φ = [0]
then we would have deg[m] ·deg φ = 0. However, we know that deg[m] = m2 (cf. Theorem2.12(iii)).
Hence deg φ = 0 and consequently φ = [0]. It follows that EndE has characteristic zero. Further-
more, this ring is an integral domain (this follows from the fact that Z is an integral domain by
passing from the composition φ1 ◦ φ2 to the product deg[φ1] · deg[φ2]).

For the rank of EndE, first note that

rankZ EndE = rankZl
EndE ⊗ Zl,

and we know by Theorem 2.14 (letting E = E1 = E2) that

rankZl
EndE ⊗ Zl ≤ rankZl

EndTl(E).

Depending on the characteristic of K, Tl(E) is one of {0},Zl or Zl × Zl. Thus EndTl(E) is a
(possibly improper) subset of M2(Zl), the group of 2× 2 matrices with entries in Zl. Accordingly,

rankZl
EndTl(E) ≤ 4.

Recall that an isogeny φ : E1 → E2 is defined over a field K if it commutes with the action of
G = Gal(K/K). The group of isogenies from E1 to E2 defined over K is denoted HomG(E1, E2).
Similarly, we may consider the group of Zl-linear maps from Tl(E1) to Tl(E2) that commute with
the action of G; we denote this group by HomG(TL(E1), Tl(E2)). By Theorem 2.14, the natural
map

HomG(E1, E2)⊗ Zl → HomG(TL(E1), Tl(E2)) (2.2)

is injective. The following theorem, due to Tate (cf. [Tate]), settles the issue of surjectivity of this
map for a finite field K. The theorem holds in general for abelian varieties, and its proof uses
methods and concepts beyond the scope of this paper.

Theorem 2.16. Let E1 and E2 be two elliptic curves over a finite field K. Then the map (2.2) is
an isomorphism.



CHAPTER 2. BASIC THEORY OF ELLIPTIC CURVES 14

2.6 Characterizing End E

We are now in a position to see what kind of ring EndE can be. Let K be a finitely generated
Q-algebra. Recall a subring O of K is called an order if it is a finitely generated Z-module such
that O⊗Q = K.

Theorem 2.17. Let E be an elliptic curve and set O = EndE. Then either

(i) O = Z, or

(ii) O is an order in a quadratic imaginary extension of Q, or

(iii) O is an order in a quaternion algebra over Q.

(A quaternion algebra over Q is 4-dimensional algebra generated by {1, α, β, αβ} over Q such
that α2, β2 are negative rational numbers and αβ = −βα. We will discuss these algebras in detail
in Chapter 4.)

Proof. We closely follow [Sil 1, Theorem III.9.3]. Let K = O⊗Q. By Corollary 2.15 we know that
O is a finitely generated Z-module, so it suffices to show that K = Q, or K/Q is either a quadratic
imaginary extension or a quaternion algebra. Let φ ∈ O be an isogeny and φ̂ be its dual isogeny.
Recall that φ ◦ φ̂ = φ̂ ◦ φ = [m], where m = deg φ. Hence we have a map O→ Z given by φ 7→ m.
We may extend this map to K. In this way we define the reduced norm and trace of φ as

n(φ) = φ ◦ φ̂ and t(φ) = φ+ φ̂.

Let us make two remarks about the trace map. Note that

t(φ) = 1 + n(φ)− n(φ− 1)

and so t(φ) ∈ Q in the sense that t(φ) = [m] ⊗ 1/n, for some m,n ∈ Z. Next, the isogeny φ is a
root of the polynomial X2 − t(φ)X + n(φ), so if t(φ) = 0 we have

φ2 = −n(φ),

and −n(φ) is a negative rational number.
If K = Q we are done. Otherwise there is an element φ ∈ K−Q. Replacing φ with φ−(1/2)t(φ)

if necessary, we may assume that t(φ) = 0 because the trace is Q-linear and t(φ) = 2φ for φ ∈ Q.
Hence φ ∈ Q and φ2 < 0, from which Q(φ) is an quadratic imaginary extension.

If K = Q(φ) we are done. Otherwise let ψ ∈ K−Q(ψ). Replacing ψ by

ψ − 1
2
t(ψ)− 1

2
(t(φψ)/φ2)φ,

we may assume that t(ψ) = t(φψ) = 0. Thus ψ2 is a negative rational number. Furthermore,
Q[φ, ψ] is a quaternion algebra because φψ = −ψφ. Indeed, the equations

t(φ) = t(ψ) = t(φψ) = 0

imply that
φ = −φ̂, ψ = −ψ̂, φψ = −φ̂ψ,
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from which the desired equality follows because φ̂ψ = ψ̂φ̂.
It remains to show this is it, i.e., K = Q[φ, ψ]. Since O has rank at most 4 as a Z-module, it

follows that K is at most 4-dimensional as a Q-vector space. So it suffices to show that the set
{1, φ, ψ, φψ} is linearly independent over Q. Suppose

a+ bφ+ cψ + dφψ = 0 a, b, c, d ∈ Q.

Taking traces of both sides we see that 2a = 0 and so a = 0. Composing the remaining elements
with φ on the left and ψ on the right we obtain

(bφ2)ψ + (cψ2)φ+ (dφ2ψ2) = 0.

But this is a Q-linear dependence relation for the set {1, φ, ψ}. We know, however, that this set is
Q-linearly independent, so we arrive at a contradiction unless b = c = d = 0.

2.7 Divisors and the Weil Paring

So far we have managed to avoid the concept of a divisor. This is only because our summary has
not made explicit use of them. It would be a mistake to soft-pedal their importance. They can
be used, for example, to construct the unique dual isogeny φ̂ through Picard groups (cf. [Sil 1,
§ III.4]). They are also essential in the construction of a pairing e : E[m] × E[m] → µm (here µm
is the group of m-th roots of unity). This pairing, together with l-adic Tate modules, provides a
means to study objects like Hom(E1, E2), and consequently the endomorphism ring of an elliptic
curve. As usual, we do not provide proofs for theorems we cite in this summary.

Let E/K be an elliptic curve and let K[E]MP
be the localization of the coordinate ring of E

(with coefficients in K) at the maximal ideal MP = {f ∈ K[E] : f(P ) = 0}. We define a map

ordP : K[E]MP
→ N ∪ {∞}

f 7→ max{n ∈ Z : f ∈Mn
P }.

This map is easily extended to K(E)MP
by setting ordP (f/g) = ordP f − ordP g.

The divisor of f ∈ K(E), denoted div f , is the finite formal sum

div f =
∑
P∈E

ordP f [P ].

More generally, a divisor of a curve E is a formal sum∑
P∈E

nP [P ],

with nP ∈ Z, only finitely of which are nonzero. In other words, the collection of divisors of a curve
E, denoted DivE, is the free abelian group generated by the points of the curve (hence DivE is
a Z-module). The degree of a divisor is

∑
nP . A divisor is called principal when it is of the form

div f for some f ∈ K(E).
Two divisors D1 and D2 are said to be linearly equivalent if D1 − D2 is principal. With this

equivalence relation we define the Picard group Pic(E) as the quotient of Div(E) by the subgroup
of principal divisors. Let Div0(E) denote the submodule of DivE of divisors of degree zero, and
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let Pic0(E) be the quotient of Div0(E) by the subgroup of principal divisors (this quotient makes
sense because principal divisors are of zero degree–cf. [Sil 1, § II.3]). A theorem of Abel and Jacobi
shows that the map

E → Pic0(E)
P 7→ [P ]− [O],

is a group isomorphism (cf. [Hus, Theorem 9.3.5]). The following theorem is an immediate and
important consequence of this isomorphism.

Theorem 2.18. Given a finite collection of integers {ni}i∈I and a corresponding collection of
points {Pi}i∈I on an elliptic curve E/K such that∑

i∈I
ni = 0 and

∑
i∈I

[ni]Pi = O,

where the latter sum refers to the group law on the curve, then the divisor D =
∑
ni[Pi] is principal.

Let P ∈ E[m]. Since [m]P − [m]O = O, Theorem 2.18 tells us m[P ] −m[O] = div f for some
f ∈ K(E). Since the multiplication-by-m map is surjective for nonzero m (it is a nonconstant
isogeny) there is a point Q ∈ E such that [m]Q = P . By Theorem 2.18 there exits another function
g ∈ K(E) such that

div g =
∑

R∈E[m]

[Q+R]− [R].

The functions f ◦ [m] and gm have the same divisor. Rescaling f by a constant factor if necessary,
it follows that f ◦ [m] = gm. Hence, if S ∈ E[m] and X is any point of E

gm(X + S) = f ◦ [m](X) + f ◦ [m](S) = f ◦ [m](X) = gm(X),

from which it follows that g(X + S) = em(S, P )g(X), for a certain m-th root of unity em(S, P ).

Theorem 2.19 (Properties of the Weil pairing). Let E/K be an elliptic curve and let m be a
nonzero integer prime to the characteristic of K. Then the pairing em : E[m]×E[m]→ µm defined
above has the following properties, cf. [Shi, §4.3] or [Sil 1, § III.8].

(i) It is bilinear, i.e.

em(S1 + S2, P ) = em(S1, P )em(S2, P ),
em(S, P1 + P2) = em(S, P1)em(S, P2).

(ii) It is alternating: em(S, P )em(P, S) = 1.

(iii) It is nondegenerate: if em(S, P ) = 1 for all S ∈ E[m], then P = O.

(vi) It is Galois invariant: for every σ ∈ Gal(K/K)

em(S, P )σ = em(Sσ, P σ).
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(v) It is compatible: given S ∈ E[mn] and P ∈ E[n] then

emn(S, P ) = em([n]S, P ).

Let l be a prime number different from charK. We would like to fit the pairings eln : E[ln] ×
E[ln]→ µln together to get a pairing on the Tate module e : Tl(E)×Tl(E)→ Tl(µ). In order to do
this, the parings eln must be compatible with the inverse limit construction of the Tate modules

Tl(E) = lim←−
n

E[ln] and Tl(µ) = lim←−
n

µln ,

which are taken with respect to the multiplication by [l] and l maps, respectively. It suffices to
show

eln+1(S, P )l = eln([l]S, [l]P ). (2.3)

This is done using the linearity and compatibility of the paring. We conclude this chapter with the
following important result.

Theorem 2.20. Given an elliptic curve E, there exists a pairing e : Tl(E)×Tl(E)→ Tl(µ) that is
bilinear, alternating nondegenerate and Galois invariant. If φ : E1 → E2 is an isogeny then φ and
φ̂ are adjoints for the pairing.



Chapter 3

Complex Multiplication over C

In this chapter we will discuss some basic aspects of the theory of Complex Multiplication (CM) over
the field of complex numbers and will introduce Gross–Zagier numbers, the driving force behind
this paper.

Recall an elliptic curve E/C is said to admit complex multiplication when End(E) contains
endomorphisms other than the multiplication by m maps; in such a case we say E is a CM-curve.
We showed in Chapter 2 that if Λ is a lattice associated to a CM-curve E, with basis [1, τ ], then
Q(τ) is a quadratic imaginary field and End(E) is an order in this field (cf. Theorem 2.11). This
means End(E)⊗Q is isomorphic to Q(τ). If End(E) ∼= O ⊂ C and K = O⊗Q we will say “E has
complex multiplication by O.”

Following ideas set out in [Sil 2, Ch. II] and [Se 2] we will focus on elliptic curves with complex
multiplication by the ring of integers OK (the maximal order) of a given imaginary quadratic field
K—complex multiplication by non-maximal order is much harder, and we will not need to delve
into it to study Gross–Zagier numbers.

The j-invariant of a CM-curve is called a singular modulus; it is an algebraic integer and it
generates a finite abelian extension of K. As an example of the theory developed in this chapter,
we will compute the irreducible polynomial for j in the cases K = Q(

√
−21),Q(

√
−133). The

constant term of these polynomials are the first examples of Gross–Zagier numbers we will meet.

3.1 Complex Multiplication over C

We begin our discussion of CM-curves with an example.

Example 3.1. Let E/C be a curve whose automorphism group AutE is strictly larger than {±1}.
Then E must admit complex multiplication, otherwise EndE ∼= Z and therefore AutE ∼= {±1}. Let
Λ be a lattice for E. By Theorem 2.10, Aut(E) ∼= {α ∈ C |αΛ = Λ}. Suppose {±1,±i} ⊂ Aut(E),
i.e., iΛ = Λ. Then

g3(Λ) = g3(iΛ) = i6g3(Λ) = −g3(Λ)

and so g3(Λ) = 0, which means j(E) = 1728. Since the j-invariant classifies curves up to isomor-
phism, any curve of the form y2 = 4x3 − g2x admits complex multiplication.

Given an elliptic curve E/C with complex multiplication by the ring of integers OK of the
quadratic imaginary field K, we would like to embed OK (as a subset of the complex numbers) in
EndE. One way to do this is to choose, without loss of generality, a lattice Λ such that E ∼= EΛ;

18
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by Theorem 2.10, End(EΛ) ∼= {α ∈ C |αΛ ⊂ Λ} = OK . Each α ∈ OK gives rise to a map
[α] ∈ End(EΛ) determined by the commutativity of the following diagram

C/Λ φα−−−−→
z 7→αz

C/Λ

f

y f

y
EΛ

[α]−−−−→ EΛ

where f is the map of Theorem 2.8. The advantage of this embedding is that it behaves nicely with
respect to invariant differentials. Indeed, let ω ∈ ΩE be an invariant differential. Note that any two
nonzero invariant differentials in ΩEΛ

differ by a multiplicative constant because their quotient is
translation invariant. Then, using the commutativity of the above diagram, and the fact that the
pullback of an invariant differential ω through f is a constant multiple of the invariant differential
dz of C/Λ, we conclude that

[α]∗ω = αω for all α ∈ O. (3.1)

The embedding OK ↪→ EndE thus obtained is known as the normalized embedding. Two isogenous
elliptic curves have normalized embeddings equal up to conjugation by an isogeny between the
curves (cf. [Sil 2, § II.1]).

Suppose we start now with an arbitrary quadratic imaginary field K. There is a practical way
of finding elliptic curves with complex multiplication by the ring of integers OK . The key idea
is to note that a nonzero fractional ideal a of K is a lattice in C. By Theorem 2.10 we know
End(Ea) ∼= {α ∈ C |αa ⊂ a}. But this last set is just {α ∈ K |αa ⊂ a} because a ⊂ K, and this
set in turn is OK since a is a fractional ideal.

Recall that two homothetic lattices a and ca give rise to isomorphic elliptic curves (Theorem 2.9),
i.e., two elements in the same ideal class of the ideal class group C(OK) give rise to isomorphic
elliptic curves. This shows that the map from C(OK) to the set

E(OK) =
{elliptic curves E | EndE ∼= OK}

C-isomorphism

=
{lattices Λ | EndEλ ∼= OK}

homothety

given by a 7→ Ea is well defined. Moreover, this map gives rise to an action of C(OK) on E(OK)
which is simply transitive. We will now study this action.

Lemma 3.1. Let a be a nonzero fractional ideal of OK and Λ a lattice such that the elliptic curve
EΛ belongs to E(OK). Then the product

aΛ = {α1λ1 + · · ·+ αrλr |αi ∈ a, λi ∈ Λ}

is a lattice in C.

Proof. By definition of fractional ideal, there is an integer d1 such that d1a ⊂ OK . Since End(EΛ) =
OK , it follows that

d1a ⊂ OK =⇒ aΛ ⊂ (1/d1)Λ

On the other hand we can choose an integer d2 such that d2OK ⊂ a, so that d2Λ ⊂ aΛ. We conclude
that aΛ is a discrete Z-module of the same rank as Λ, i.e., it is a lattice in C.
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From Theorem 2.10, it follows that

End(aΛ) ∼= {α ∈ C |αaΛ ⊂ aΛ} = {α ∈ C |αΛ ⊂ Λ} = End(EΛ) ∼= OK .

Hence EaΛ ∈ E(OK). We define the action of C(OK) on E(OK) by

a ∗ EΛ = Ea−1Λ.

(It is straightforward to check the above is an action.) This action is well-defined, i.e., Ea−1Λ
∼=

Eb−1Λ if and only if a = b. Indeed, Ea−1Λ
∼= Eb−1Λ if and only if a−1Λ and b−1Λ are homothetic

lattices. This means there exists α ∈ C∗ such that a−1Λ = αb−1Λ; equivalently, Λ = αa−1bΛ (or
Λ = α−1ab−1Λ because b−1Λ = Λb−1). If both αa−1b and α−1ab−1 preserve Λ, they must be
contained in OK , and of course this happens if and only if a = b in C(OK).

Theorem 3.2. The action of C(OK) on E(OK) given by a ∗ EΛ = Ea−1Λ is simply transitive.

Proof. Let EΛ1 and EΛ2 be elements of E(OK). To show the action is transitive, it suffices to
exhibit a nonzero fractional ideal a of K such that a ∗ EΛ1 = EΛ2 . Let λ1 be a nonzero element of
Λ1 and set a1 = (1/λ1)Λ1.

Since a1 is a lattice, Theorem 2.10 tell us that

End(Ea1) ∼= {α ∈ C | (α/λ1)Λ1 ⊂ (1/λ1)Λ1} = {α ∈ C |α/Λ1 ⊂ Λ1} ∼= OK ;

hence a1 ⊂ K. By assumption a1 is a finitely generated OK-module, so it is a fractional ideal of
K. Similarly, taking a nonzero element λ2 of Λ2 and setting a2 = (1/λ2)Λ2 we obtain another
fractional ideal of K.

It is easy to see that (λ2/λ1)a2a
−1
1 Λ1 = Λ2. Now set a = a−1

2 a1. Then a straightforward
manipulation shows a ∗ EΛ1 = EΛ2 , as desired.

Simplicity of the action follows from the fact that if a ∗EΛ = b ∗EΛ then a = b, something we
have already shown.

Corollary 3.3. Let K be a quadratic imaginary field. Then there are finitely many isomorphism
classes of elliptic curves with complex multiplication by OK .

Proof. Since the action of C(OK) on E(OK) is simply transitive, there are as many isomorphism
classes of curves with complex multiplication by OK as there are ideal classes in C(OK). The group
C(OK) is finite (cf. [Mar, Ch. 5]) and the result follows immediately.

Given the group action above, it is natural to look at the map E 7→ a ∗ E. The kernel of this
map leads to the study of certain finite subgroups of points of E. Indeed, let Λ be a lattice such
that E ∼= EΛ. Then the kernel of E 7→ a ∗ E is the kernel of the homomorphism C/Λ → C/a−1Λ
given by z 7→ z. This set, however, is just a−1Λ/Λ. Hence

ker(E 7→ a ∗ E) = {z ∈ C/Λ |αz = 0 ∀α ∈ a}
∼= {P ∈ E | [α]P = 0 ∀α ∈ a} =: E[a].

We say E[a] is the group of a-torsion points of E. The reader should note that the above isomor-
phism depends on the embedding [·] : OK → EndE; we always use the normalized embedding.
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If E ∈ E(OK), one may use techniques of commutative algebra to show E[a] is a free OK/a-
module of rank 1 (see, for example, [Sil 2, § II.1]). In this case

deg(E 7→ a ∗ E) = #E[α] = #|OK/a| = NK
Q a. (3.2)

In particular, the endomorphism [α] : E → E has degree |NK
Q α| because for a nonconstant separable

isogeny φ it is true that deg φ = # kerφ, and so

deg[α] = # ker[α] = #E[αOK ] = |NK
Q α|. (3.3)

3.2 The Field of Definition of a CM–Curve

We now turn our attention to the field of definition of a CM–curve. We will show that every elliptic
curve with complex multiplication is defined over an algebraic extension of Q.

Theorem 3.4. Let E be an elliptic curve with complex multiplication by OK . Then j(E) is an
algebraic number.

Proof. We will show j(E)σ takes on finitely many values as σ ranges through Aut C. To begin,
note that j(Eσ) = j(E)σ because Eσ is obtained from E by applying σ to the coefficients of the
equation for E and j(E) is a rational function of these coefficients.

On the other hand, it is clear that if σ ∈ Aut C and φ ∈ EndE then φσ ∈ EndEσ, so that
EndEσ ∼= EndE ∼= OK . Hence j(E)σ is the j-invariant of another curve in one of the isomorphism
classes of E(OK). We know from Corollary 3.3 that there are finitely many such classes, and since
the isomorphism class of an elliptic curve is determined by its j-invariant, it follows that j(E)σ takes
on finitely many values as σ ranges through Aut C, so [Q(j(E)) : Q] <∞ and j(E) is algebraic.

Remark 3.5. We will later strengthen the above theorem and prove that singular j’s are algebraic
integers (cf. Theorem 3.20).

Corollary 3.6.

E(OK) ∼=
{elliptic curves E/Q with End(E) ∼= OK}

isomorphism over Q
.

Proof. Let F be a field and denote

EF (OK) =
{elliptic curves E/F with End(E) ∼= OK}

isomorphism over F
.

If we fix an embedding of Q into C then there is a natural map

f : EQ(OK)→ EC(OK).

We will show this map is a bijection. Let E/C represent an element of EC(OK). There exists a
curve E′/Q(j(E)) with j(E′) = j(E) (cf. §2.1). This means E′ is isomorphic to E over C, and since
j(E) is algebraic one sees that E′ ∈ EQ(OK). Hence f(E′) = E, which shows f is surjective.

To see injectivity suppose E1/Q and E2/Q are two elliptic curves such that f(E1) = f(E2). It
follows that j(E1) = j(E2), and since E1 and E2 are defined over Q, equality of their j-invariants
means they are isomorphic over Q, i.e., they belong to the same class in EQ(OK).
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In the sequel, we will identify E(OK) with EQ(OK).
Although a CM–elliptic curve E is defined over an algebraic extension of Q, its endomorphisms

need not be defined over the same extension. They almost are, however, as the following theorem
shows (cf. [Sil 2, Theorem II.2.2(c)]).

Theorem 3.7. Let E be an elliptic curve defined over a subfield L of C, with complex multiplication
by OK . Then an endomorphism of E is defined over the compositum LK.

There is a natural action of Gal(K/K) on E(OK) that sends E to Eσ for a given σ ∈ Gal(K/K).
On the other hand, the action of the class group C(OK) on E(OK) is simply transitive (Theorem 3.2),
so there exists an a ∈ C(OK) such that a ∗ E = Eσ. We can therefore define a map

Θ : Gal(K/K)→ C(OK),

characterized by Eσ = Θ(σ) ∗ E for all σ ∈ Gal(K/K). This map is the key to understanding the
field extension K(j(E)).

Since the j-invariant classifies elliptic curves with complex multiplication by OK up to Q-
isomorphism (Corollary 3.6), the map Θ is also characterized by j(EΛ)σ = j(EΘ(σ)−1Λ). So we see
Θ(σ) depends on how the lattice associated to an elliptic curve changes under multiplication by an
ideal. The map Θ provides a bridge between the algebraic action of σ and the analytic action of
multiplication by Θ(σ)−1 (because j is an analytic function of Λ).

The map Θ is a homomorphism. Indeed,

Θ(στ) ∗ E = Eστ = (Eσ)τ = (Θ(σ) ∗ E)τ = Θ(τ) ∗ (Θ(σ) ∗ E) = (Θ(σ)Θ(τ)) ∗ E.

The last equality holds because ∗ is an action and C(OK) is an abelian group.
Our next task is to show that the property Eσ = Θ(σ) ∗ E determines Θ uniquely. We will

need the following lemma, whose proof we omit (cf. [Sil 2, Proposition II.2.5]). The proof is quite
hard, and in some sense it is at the heart of the analytic–algebraic bridge described above, yet we
hope the reader may still appreciate the power of complex multiplication without the technicalities
of commutative algebra involved in this proof.

Lemma 3.8. Let E/Q represent an element in E(OK), let a ∈ C(OK) and let σ ∈ Gal(Q/Q).
Then

(a ∗ E)σ = aσ ∗ Eσ.

Theorem 3.9. The homomorphism Θ : Gal(K/K) → C(OK), characterized by the property that
Eσ = Θ(σ)∗E for all σ ∈ Gal(K/K) and all E ∈ E(OK) is independent of the choice of E ∈ E(OK).

Proof. Let E1 and E2 be two curves in E(OK) and let σ ∈ Gal(K/K). Then by Theorem 3.2
Eσ1 = a1 ∗ E1 and Eσ2 = a2 ∗ E2 for some a1, a2 ∈ C(OK). We want to show that a1 = a2. Since
C(OK) acts transitively on E(OK) there is a b ∈ C(OK) such that E2 = b ∗ E1. Then

(b ∗ E1)σ = Eσ2 = a2 ∗ E2 = a2 ∗ (b ∗ E1) = (a2ba1
−1) ∗ Eσ1 .

By Lemma 3.8, (b ∗ E)σ = b
σ ∗ Eσ and since b

σ = b (because b ∈ K and σ ∈ Gal(K/K)), we
conclude that

b ∗ Eσ1 = (a2ba1
−1) ∗ Eσ1 .

Since the action of C(OK) on E(OK) is well-defined, it follows that a1 = a2.
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3.3 The Hilbert Class Field of an Imaginary Quadratic Field

Let L and K be number fields, L a finite extension of K. A prime ideal p ∈ OK is said to be
unramified in L if

pOL = P1P2 · · ·Pk,

where the Pi are distinct prime ideals of OL. Given an elliptic curve E/C with complex multipli-
cation by OK , the extension K(j(E)) is the maximal unramified abelian extension of K, i.e., it is
an extension such that

(i) Every prime ideal of OK is unramified in K(j(E)).

(ii) The group Gal(K(j(E))/K) is abelian.

(iii) Every extension L of K that satisfies properties analogous to (i) and (ii) is contained in
K(j(E)).

We say K(j(E)) is the Hilbert class field of K.
We will show K(j(E)) satisfies property (ii) above, and content ourselves with the statement

that K(j(E)) is also the maximal unramified extension among all abelian extensions of K. A proof
of this theorem is somewhat difficult and requires an understanding of the statements of class field
theory. In a sense, the general theory of complex multiplication is best thought of as an explicit
realization of the class field theory of quadratic imaginary fields. We do not follow this avenue of
thought, however. A proof of the theorem, together with the necessary background in class field
theory is in [Sil 2, Ch. II.3–4].

Theorem 3.10. Let K be a quadratic imaginary field, and let E/C be an elliptic curve with complex
multiplication by OK . Then the extension K(j(E)) is finite abelian.

Proof. We know the extensionK(j(E)) is finite because j(E) is an algebraic number (Theorem 3.4).
Let L/K be the fixed field of the kernel of Θ, i.e., Gal(K/L) = kerΘ. We claim that L = K(j(E)).
Indeed, given σ ∈ Gal(K/K), the series of equivalences

Θ(σ) = 1⇐⇒ Θ(σ) ∗ E = E

⇐⇒ Eσ = E

⇐⇒ j(Eσ) = j(E)
⇐⇒ j(E)σ = j(E)

shows that Gal(K/L) = Gal(K/K(j(E))), so L = K(j(E)). On the other hand, the map Θ takes
Gal(L/K) injectively into C(OK). Indeed, if Θ(σ) = 1̄ for some σ ∈ Gal(L/K) then σ belongs to
ker Θ, which means σ fixes L by the definition of L and hence σ = 1. Since C(OK) is abelian, the
injection Gal(L/K) ↪→ C(OK) shows Gal(L/K) = Gal(K(j(E))/K) is abelian.

Theorem 3.11. Let K be a quadratic imaginary field, and let E be an elliptic curve with complex
multiplication by OK . Then the Hilbert Class Field of K is K(j(E)).

Corollary 3.12. The degree of the extension Q(j(E)) over Q is equal to the class number h of K.
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Proof. From class field theory, the Hilbert class field of K has Galois group isomorphic to C(OK),
hence [K(j(E)) : K] = h. The tower law then tells us that

[K(j(E)) : Q] = [K(j(E)) : K] · [K : Q] = 2h.

On the other hand, it follows from [K : Q] = 2 that [K(j(E)) : Q(j(E))] ≤ 2, and the proof of
Theorem 3.4 shows that

[Q(j(E)) : Q] ≤ #C(OK) = h.

Therefore
2h = [K(j(E)) : Q] = [K(j(E)) : Q(j(E))] · [Q(j(E)) : Q] ≤ 2 · h,

and [Q(j(E)) : Q] = h, as desired.

Corollary 3.13. If {E1, . . . , Eh} is a set of representatives of E(OK), then J = {j(E1), . . . , j(Eh)}
is a full set of Gal(K/K) conjugates for the j-invariant of any curve in E(OK).

Proof. The group C(OK) acts on J by ā · j(E) 7→ j(ā ∗ E) and the group Gal(K/K) acts on J by
σ ·j(E) 7→ j(Eσ) = j(Θ(σ)∗E). The map Θ identifies the two actions. From Theorem 3.2 it follows
that Gal(K/K) acts transitively on J , which means J is a full set of Gal(K/K) conjugates.

Corollary 3.14. Let J = {j(E1), . . . , j(Eh)} be as in Corollary 3.13. Then J is a full set of
Gal(Q/Q) conjugates for the j-invariant of any curve in E(OK). The product

N(jK) :=
h∏
i=1

j(Ei)

is called the absolute norm of the j-invariant of a curve in E(OK).

Proof. This result follows directly from Corollaries 3.6 and 3.13.

3.4 The Hilbert Class Field of Q(
√
−21)

In this section we apply our results above to compute the Hilbert class field of Q(
√
−21). One may

check that the ideal class group of this field is the Klein group. Explicitly,

C(OK) = {[OK ], [P2], [P3], [P5]},

where

P2 = (2,
√
−21− 1),

P3 = (3,
√
−21),

P5 = (5,
√
−21− 3),

and the relations [P2]2 = [OK ], [P3]2 = [OK ] and [P5] = [P2] · [P3] hold.
As discussed earlier, one way to obtain an elliptic curve with complex multiplication by OK is to

consider the curve that a nonzero fractional ideal (as a lattice in C) gives rise to via the isomorphism
of Theorem 2.8. For example, consider P2 = [2,

√
−21− 1] as a lattice; then the elliptic curve EP2

has equation
y2 = 4x3 − g2(P2)x− g3(P2)
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(cf. §2.1); it has complex multiplication by OK . In general, if Λ = [ω1, ω2] is a lattice in C for
which τ := ω2/ω1 has positive imaginary part we have

j(τ) = j(Λ) := j(EΛ) =
1728g2(Λ)3

g2(Λ)3 − 27g3(Λ)2
.

Note that it makes sense to speak of j(τ) since [1, τ ] and Λ are homothetic lattices provided Im(τ) 6=
0, and the j-invariant is determined up to lattice homothety (i.e., elliptic curve isomorphism).

With the aid of the widely available PARI-GP software (which uses the method of q-expansions
to compute j-invariants—cf.), we compute the approximation

j(P2) = j

(√
−21− 1

2

)
= −1787216.6012476570198674− 4.17619485× 10−51i

Similarly, we compute

j(OK) = j(
√
−21) = 3196802718613.9132928032899986 + 10−45i

j(P3) = j

(√
−21
3

)
= 15488.6808931242445923 + 10−53i

j(P5) = j

(√
−21− 3

5

)
= 58.0070617294852765 + 2.6896583624964495× 10−55i

We know that the Hilbert class field of K is just K(j(OK)), yet the above approximation does
not give us this field explicitly. We remedy this situation by “guessing” the minimal polynomial for
j(OK) and solving it explicitly. By Corollary 3.13, the set J = {j(OK), j(P2), j(P3), j(P5)} is a full
set of Gal(K/K) conjugates for j(OK) in E(OK). Since each of these conjugates is in the Hilbert
class field of K, the irreducible polynomial for j(OK) is just

P (X) = (X − j(OK))(X − j(P2))(X − j(P3))(X − j(P5)).

Using the above approximations for the elements of J , we conjecture, with a wide margin of error,
that the irreducible polynomial for j(OK) is

P (X) = x4 − 3196800946944x3 − 5663679223085309952x2

+ 88821246589810089394176x− 5133201653210986057826304
(3.4)

Assuming that this is the irreducible polynomial, we may hope to solve the quartic equation by
radicals and compute j(OK) exactly. Using Descartes’ method for solving quartic equations by
radicals (cf. [Es, §2.3]), we find that

j(OK) =
√

7(210 · 33 · 7 · 13 · 19 · 71 · 89) +
√

3(28 · 34 · 7 · 13 · 29)(
√

7 · 3187 + 24 · 17 · 31)
+ 799200236736

(3.5)

Hence, the Hilbert class field of K is K(
√

7,
√

3). This computation relies heavily on the assump-
tion that (3.4) is the irreducible polynomial for j(OK). Fortunately, we can use results from the
genus theory of binary quadratic forms to confirm our observation. The genus field of a quadratic
imaginary field K is the maximal unramified extension of K that is abelian over Q.
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Theorem 3.15. Let K be an imaginary quadratic field of discriminant dK . Let p1, . . . , pr be the
odd primes dividing dK . Set p∗i = (−1)(pi−1)/2pi. Then K(

√
p∗1, . . . ,

√
p∗r) is the genus field of K

(cf. [Cox, Theorem 6.1]).

Sometimes the genus field and the Hilbert class field coincide. A discriminant dK is said to
be a convenient number if every element of the ideal class group C(OK) has order 2. When the
discriminant of a quadratic imaginary field is a convenient number the genus field and the Hilbert
class field are the same. Since the ideal class group of Q(

√
−21) is the Klein group, it follows from

Theorem 3.15 that the Hilbert class field of K = Q(
√
−21) is K(

√
−7,
√
−3) = K(

√
7,
√

3), as we
predicted.

The happy coincidence which allowed us to check our result seems to be rare. It was conjectured
by Gauss that there are only 65 convenient numbers (Euler gave a list of them), but this question
is still an open problem.

The numbers in computations like the ones above can be enormous. For example, if we try to
compute the Hilbert class field of K = Q(

√
−133) by the above method we find that the ideal class

group C(OK) is once again the Klein group:

C(OK) = {[OK ], [P2], [P7], [Q]},

where

P2 = (2,
√
−133 + 1),

P7 = (7,
√
−133),

Q = (7 +
√
−133,−2

√
−133),

and the relations [P2]2 = [OK ], [P7]2 = [OK ] and [Q] = [P2] · [P7] hold. This time the conjectured
polynomial for j(OK) comes out to be

P (X) = (X − j(OK))(X − j(P2))(X − j(P7))(X − j(Q))

= x4 − 29478909019098139074177479136000x3

− 160054212938390343773833947283393690785408000000x2

+ 5131537740610192962070880163006969643272192000000000x
− 19077542993352945680961028994697271308288000000000000.

Using Descartes’ method for solving quartics is a cumbersome task to carry out with such large
coefficients. Fortunately in this case dK is also a convenient number, so the Hilbert class field in
this case is K(

√
−7,
√
−19) (cf. Theorem 3.15).

3.5 Primes Dividing N(jK): a few Examples

When computing the minimal polynomial of j(OK) for K = Q(
√
−133) we saw that

N(jK) = −19077542993352945680961028994697271308288000000000000

= −(28 · 34 · 54 · 112 · 232 · 292 · 383)3

There are two surprising things about this computation. First, the absolute norm is an integer. So
far we had only shown that singular moduli are algebraic numbers, so we only expected its absolute
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K Class Number N(jK)

Q(
√
−1) 1 (22 · 3)3

Q(
√
−7) 1 −(3 · 5)3

Q(
√
−163) 1 −(26 · 3 · 5 · 23 · 29)3

Q(
√
−5) 2 −(24 · 5 · 11)3

Q(
√
−6) 2 −(24 · 32 · 17)3

Q(
√
−13) 2 −(24 · 32 · 52 · 23)3

Q(
√
−23) 3 −(53 · 11 · 17)3

Q(
√
−21) 4 −(28 · 35 · 47 · 59)3

Q(
√
−133) 4 −(28 · 34 · 54 · 112 · 232 · 292 · 383)3

Table 3.1: Absolute norms of a few singular moduli

norm to be rational. Second, the primes dividing this norm are quite small, and all norms seem
to be perfect cubes. Neither observation is a total coincidence. Table 3.1 supports these claims
(Gross and Zagier have tabulated N(jK) for all known fundamental discriminants of class number
1 or 3—cf. [G–Z, Table 1]).

3.6 Integrality of Singular Moduli

Since the j-invariant of a CM–curve is an algebraic number we know its absolute norm N(j) is
rational. However, in all our examples above these norms were in fact integers. This is always the
case, and the goal of this section is to explain this phenomenon. It will suffice to show that singular
moduli are algebraic integers—the norm of an algebraic integer is always an integer (cf. [Mar, p.
22]). More concretely, we will show that given τ ∈ C such that Im(τ) > 0 and [Q(τ) : Q] = 2
then j(τ) is an algebraic integer. The proof we give is analytic and has the advantage of explicitly
showing a monic polynomial with integer coefficients that j(τ) satisfies. Our exposition is a hybrid
of [Cox], [Se 1], [Sil 2] and [Lang]. There are two other known proofs of the integrality of singular
moduli, due to Serre and Tate [S–T] (the l-adic good reduction argument) and Serre [Sil 2, §V.6]
(the p-adic bad reduction argument); both arguments go beyond the scope of this paper.

3.6.1 Modular Functions of Weight 0

We denote the group SL2(Z) of 2× 2 matrices with coefficients in Z and determinant 1 by Γ. The
subgroup Γ0(m) of is defined as

Γ0(m) =
{(

a b
c d

)
∈ SL2(Z); c ≡ 0 mod m

}
.

Let f be a meromorphic function on the upper half plane H. We say that f is Γ0(m)-invariant if

f(γτ) := f

(
aτ + b

cτ + d

)
= f(τ) for γ =

(
a b
c d

)
∈ Γ0(m).
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Such a function f satisfies f(γ(τ + m)) = f(γτ) for any γ ∈ Γ. Indeed, if A =
(

1 m
0 1

)
, then

τ +m = Aτ , and since γAγ−1 is in Γ0(m), we conclude that

f(γ(τ +m)) = f(γAτ) = f(γAγ−1γτ) = f(γτ).

It follows that f has an expansion in the variable q1/m(τ) = e2πiτ/m in the region 0 < |q1/m| < 1,

f =
∑

anq
n/m.

We will call this a “q-expansion” for f . The function f is said to be meromorphic (resp. holomor-
phic) at infinity if an = 0 for n� 0 (resp. an = 0 for n < 0).

Definition 3.1. A modular function f of weight zero for Γ0(m) is a meromorphic function on H
that is Γ0(m)-invariant and is meromorphic at infinity.

Remark 3.16. If m = 1 then Γ0(1) = SL2(Z) = Γ and the definition above coincides with that of
a modular function of weight 0 that appears in the literature [Se 1, Ch. VIII]. Whenever we refer
to a modular function of weight zero without qualification, we mean the function is modular for Γ.

Example 3.2. Let Λ = [1, τ ] be a lattice in C (say Im(τ) > 0). The j-invariant j(τ) of Λ is
modular of weight zero and is holomorphic on H; it has a simple pole at infinity. The q-expansion
of j(τ) has integer coefficients, the first few of which are

j =
1
q

+ 744 + 196884q + · · ·

(cf. [Se 1, Ch. VIII.2–4]).

Example 3.3. A modular function that is holomorphic everywhere (including infinity) is constant.
(cf. [Cox, Lemma 10.11]).

Example 3.4. The function j(mτ) is modular of weight 0 for Γ0(m). Indeed, j(mτ) is certainly
holomorphic on H. To see j(mτ) is invariant under Γ0(m), we compute

j(mγτ) = j

(
m(aτ + b)
cτ + d

)
= j

(
amτ + bm

c/m ·mτ + d

)
for γ ∈ Γ0(m),

so setting γ′ =
(

a bm
c/m d

)
∈ Γ it follows that j(mγτ) = j(γ′mτ) = j(mτ), where the last equality

is a consequence of the Γ-invariance of j.
To see that j(mτ) is meromorphic at infinity, we want to compute its q-expansion. For this

purpose we introduce the set

C(m) =
{(

a b
0 d

)
; ad = m, 0 ≤ b < d, (a, b, d) = 1

}
.

Let σ0 =
(
m 0
0 1

)
∈ C(m). Since Γσ0Γ =

⋃
σ∈C(m) Γσ (cf. [Shi, p. 108]), if we fix γ ∈ Γ there are

σ ∈ C(m) and γ ∈ Γ such that σ−1
0 γσ = γ. It follows that

j(mγτ) = j(σ0γτ) = j(γστ) = j(στ),
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where the last equality holds because j is Γ-invariant. Let

j(τ) =
1
q

+
∞∑
n=0

anq
n

be the q-expansion of j. If στ = (aτ + b)/d then q(στ) = e2πib/dqa/d = ζabm (q1/m)a
2
, where

ζm = e2πi/m. Hence

j(mγτ) = j(στ) =
ζ−abm

(q1/m)a2 +
∞∑
n=0

anζ
abn
m (q1/m)a

2n. (3.6)

This shows that there are only finitely many terms of negative order in the q-expansion of j(mγτ),
which is to say that j(mγτ) is meromorphic at infinity. Thus it is a modular function of weight 0
for Γ0(m), as claimed.

There is a sense in which j(τ) is the only modular function of weight 0 that is holomorphic on
H. The following lemma makes this notion precise.

Lemma 3.17 (Hasse q-expansion principle). Every modular function f(τ) of weight 0 that
is holomorphic on H is a polynomial in j(τ) over the Z-module generated by the coefficients
a−N , . . . , a0 of the q-expansion

∑∞
−N anq

n of f .

Proof. Since f is meromorphic at infinity, we may write

f =
a−N
qN

+ (higher order terms).

This means f − a−N jN is holomorphic on the upper half plane and that its q-expansion has at
worst a polar term of order N − 1. By repeating this process we construct a polynomial P (X) ∈
Z[a−N , . . . , a0][X] such that f − P (j(τ)) is a holomorphic modular function with a q-expansion
that contains only terms of positive order, i.e., f − P (j(τ)) vanishes at infinity. This difference is
therefore constant (see Example 3.3).

3.6.2 The Modular Equation

We will now construct a monic polynomial that j(τ) satisfies. Consider the polynomial

∏
σ∈C(m)

(X − j(στ)) =
N∑
i=0

siX
i,

where the si are elementary symmetric functions on the j(στ) and thus are holomorphic functions
on H. Recall that Γσ0Γ =

⋃
σ∈C(m) Γσ and so⋃
σ∈C(m)

Γσ =
⋃

σ∈C(m)

Γσγ for any γ ∈ Γ.

Hence, for a fixed σ and γ there are elements γ ∈ Γ and σ ∈ C(m) such that σγ = γ σ. Since
j(σγτ) = j(γ στ) = j(στ), we have∏

σ∈C(m)

(X − j(στ)) =
∏

σ∈C(m)

(X − j(σγτ)) for any γ ∈ Γ,
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It follows that the si are invariant under Γ. The expansion (3.6) then shows that an elementary
symmetric function on the j(στ)’s has finitely many polar terms, and hence the functions si are
holomorphic modular functions of weight 0. By Lemma 3.17 they are polynomials in j(τ). We
conclude from all this that there exists Φm(X,Y ) ∈ C[X,Y ] such that

Φm(X, j(τ)) =
∏

σ∈C(m)

(X − j(στ)). (3.7)

The polynomial Φm(X,Y ) is referred to (by abuse of language) as the modular equation.
The modular equation has some wonderful algebraic properties.

Theorem 3.18. The Modular Equation has integer coefficients, i.e., Φ(X,Y ) ∈ Z[X,Y ].

Proof. By (3.7) it is enough to show that an elementary symmetric function s(τ) on the j(στ) is
in fact a polynomial in j(τ) with integer coefficients.

The q-expansion of j(στ) given in (3.6) shows that j(στ) is in the field Q(ζm)((q1/m)) of mero-
morphic functions in q1/m over Q(ζm). We can do slightly better than this: j(στ) is contained
in Q((q1/m)). To see why first note that any automorphism ψ ∈ Gal(Q(ζm)/Q)) induces an au-
tomorphism of Q(ζm)((q1/m)) by acting on the coefficients of an element in Q(ζm)((q1/m)). The
automorphism is determined by the image of ζm. Say that ψ(ζm) = ζkm for an integer k relatively
prime to m. Then using (3.6) we see that

ψ(j(στ)) =
ζ−abkm

(q1/m)a2 +
∞∑
n=0

anζ
abkn
m (q1/m)a

2n.

Let b′ be an integer such that b′ ≡ bk mod d and 0 ≤ b′ < d. Then ζabkm = ζab
′+adt

m = ζab
′

m because
ad = m. Hence

ψ(j(στ)) =
ζ−ab

′
m

(q1/m)a2 +
∞∑
n=0

anζ
ab′n
m (q1/m)a

2n.

Setting σ′ =
(
a b′

0 d

)
∈ C(m) we conclude that

ψ(j(στ)) = j(σ′τ).

This means the elements of Gal(Q(ζm)/Q)) permute the j(στ)’s so that any symmetric function
on them is contained in the fixed field Q((q1/m)), as claimed. Furthermore, s(τ + 1) = s(τ) since
s(τ) is Γ-invariant, whence the q-expansion of s(τ) is in Q((q)).

We can do even better and show that s(τ) ∈ Z((q)). Indeed, (3.6) shows the coefficients of the
q-expansion of j(στ) are algebraic integers for all σ ∈ C(m), and therefore so are the coefficients
of s(τ), which means s(τ) ∈ (Q ∩ Z)((q)) = Z((q)).

Finally, Lemma 3.17 tells us s(τ) is a polynomial in j(τ) with coefficients in the Z-module
generated by the coefficients of the q-expansion of s(τ). But since s(τ) is in Z((q)) this Z-module
is just Z itself, so that s ∈ Z[j], as claimed.

Theorem 3.19. If m is not a square, then Φm(X,X) is a polynomial of degree at least 1 with
leading coefficient equal to ±1.
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Proof. Replacing Φm(X,X) with Φm(j(τ), j(τ)), it suffices to look at the coefficient of the highest
negative power of q in the q-expansion of Φm(j(τ), j(τ)) =

∏
σ∈C(m)(j(τ) − j(στ)). Let σ =(

a b
0 d

)
∈ C(m). Using the q-expansion (3.6) we see that

j(τ)− j(στ) =
1
q
− ζ−abm

qa/d
+

∞∑
n=0

c′n(q
1/m)n,

for some coefficients c′n. Since m is not a perfect square, we know that a 6= d because ad = m.
Hence a/d 6= 1, which means that the coefficient of the highest negative power of q is a root of unity.
It follows that the coefficient of highest negative power of the q-expansion for Φm(j(τ), j(τ)) is also
a root of unity. However, this coefficient is also an integer because the coefficients of Φm(X, j(τ))
have q-expansions in Z((q)). Hence the coefficient must be ±1.

3.6.3 Integrality of j

It is clear from (3.7) that

Φm(j(στ), j(τ)) = 0 for all σ ∈ C(m). (3.8)

We need to extend the class of matrices σ for which this equality holds in order to show that j(τ)
is an algebraic integer for imaginary quadratic τ ∈ H. We claim that

Φm(j(ατ), j(τ)) = 0 for all primitive α ∈ Dm, (3.9)

where

Dm =
{(

a b
c d

)
; a, b, c, d ∈ Z, ad− bc = m

}
.

A matrix α is said to be primitive if its entries are relatively prime integers.
It suffices to show that for any primitive matrix α ∈ Dm there is some γ ∈ Γ such that

γα ∈ C(m), because then the Γ-invariance of j and (3.8) imply that

0 = Φm(j(γατ), j(τ)) = Φm(j(ατ), j(τ)). (3.10)

Let α =
(
a b
c d

)
∈ Dm. First, we may bring α to upper triangular form. Indeed, let w, z be

relatively prime integers such that az + cw = 0. Choose integers x, y such that xw− yz = 1. Then(
x y
z w

) (
a b
c d

)
=
(
a′ b′

0 d′

)
Moreover, the matrix

(
a′ b′

0 d′

)
is also in Dm by construction. Next, note that(
1 k
0 1

) (
a′ b′

0 d′

)
=
(
a′ b′ + kd′

0 d′

)
.

If we choose k0 such that 0 ≤ b′ + k0d
′ < d′ and set

γ =
(

1 k0

0 1

) (
x y
z w

)
,

then we obtain γα ∈ C(m) for γ ∈ Γ, as desired.
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Theorem 3.20. Let τ ∈ H be such that [Q(τ) : Q] = 2 then j(τ) is an algebraic integer.

Proof. Set K = Q(τ) and let OK be the ring of integers of K. The ring OK has a Z-basis given
by [1, wK ], where wK = (dK +

√
dK)/2 and dK is the discriminant of K (cf. [F–T, II.1.33]). There

always exists λ ∈ OK such that NK
Q (λ) square-free. Indeed,

• if K = Q(i), take λ = 1 + i.

• Otherwise, K = Q(
√
−m) for a square-free m > 1. Take λ =

√
−m in this case.

Since [1, wK ] is a Z-basis for OK , there are relatively prime integers a, b, c, d such that

λwK = awk + b,

λ = cwk + d,

and NK
Q (λ) = ad− bc =: n. Let α =

(
a b
c d

)
, so that wK = αwK and by (3.9)

0 = Φn(j(αwK), j(wK)) = Φn(j(wK), j(wK)).

Since n is square-free, Theorem 3.19 tells us the above is an integrality relation for j(wK). Hence
j(wK) is an algebraic integer. We want to deduce from this that j(τ) is also an algebraic integer.

Since Q(wK) = Q(τ) there exists a primitive 2 × 2 matrix β such that τ = βwK . If we can
show that j(τ) = j(βwK) is integral over Z[j(wK)] then, by transitivity of integrality, j(τ) will be
an algebraic integer. To see that j(βwK) is integral over Z[j(wK)], note that by (3.9)

Φm(j(βwK), j(wK)) = 0,

where m = detβ, so j(βwK) is a root of the monic polynomial Φm(X, j(wK)) ∈ Z[X, j(wK)].

Corollary 3.21. The absolute norm N(jK) of a j-invariant corresponding to a curve in E(OK) is
an integer.

Remark 3.22. The reader may wonder where in our proof of the integrality of j(τ) we used the
hypothesis that the associated elliptic curve EΛ, Λ = [1, τ ] is a CM-curve. By Theorem 2.11, if the
curve EΛ has complex multiplications, τ generates an imaginary quadratic field over Q, and this is
precisely the hypothesis for τ in Theorem 3.20. Ordinary elliptic curves may have transcendental
j-invariant over Q. Moreover, if the j-invariant of an elliptic curve E/K (K a number field) is
not in OK then EndE = Z (this is the claim Serre proved in his p-adic bad reduction argument,
cf. [Sil 2, Theorem V.6.3]).

3.7 Gross–Zagier Numbers

Let K be an imaginary quadratic field. Recall E(OK) is the set of elliptic curves with complex mul-
tiplication by OK up to Q-isomorphism. We have seen that if {E1, . . . , Eh} is a set of representatives
for E(OK) then the absolute norm of a j-invariant of E(OK),

N(jK) =
h∏
i=1

j(Ei)
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is an integer (cf. Corollaries 3.14 and 3.21). We define more generally the absolute norm of the
difference between two singular moduli as follows. Let K and K ′ be quadratic imaginary fields, and
let {E1, . . . , Eh1} and {E′

1, . . . , E
′
h′} be sets of representatives for E(OK1) and E(OK2), respectively.

Then the norm N(jK − jK′) is simply

N(jK − jK′) =
h∏

m=1

h′∏
n=1

(
j(Ei)− j(E′

j)
)
.

A number of this kind is called a Gross–Zagier number. Equivalently, using the isomorphism
between lattices and elliptic curves over C, we may write

N(jK − j′K) =
∏
ā

∏
b̄

(j(a)− j(b)) ,

as ā and b̄ run through the ideal classes of C(OK) and C(OK′), respectively.

Theorem 3.23. Let K and K ′ be quadratic imaginary fields, and let E,E′ be elliptic curves in
E(OK) and E(O′K), respectively. Then the norm N(jk − jK′) is an integer.

Proof. Since singular moduli are algebraic integers and N(jK − j′K) is by definition the norm of
any j(Ei) − j(E′

j) with respect to the group Gal(Q/Q) it follows that N(jK − j′K) is always an
integer.

Remark 3.24. Our previous definition of N(jK) is a special case of this more general definition
when K ′ = Q(

√
−3), for in this case C(OK′) consists of one element and j((1 +

√
−3)/2) = 0.

The aim of this paper is to study the size of prime factors that divide Gross–Zagier numbers.
The basic idea is that in order for p to divide N(jK− jK′), the curves E and E′ must “fit together”
modulo this prime. Since each of these curves has complex multiplication by different rings of
integers of imaginary quadratic fields, the only way one can fit the curves together is if the reduction
of E and E′ modulo p is supersingular, i.e., the endomorphism ring of the reduced curve must be
an order in a rational quaternion algebra. This order will (hopefully) have enough room to fit both
OK and OK′ inside it. Our next task then is to study supersingular curves, but before we can do
so, we must understand rational quaternion algebras in depth.



Chapter 4

Rational Quaternion Algebras

In Chapter 2 we saw the endomorphism ring of an elliptic curve can sometimes be an order in
a rational quaternion algebra. In the present chapter, we will study these rings in the abstract,
outside the context of elliptic curves. This way we will build up an arsenal of theorems that will
aid our discussion of supersingular curves in Chapters 5 and 6.

Our first task will be to study quaternion algebras over a field K with charK 6= 2; later we will
specialize to the case K = Q and classify rational quaternion algebras by looking at their behavior
under tensor product with the real numbers and p-adic fields. Our approach will require extensive
use of Hilbert symbols; these will tremendously facilitate our future computations. The reader
should refer to [Lam, KKS, Vig] for further details.

4.1 Quaternion Algebras

Unless otherwise stated, we will assume all our fields have characteristic different from 2.

Definition 4.1. A quaternion algebra H = (a, b)K over K is a 4-dimensional K-algebra whose
generators {1,i,j,ij } are subject to the relations

i2 = a, j2 = b, ij = −ji,

for some a, b ∈ K∗.

Let h = x+ iy + jz + ijw be an element of H. We call h̄ = x− iy − jz − ijw the conjugate of
h, and define the reduced trace and the reduced norm of h, respectively, as

t(h) = h+ h̄ = 2x, n(h) = hh̄ = x2 − ay2 − bz2 + abw2.

The reduced norm is a quadratic form over the underlying K-vector space of H. It is multiplicative
over H and an element in our quaternion algebra is invertible if and only if it has nonzero norm.

Example 4.1. The set M2(K) of 2× 2 matrices with entries in K is a quaternion algebra over K.
To see this, identify elements of K with their image in M2(K) by the homomorphism that sends
1 ∈ K to the identity matrix and set[

0 1
1 0

]
= i,

[
0 1
−1 0

]
= j.

34
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This identification is in fact a K-algebra isomorphism between (1,−1)K and M2(K). The reduced
trace and norm of an element h ∈ M2(K) are simply the trace and determinant of the matrix,
respectively.

4.1.1 Quadratic Spaces

Given a quaternion algebraH overK we may use its associated reduced trace to produce a quadratic
space (V,B) on the underlying (finite dimensional)K-vector space V ofH, whose symmetric bilinear
form B is given by

B(x, y) =
1
2
(xȳ + x̄y) =

1
2
T (xȳ), x, y ∈ V.

The quadratic form q : V → R associated to B is the reduced norm of H (hence the sometimes
used terminology ‘norm form’):

q(x) = B(x, x) =
1
2
t(xx̄) =

1
2
t(n(x)) = n(x).

As is often the case in number theory, the geometric interpretation of an algebraic object, in
this case a quadratic space, provides much insight into the structure and properties of the algebraic
object at hand. It is therefore advantageous for us to pause briefly in our study of quaternion
algebras and look closely at quadratic spaces. We recall the basic definitions and properties of
these spaces. The reader interested in a more detailed study would do well to consult [Lam].

Definition 4.2. A quadratic space is a pair (V,B), where V is a finite dimensional vector space
over a field K and B is a symmetric bilinear form. The bilinear form B induces a quadratic map
q : V → R given by x 7→ B(x, x).

Remark 4.1. Given a quadratic space V and its associated quadratic form q we may recover the
symmetric bilinear form B through the usual polarization formula

B(x, y) =
1
2
(q(x+ y)− q(x)− q(y)).

A quadratic space can therefore be specified by either B or q. Sometimes we will call V a quadratic
space without specifying either B or q; it will be implicitly understood V possesses these. Con-
versely, if the space V is understood, we may refer to q itself as a quadratic space.

The map q is a quadratic form and consequently has a unique symmetric matrix A such that

q(x) = xt ·A · x x ∈ V.

Given a basis {v1, . . . , vn} of V we may write this matrix explicitly as Aij = B(vi, vj), where Aij is
the (i, j)-th entry of A.

Recall that two quadratic forms Q and Q′ are said to be K-equivalent if there exists an invert-
ible change of basis M ∈ GL(V ) and the associated matrices of these forms are A and M tAM ,
respectively. On the other hand, two quadratic spaces (V,B) and (V ′, B′) are said to be isometric
if there is an invertible linear map f : V → V ′ such that

B′(f(x), f(y)) = B(x, y) for all x, y ∈ V.



CHAPTER 4. RATIONAL QUATERNION ALGEBRAS 36

In this way we get the one-to-one correspondence{
classes of n-ary
quadratic forms

}
←→

{
isometry classes of
quadratic spaces

}
.

The determinant of a quadratic form q is just the determinant of the associated matrix A. It is an
invariant of the equivalence class of q up to squares in K∗ because

detA′ = detA · det2M.

We denote this invariant by d(V ) = d(q) = detA ·K∗2.
It is possible to construct new quadratic spaces from old ones. For example, we may add two

quadratic spaces (V,B) and (V ′, B′) in the following sense. Set

V ′′ = V ⊕ V ′,

B′′((x, y), (x′, y′)) = B(x, y) +B′(x′, y′).

The pair (V ′′, B′′) is a quadratic space called the orthogonal sum of (V,B) and (V ′, B′). It is usually
denoted V⊥V ′. The quadratic form of V⊥V ′ is the sum of q and q′ and is denoted q⊥ q′. The
following theorem of Witt makes precise the sense in which the above sum of quadratic spaces is
orthogonal (cf. [Lam, Theorem I.4.2], [Se 1, § IV.1.5]).

Theorem 4.2 (Witt cancellation). Let V, V ′ and V ′′ be three quadratic spaces such that V⊥V ′ ∼=
V⊥V ′′. Then V ′ ∼= V ′′.

Remark 4.3. Every quadratic form over a field of characteristic different from 2 may be trans-
formed into an equivalent diagonal form λ1x

2
1+· · ·λnx2

n. In other words, the matrix of the quadratic
form may be diagonalized by a similarity transformation into a matrix whose diagonal consists of
the numbers {d1, . . . , dn}. We denote such a form by 〈d1, . . . , dn〉. Note that 〈d1〉⊥〈d2〉 ∼= 〈d1, d2〉.

We say a quadratic space (V,B) is regular if for a given x ∈ V

B(x, y) = 0 for all y ∈ V =⇒ x = 0.

This is equivalent to the non-singularity of the matrix A of the associated quadratic form q.
Another important notion in our study of quadratic spaces is that of isotropy. A quadratic

space (V,B) is called isotropic if there exists a nonzero vector x ∈ V such that B(x, x) = q(x) = 0.
A special but rather important kind of quadratic space is a two dimensional, regular, isotropic
space. Such a space is called a hyperbolic plane. The following theorem gives three equivalent ways
to think about such spaces (cf. [Lam, Theorem I.3.2]).

Theorem 4.4. Let (V,B) be a two dimensional quadratic space over K and let q be its associated
quadratic form. Then the following statements are equivalent:

(i) V is a hyperbolic plane,

(ii) V is regular and d(q) = −1 · (K∗)2.

(iii) V is isometric to 〈1,−1〉.
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Hyperbolic planes will be of great use in our study of quadratic spaces; however, most spaces
we are interested in are unfortunately not 2-dimensional. We need a criterion that can tell us when
a given space contains a hyperbolic plane. The following theorem provides us that criterion.

Theorem 4.5. Let (V,B) be a regular quadratic space which is at least 2-dimensional over K.
Then V contains a hyperbolic plane if and only if it is isotropic.

Proof. Recall V is isotropic if and only if there is a nonzero vector x ∈ V such that B(x, x) = 0.
Take V ′ to be the 1-dimensional subspace of V spanned by x and let y ∈ V be an element which
is not orthogonal to x. The vectors x and y are linearly independent over K; otherwise there is a
t in K∗ such that x = ty. But then

0 = B(x, x) = tB(x, y)

which contradicts the assumption that x and y are not orthogonal. Let P = Kx+Ky. Then

d(P ) =
∣∣∣∣B(x, x) B(x, y)
B(y, x) B(y, y)

∣∣∣∣ · (K∗)2 = −1 · (K∗)2.

Regularity of V is inherited by the subspace P , and so Theorem 4.4 tells us P is a hyperbolic plane.
This completes the proof.

Remark 4.6. The regularity of the subspace P means V can be decomposed as P⊥P⊥, which
is to say that V contains the hyperbolic plane P as an orthogonal summand (cf. [Lam, Corollary
I.2.5]).

4.2 Quaternion Algebras and Quadratic Spaces

Through our knowledge of quadratic spaces we are now in a position to prove that a quaternion
algebra (a, b)K is isomorphic to M2(K) when the binary quadratic form ax2 + by2 represents 1. A
detailed study of this equivalent question will in turn yield the classification of quaternion algebras
we seek.

We observe that the quaternion algebra (a, b)K with orthogonal basis {1, i, j, ij} is a regular
quadratic space and is isometric to 〈1,−a,−b, ab〉; the isometry is given by the reduced norm map.

Theorem 4.7. Let H = (a, b)K be a quaternion algebra. Then the following are equivalent:

(i) H ∼= (1,−1)K (∼= M2(K)),

(ii) H is not a division algebra,

(iii) The binary quadratic form ax2 + by2 represents 1.

Proof. (i =⇒ ii) This is clear since M2(K) has zero divisors.
(ii =⇒ i) We first show that H is a simple K-algebra. Indeed, let K be an algebraic closure

of K. Then (a, b)K = H ⊗ K. Every element of K is a square, so (a, b)K ∼= (1,−1)K ∼= M2(K)
(cf. Example 4.1). Since M2(K) is a simple K algebra it follows that H is a simple K-algebra.

By Wedderburn’s Theorem, H ∼= Mn(D) where D is a skew field containing K. If H is not
a division algebra, we must have n ≥ 2, but H is a 4-dimensional K-vector space, so n = 2 and
D = K.
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(ii =⇒ iii) To say H is not a division algebra means there is a nonzero element x ∈ H which
is not invertible. We’ve seen this is the case if and only if N(x) = B(x, x) = 0, which means x is
an isotropic element. By Theorem 4.5 and Remark 4.6 it follows that H = P⊥P⊥, where P is a
hyperbolic plane. Hence, computing determinants we see that

d(H) = d(P ) · d(P⊥) = −d(P⊥).

On the other hand, since H ∼= 〈1,−a,−b, ab〉, we may also compute

d(H) = 1 · (−a) · (−b) · (ab) · (K∗)2 = 1 · (K∗)2.

Hence d(P⊥) = −1 · (K∗)2. Since P⊥ is a regular subspace of H, Theorem 4.4 tells us P⊥ is itself
a hyperbolic plane. Therefore

〈1,−a,−b, ab〉 ∼= H ∼= 〈1,−1, 1,−1〉.

By Witt’s cancellation theorem 〈−a,−b, ab〉 ∼= 〈−1, 1,−1〉. Adding 〈a, b, 1〉 orthogonally to both
sides of this equation we obtain

〈a,−a, b,−b, 1, ab〉 ∼= 〈a, b, 1,−1, 1,−1〉
2P⊥〈1, ab〉 ∼= 2P⊥〈a, b〉,

where this last equality follows from the isomorphisms 〈a,−a〉 ∼= 〈b,−b〉 ∼= 〈1,−1〉 ∼= P . Applying
Witt’s cancellation theorem again we obtain 〈1, ab〉 ∼= 〈a, b〉. Hence the form ax2 + by2 represents
1.

(iii =⇒ ii) Suppose there are x, y ∈ K∗ with ax2 + by2 = 1. Let v = 1 + xi + yj; then
N(v) = 1 − ax2 − by2 = 0. Since v 6= 0 this means v is not invertible in H. Hence H is not a
division algebra.

4.2.1 Hilbert Symbols and Quadratic Forms over Qp

Given a, b in a field K, Theorem 4.7 tells us that if we can settle the question of when the quadratic
form ax2+by2 represents 1 for some x, y ∈ K then we’ll have a better understanding of the structure
of the quaternion algebra (a, b)K . We will settle this question for the p-adic fields Qp, where p is
a rational prime or the ‘prime at infinity,’ in which case we will agree that Q∞ = R. The Hasse–
Minkowski principle will then yield information about the case K = Q. The relevant background
material on p-adic numbers can be found in [Se 1, Ch. 2]. We follow the ideas in [KKS, Ch. 2],
and use some proofs presented there in our exposition.

Over the field of real numbers it is clear the quadratic form ax2 + by2 represents 1 if and only
if at least one of a or b is positive. We encode this information in the symbol (a, b)∞ defined as

(a, b)∞ =

{
1 if a or b > 0,
−1 otherwise.

Then, for a, b ∈ Q∗

ax2 + by2 represents 1 for some x, y ∈ R ⇐⇒ (a, b)∞ = 1. (4.1)

Similarly, we would like to define a symbol (a, b)p that satisfies an analogous property to (4.1) for
x, y ∈ Qp.
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Definition 4.3. Let a, b ∈ Q∗ and let p be a prime number. Write

a = piu, b = pjv i, j ∈ Z, u, v ∈ Z∗(p),

where Z(p) is the localization of Z at p. If p 6= 2 we define the rational Hilbert symbol (a, b)p by

(a, b)p = (−1)ij(p−1)/2

(
ū

p

)j(v̄
p

)i
,

where
(
ū

p

)
denotes the usual Legendre symbol and ū is the image of u under the homomorphism

of reduction modulo p. Otherwise set

(a, b)2 = (−1)
r2−1

8 · (−1)
u−1

2
· v−1

2 ,

where r = (−1)ijujv−i.

Remark 4.8. The rational Hilbert symbol can be extended naturally to a map (, )p : Qp ×Qp →
{±1}. All we have to do is replace Z(p) by Zp in the above definition.

Before proving the above definition has our desired property, we give some attributes of the
Hilbert symbol that follow easily from the above definition (and which hold for the extended symbol
as well cf. [KKS, Proposition 2.4]).

Theorem 4.9. Let v be a rational prime or ∞, and let a, b ∈ Q∗. Then

(i) (a, b)v = (b, a)v.

(ii) (−a, a)v = 1. If a 6= 1 then (a, 1− a)v = 1.

(iii) (a, bc)v = (a, b)v(a, c)v.

(iv) If a, b ∈ (Z(p))∗ and p is odd then

(a, b)p = 1 and (a, bp)p =
(
ā

p

)
.

(v) If a, b ∈ (Z(2))∗ then we have

(a, b)2 =

{
1 if a or b are congruent to 1 mod 4,
−1 otherwise;

(a, 2b)2 =

{
1 if a ∼= 1 or 1− 2b mod 8,
−1 otherwise.

Lemma 4.10 (Squares in Qp). Let x ∈ Qp and write x = piu with i ∈ Z and u ∈ Z∗p. Then x is
the square of an element in Qp if and only if i is even and
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(i) If p 6= 2, then
(
ū

p

)
= 1,

(ii) if p = 2, then u ≡ 1 mod 8Z2.

(cf. [KKS, Proposition 2.18])

Theorem 4.11. Let a, b ∈ Qp. Then the quadratic form ax2 + by2 represents 1 for some x, y ∈ Qp

if and only if (a, b)p = 1.

Proof. Suppose the quadratic form ax2 + by2 represents 1 in Qp. If x = 0 then b is a square in Q∗
p

in which case it is clear that (a, b)p = 1; similarly if y = 0. If both x and y are nonzero then

(a, b)p = (ax2, by2)p = (ax2, 1− ax2)p = 1,

where the last equality is a consequence of Theorem 4.9 (ii).
Now suppose (a, b)p = 1. The conditions (a, b)p = 1 and the form ax2 + by2 representing 1 in

Qp are unchanged if we multiply a or b by elements of (Q∗
p)

2. We may therefore assume without
loss of generality that a, b ∈ Zp ∪ pZp.

• a, b ∈ pZp. In this case we replace a with −ab−1 because on the one hand,

(−ab−1, b)p = (−ab−1, b)p · (−b, b)p = (a, b)p,

and on the other hand,

−ab−1x2 + by2 = 1 has a solution in Qp

if and only if − ab−1x2 + by2 = z2 has a solution in Qp with (x, y, z) 6= (0, 0, 0)

if and only if ax2 + bz2 = (by)2 has a solution in Qp with (x, y, z) 6= (0, 0, 0)

if and only if ax2 + by2 = 1 has a solution in Qp.

Since −ab−1 ∈ Zp we are reduced to the case a ∈ Zp, b ∈ pZp.

• a ∈ Zp, b ∈ pZp. Suppose first that p 6= 2. Then by Theorem 4.9,(iv) (a, b)p = 1 means the
image of a under reduction modp is a square in F∗p. By Lemma 4.10 there is a t ∈ Q∗

p with
t2 = a. Then a(1/t)2 + b · 02 = 1. The case p = 2 is similar.

• a, b ∈ Zp. If p 6= 2, then (a, b)p = 1 is always true (Theorem 4.9,(iv)). We use a counting
argument to show ax2 = by2 = 1 has a solution in Qp. Let ā, b̄ be the reduction of a, b mod p,
respectively. The sets

{āu2 |u ∈ Fp} and {1− b̄u2 |u ∈ Fp}
both have cardinality (p + 1)/2 and hence must overlap. So there exist x, y ∈ Zp such that
ax2 ≡ 1−by2 mod pZp. If x /∈ pZp then by Lemma 4.10 there is a t ∈ Q∗

p with t2 = (1−by2)/a;
in this case at2 + by2 = 1. Otherwise we obtain 1 ≡ by2 mod pZp and this time Lemma 4.10
asserts there is a t ∈ Q∗

p with t2 = b; hence a · 02 + b(1/t)2 = 1. The case p = 2 is solved using
Theorem 4.9 and Lemma 4.10.

With the aid of Hilbert symbols, which are relatively easy to compute, we can determine when
the quadratic form ax2 + by2 represents 1 for given a, b ∈ K in the cases K = Qp and K = R. The
Hasse–Minkowski principle tells us that we are now in a position to answer the same question when
K = Q. For a marvelous exposition of this principle see [Con, p. 135] or [Se 1, Ch. 4].
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Theorem 4.12 (Hasse–Minkowski). Let m ∈ Q∗ and let v be a rational prime or ∞. In order
that a quadratic form f with Q-coefficients represent m in Q it is necessary and sufficient that it
does so in each Qv.

In the sequel, will shorten the phrase “v is a rational prime or ∞” by saying v is a place.
Theorems 4.7 and 4.11, together with the Hasse–Minkowski principle yield the following important
result.

Theorem 4.13. Let D = (a, b)Q be a rational quaternion algebra, and let v be a place. Then

D ⊗Qv
∼=

{
M2(Qv) if (a, b)v = 1,
Dv otherwise,

where Dv is a division algebra over Qv. We say a place v ramifies in D if D ⊗ Qv is a division
algebra.

Computationally, this result is of great use since Hilbert symbols are relatively easy to calculate
using Quadratic Reciprocity. At the same time, Theorem 4.13 raises a wealth of questions worth
exploring. For example, does the set of primes which ramify in D classify D in some sense? Is this
set finite? Given a finite set of places S, is there a rational quaternion algebra D that only ramifies
at the places contained in S? What can we say about the various division algebras Dp? (They are
all isomorphic; see [Lam, Ch. 6].)

It turns out that the set S of primes that ramify in D determines the quaternion algebra. This
is a strong result; one need only look at imaginary quadratic extensions of Q to find examples of
distinct fields that have the same set of primes that ramify in them; for example, Q(i),Q(

√
−2)

both have S = {2,∞}.
We turn now to the question of finiteness of the set S. This set is indeed finite. Moreover, it has

even cardinality. Both these claims are immediate from the following theorem for Hilbert symbols,
which is but a convenient restatement of Quadratic Reciprocity.

Theorem 4.14. Let a, b ∈ Q∗. Then (a, b)v = 1 except at a finite number of places and∏
v

(a, b)v = 1,

where v runs through all rational primes and ∞.

Proof. First, (a, b)v = 1 for all but finitely many v because a, b ∈ Z∗(p) for all but finitely many v.
The claim then follows from Theorem 4.9,(iv).

In view of Theorem 4.9 it suffices to show the product law in the following three cases:

• a, b are positive odd prime numbers: In this case (a, b)p = 1 for p 6= a, b, 2. Theorem 4.9
(i),(iv),(v) then tells us

(a, b)a =
(
b

a

)
, (a, b)b =

(
a

b

)
, (a, b)2 = (−1)

(a−1)(b−1)
4 .

The product law is then a restatement of Quadratic Reciprocity.
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• a is an odd prime, b = −1 or 2: In this case (a, b)p = 1 for p 6= a, 2 and using Theorem 4.9
we calculate

(a,−1)a =
(
−1
a

)
, (a,−1)2 =(−1)

a−1
2 ,

(a, 2)a =
(

2
a

)
, (a, 2)2 =(−1)

a2−1
8 .

The product law is again a restatement of well-known properties of the Legendre symbol.

• a = −1, b = −1 or 2: In this case (−1, 2)v = 1 for all v so the product formula holds, and

(−1,−1)v =

{
−1 if v = 2 or ∞,
1 otherwise,

so once again the product formula holds.

Corollary 4.15. The set of primes S at which a rational quaternion algebra D ramifies is finite
and has even cardinality.

In order to calculate the Hilbert symbols at all places, it is enough to do so for all but one
place, by use of the product formula. Though this may not seem like much at first, it may be an
advantage since the Hilbert symbol can sometimes be hard to calculate for p = 2. The product rule
allows us to omit one computation if we know the Hilbert symbol for a pair of nonzero rational
numbers at all other places.

4.2.2 Rational Quaternion Algebras Ramified at One Finite Prime

Since a rational quaternion algebra must ramify at an even number of places, not every finite set
S corresponds to a quaternion algebra the ramifies precisely at the places contained in S. In this
section we will settle the particular case of the existence of a rational quaternion algebra ramified
at one finite prime (i.e., S = {p,∞}). We denote such algebras by B{p,∞}. This nontrivial case
illustrates how useful Hilbert symbols are when dealing with quaternion algebras; the particular
example is also of immense importance to us since the endomorphism ring of an elliptic curve with
supersingular reduction at a prime p is a maximal order in such a quaternion algebra.

• B{2,∞}. In the course of proving the product formula we saw that

(−1,−1)v =

{
−1 if v = 2 or ∞,
1 otherwise,

This means the quaternion algebra D = (−1,−1)Q ramifies at S.

• B{p,∞}, p ≡ 3 mod 4. We claim the quaternion algebra D = (−1,−p)Q ramifies precisely at
S. Indeed, Theorem 4.9,(iv) tells us (−1,−p)v = 1 for v 6= 2, p,∞. Clearly (−1,−p)∞ = −1.
By Theorem 4.9,(iv)

(−1,−p)p =
(
−1
p

)
= (−1)

p−1
2 = −1 since p ≡ 3 mod 4.

Finally, the product formula implies that (−1,−p)2 = 1.



CHAPTER 4. RATIONAL QUATERNION ALGEBRAS 43

• B{p,∞}, p ≡ 5 mod 8. In this case, D = (−2,−p)Q ramifies only at S. Again, Theorem 4.9,(iv)
tells us (−1,−p)v = 1 for v 6= 2, p,∞, and (−2,−p)∞ = −1. Just for fun, let us calculate the
Hilbert symbol at 2 this time:

(−2,−p)2 = (−1)
p2−1

8 (−1)
p−1
2
·−1 = (−1)

(p+1)(p+3)
8 = 1.

The last equality follows because (p + 3)/8 is an integer and (p + 1) is even. The product
formula implies that (−1,−p)p = −1.

• B{p,∞}, p ≡ 1 mod 8. This is the trickiest case. LetD = (−q,−p)Q, where q is a rational prime
congruent to 3 mod 4 and which is not a square mod p. It follows from Theorem 4.9,(iv) that
(−q,−p)v = 1 for all v 6= 2, p, q,∞ and it is clear that (−q,−p)∞ = −1. Now

(−q,−p)p =
(
−q
p

)
= (−1)

p−1
2

(
q

p

)
= −1

since p ≡ 1 mod 4 and q is not a square mod p. Next,

(−q,−p)q =
(
−p
q

)
= (−1)

q−1
2

(
q

p

)
= −1 · −1 = 1,

where the last equality is a consequence of Quadratic Reciprocity. By the product formula,
(−q,−p)2 = 1, thus completing our verification.

Remark 4.16. In the above construction we conjured up a prime q congruent to 3 mod 4 and
which is a square mod p. Why does such a prime exist? By the Chinese remainder theorem these
two conditions are equivalent to a congruence for q modulo 4p. Dirichlet’s theorem on arithmetic
progressions asserts there are infinitely many q’s that satisfy the congruence relation. For a proof
of this theorem see [Se 1, Ch. 6].

4.3 Orders

Now that we have studied how to classify quaternion algebras over Q, it is time to turn our attention
to orders inside these algebras. After all, the endomorphism ring of a supersingular elliptic curve is
not a full quaternion algebra, but rather an order sitting inside one. Many of the theorems we will
prove hold in much more generality, though the proofs we present may not be easy to generalize.
For a complete treatment of the material presented here the reader should consult [Vig].

Let R be a Dedekind domain, K its fraction field and H a quaternion algebra over K. An ideal
I is a subset of H which is finitely generated as an R-module and K⊗R I = H. For every ideal I of
H, there exists a set I−1 = {h ∈ H | IhI ⊂ I} which is also an ideal. The reduced norm of an ideal
n(I) is the fractional ideal of R generated by the norms of the elements of I; the reduced norm is
multiplicative, i.e., n(I)n(J) = n(IJ), where IJ is the set of finite sums of elements ij with i ∈ I
and j ∈ J .

An element x ∈ H is said to be integral over R if R[x] is a finitely generated R-module contained
in H. The sum and product of two integral elements need not be integral, i.e., the integral elements
of H over R do not in general form a ring.

Lemma 4.17. An element x ∈ H is integral over R if and only if its reduced trace and its reduced
norm belong to R (cf. [Vig, Lemma I.4.1]).
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By an order O of H we mean an ideal which is also a ring, or, equivalently, a ring O of R-integral
elements which contains R and such that KO = H. An order is maximal if it is not properly
contained in any other order; every order is contained in a maximal one (cf. [Vig, Proposition
I.4.2]).

4.3.1 The Different and the Reduced Discriminant

Let O be an order in a quaternion algebra H as above. The dual of O with respect to the bilinear
form induced by the reduced trace of H is the set

O∗ = {x ∈ H | t(xO) ⊂ R}.

It is an ideal. The different of O, denoted by O∗−1, is the inverse of this dual. It is integral over
R (cf. [Vig, Lemma I.4.7]). The reduced discriminant of an order O is the reduced norm of its
different:

disc(O) := n(O∗−1)

Theorem 4.18. With the notation as above, if the order O of a quaternion algebra H is a free
R-module then

disc(O)2 = R det(t(vivj)),

where {vi} is a basis of O over R.

Proof. The dual basis to {vi}, denoted {v∗i }, defined by the property T (viv∗j ) = δij is a generating
set for the ideal O∗ over R. If v∗j =

∑
k ajkvk, then linearity of the trace map gives

t(viv∗j ) =
∑
k

ajkt(vivk),

from which it follows that

1 = det(t(viv∗l )) = det(ajk) det(t(vivj)). (4.2)

We assume now the order is a principal ring (the theorem is still valid otherwise–cf. [Vig, Lemma
I.4.7]). since O is a principal ring there is some x ∈ H∗ with O∗ = Ox. This means {vix} is another
basis for O∗ as an R-module, so there exists a change of basis matrix [bij ] such that

vix =
∑
j

bijv
∗
j =

∑
j,k

bijajkvk.

Hence the map H∗ → H∗ given by h 7→ hx has matrix [
∑

j bijajk] for the basis {vi}. On the other
hand one checks this map has determinant n2(x), from which we conclude that

det

∑
j

bijajk

 = det(bij) · det(ajk) = n2(x).

By (4.2) we obtain
1 = n2(x) · det(bij)−1 det(t(vivj)),

and since det(bij) ∈ R∗

disc(O)2 = n2(O∗−1) = n−2(Ox) = R det(t(vivj)),

as claimed.
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Let O and O′ be two (comparable) orders such that O ⊂ O′. If {vi} and {wi} are bases for O

and O′, respectively, then vi =
∑

j aijwj and

det(t(vivj)) = det2(aij) det(t(wiwj)).

In this way we obtain the following useful corollary of Theorem 4.18.

Corollary 4.19. If O and O′ are two orders such that O ⊂ O′ then disc(O) ⊂ disc(O′) with equality
if and only if O = O′.

Example 4.2. The order M2(R) of M2(K) is maximal since its reduced discriminant is R. In fact,
when R is a principal ideal ring, the maximal orders of M2(K) are all conjugate to M2(R) (cf. [Vig,
p. 28])

4.3.2 Division Quaternion Algebras over Qp

The reader is referred to [Vig, § II.1] for proofs (and a more general and extensive treatment) of
the material in this section.

Let H be a division quaternion algebra over Qp, and let vp : Q∗
p → Z be the usual p-adic

valuation. We may use this map, together with the reduced norm map of H∗ to construct a
discrete valuation on H∗. Explicitly, the map

ω : H∗ → Z
h 7→ vp(n(h))

is the desired discrete valuation. The valuation ring of ω, i.e., the set {x ∈ H |ω(x) ≥ 0} is the
unique maximal order of H and its reduced discriminant is pZp.

4.3.3 Maximal Orders in Rational Quaternion Algebras

The following theorem gives us a simple criterion to determine whether an order in a quaternion
algebra over Q is maximal or not. This is the main result of the chapter, and will be of great use in
our study of primes dividing Gross–Zagier numbers. We will need two lemmas, the first of which
which says that maximality is a local property (cf. [Vig, § III.5]).

Lemma 4.20. Let H be a rational quaternion algebra, and let O be an order in H. Then O is a
maximal order if and only if Op = O ⊗Z Zp is a maximal order in Hp = H ⊗Q Qp for each finite
rational prime p.

Lemma 4.21. Let I be an ideal and O be an order of a rational quaternion algebra H. Then

n(I)p = n(Ip) and disc(O)p = disc(Op).

Proof. Let {yi} be a (finite) system of Z-generators for I. The first equality follows because {yi⊗1}
is a system of generators for IP = I ⊗Z Zp over Zp and the definition of the norm of an ideal. For
the equality of reduced discriminants, first recall that

I∗ = {x ∈ H | t(xy) ∈ Z ∀ y ∈ I}.

Using the properties of the tensor product, one checks that (Ip)∗ = (I∗)p. Since O∗ is an ideal we
obtain

disc(O)p = n(O∗−1)p = [n(O∗)−1]p = n(O∗)−1
p = n(O∗−1

p ) = disc(Op).
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Theorem 4.22. Let H be a rational quaternion algebra, and let O be an order in H. Then O is a
maximal order if and only if

disc(O) =
∏

p∈RamH
p6=∞

pZ, (4.3)

where RamH is the set of places that ramify in H.

Proof. Suppose that O is a maximal order. By Lemma 4.20, Op is a maximal order in Hp for every
finite rational prime p. We know from Theorem 4.13 that

Hp = H ⊗Q Qp
∼=

{
M2(Qp) if p /∈ RamH,

Dp otherwise,

• Case 1: Op is a maximal order in M2(Qp). Then Op is conjugate to M2(Zp) (cf. Example 4.2).
Set

v1 =
(

1 0
0 0

)
, v2 =

(
0 1
0 0

)
, v3 =

(
0 0
1 0

)
, v4 =

(
0 0
0 1

)
.

We immediately check that disc(M2(Zp)) = Zp det(t(vivj)) = Zp. In general, Op = gM2(Zp)g−1

for some g ∈M2(Qp), and since

t(gvig−1gvjg
−1) = t(gvivjg−1) = t(vivj),

it follows that disc(gM2(Zp)g−1) = Zp as well. In any case, disc(Op) = Zp, so that disc(O)p =
Zp from Lemma 4.21, which is to say that p - disc(O).

• Case 2: Hp = Dp is a division algebra. Then Op is the unique maximal order of Hp and
disc(Op) = pZp (cf. §4.3.2). Hence by Lemma 4.21 disc(O)p = disc(Op) = pZp and therefore
p|disc(O).

Collecting these results (4.3) follows immediately.
Now suppose that (4.3) holds. We want to show that O is a maximal order ofH. By Lemma 4.20,

it is enough to show that Op is a maximal order of Hp for every finite rational prime p. By (4.3)
and Lemma 4.21 we see that

disc(Op) = disc(O)p =

{
Zp if p /∈ RamH,

pZp otherwise.

• Case 1 : disc(Op) = Zp. Note that in this case Hp = M2(Qp). Since every order is con-
tained in a maximal order, Op ⊂ gM2(Zp)g−1 for some g ∈ M2(Qp). However, disc(Op) =
disc(gM2(Zp)g−1) = Zp. By Corollary 4.19 Op = gM2(Zp)g−1, which is to say that Op is a
maximal order in Hp.

• Case 2: disc(Op) = pZp. Here Hp is a division algebra. As remarked before, such a divi-
sion algebra has a unique maximal order Omax, and Op must be contained in Omax. Since
disc(Op) = pZp = disc(Omax) it follows by Corollary 4.19 that Op = Omax, i.e., Op is maximal
in Hp.
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Example 4.3. Let H = (−1,−1)Q. Recall this algebra ramifies at 2 and ∞. By Theorem 4.22 a
maximal order in H has reduced discriminant 2Z. The order Z[1, i, j, k] has reduced discriminant
4Z, as is easily checked using Theorem 4.18, and therefore is not a maximal order in H.

In general, when given a candidate order O in a rational quaternion algebra H, it suffices to
check the following to make sure the order is maximal:

1. O in fact a ring.

2. Every element of the order is integral, i.e., their reduced trace and norms are in Z. Given a
set of Z-generators for O, it is enough to show the sum and product of two generators are
integral. we must remember to check both possible products of two generators (H is not
commutative).

3. The candidate order is a finitely generated Z-module and QO = H.

4. The reduced discriminant satisfies (4.3).

4.3.4 Maximal Orders of the Rational Quaternion Algebras B{p,∞}

With the above algorithm for checking the maximality of an order, the reader may now verify that
the following are examples of maximal orders in rational quaternion algebras of the form B{p,∞}

• B{2,∞}, e.g., (−1,−1)Q. Then Z
[
1, i, j,

1 + i+ j + ij

2

]
is maximal.

• B{p,∞} for p ≡ 3 mod 4, e.g., (−1,−p)Q. Then Z
[
1, i,

i+ j

2
,
1 + ij

2

]
is maximal.

• B{p,∞} for p ≡ 5 mod 8, e.g., (−2,−p)Q. Then Z
[
1,

1 + i+ j

2
, j,

2 + i+ ij

4

]
is maximal.

• B{p,∞} for p ≡ 1 mod 8, e.g., (−q,−p)Q, for some q ≡ 3 mod 4p. Then Z
[
i+ j

2
,
j − pij

2
, ij

]
is maximal.



Chapter 5

Supersingular Elliptic Curves

We have seen that in characteristic zero an elliptic curve’s endomorphism ring cannot be an order
in a quaternion algebra (cf. Theorem 2.11). In this chapter we will focus on the study of elliptic
curves over fields of positive characteristic whose endomorphism ring is an order in a rational
quaternion algebra. Such curves are said to be supersingular. There are many ways to characterize
this phenomenon. We will study a few of them in this chapter. Our exposition is synthesized
from [Sil 1, V.3]; Silverman in turn bases his exposition on Deuring’s comprehensive article on the
subject [Deu].

After presenting a few criteria for supersingularity, we will prove EndE is a maximal order in a
rational quaternion algebra for curves defined over a separable closure of the field with p elements,
denoted Fp. This is a hard theorem; we will need to develop the machinery of formal group laws
and invoke two difficult theorems of Tate to prove this result.

5.1 Supersingular Elliptic Curves

Let k be a perfect field of positive characteristic p.

Theorem 5.1. Let E be an elliptic curve over k. Then the following are equivalent:

(i) E is supersingular.

(ii) The isogeny φ̂r : E(pr) → E dual to the pr-power Frobenius isogeny is inseparable for one
r ≥ 1.

(iii) The isogeny φ̂r is purely inseparable for all r ≥ 1.

(iv) E[pr] = 0 for all r ≥ 1.

(v) The map [p] : E → E is purely inseparable and j(E) ∈ Fp2.

Proof. (i =⇒ ii) Suppose that all the maps φ̂r are separable. We will show that in such a case
EndE is commutative, so it cannot be an order in a quaternion algebra.

The first step is to show the map EndE → EndTp(E) is injective. (Note Theorem 2.14 will not
suffice in this case since we assumed l 6= p as part of our hypotheses.) Suppose ψ ∈ EndE maps to
0 in EndTp(E). This means ψ(E[pr]) = 0 for all r ≥ 1.

48
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Let P ∈ E(pr) be an element of ker φ̂r. Since φr is a surjective map (it is a non-constant
isogeny), there exists a point Q ∈ E such that φr(Q) = P . Recall that φ̂r ◦ φ = [pr] on E;
hence Q ∈ ker[pr] = E[pr] ⊂ kerψ. Thus P ∈ φr(kerψ) and we have established the inclusion
ker φ̂r ⊂ φr(kerψ), from which we conclude that

# kerψ ≥ # ker φ̂r for all r ≥ 1.

By Theorem 2.3 we know that # ker φ̂r = deg φ̂r because φ̂r is separable. But deg φ̂r = deg φr and
the degree of the pr-power Frobenius map is pr. Thus

# kerψ ≥ pr for all r ≥ 1,

and so ψ = 0; this shows the map EndE → EndTp(E) is injective.
Recall that Tp(E) ∼= {0} or Zp. If we can show that Tp(E) ∼= Zp then we will have an injection

EndE ↪→ EndTp(E) ∼= End Zp ∼= Zp

which will prove EndE is commutative, giving our desired contradiction.
To see that Tp(E) ∼= Zp, suppose φ̂1 is separable (if it isn’t we are done!). Then

#E[p] = # ker[p] = degs[p] = degs φ̂1 = deg φ̂1 = deg φ1 > 1.

Hence E[p] 6= 0. Now, by definition of the Tate module we know

Tp(E)/pTp(E) ∼= E[p] 6= 0.

Hence Tp(E) 6= 0 and so Tp(E) ∼= Zp.
(ii ⇐⇒ iii) Fix r such that φ̂r is inseparable. Since φ̂r ◦ φr = [pr] and the Frobenius map is

purely inseparable, we have

degs φ̂r = degs φ̂r degs φr = degs[p
r] = (degs[p])

r = (degs φ̂1)r (5.1)

and so degs φ̂r = 1 or pr. Since φ̂r is inseparable, it must be that degs φ̂r = 1 and so φ̂r is
purely inseparable. Furthermore, the above chain of inequalities shows that degs φ̂1 = 1, so that
degs φ̂r = (degs φ̂1)r = 1 for all r ≥ 1. The other direction is obvious.

(iii⇐⇒ iv) By (5.1) we know that degs φ̂r = 1 or pr and since φ̂r is purely inseparable for every
r ≥ 1, it follows that degs φ̂r = 1 for all r ≥ 1. Theorem 2.3 combined with (5.1) tell us that

#E[pr] = # ker[pr] = degs φ̂r,

hence the equivalence of (iii) and (iv).
(iii =⇒ v) Since φ̂r is purely inseparable for all r ≥ 1, it is in particular purely inseparable for

r = 1. However, [p] = φ̂1 ◦ φ1 and the Frobenius map is purely inseparable; therefore [p] is purely
inseparable.

To see that j(E) ∈ Fp2 we separate the map φ̂1 into its separable and purely inseparable parts:

E(p) φ̂1 - E

�
�

�
�

�
ψ

�

E(p2)

φ′

?
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The map φ̂1 has degree p, as does the Frobenius map φ′. Thus ψ is a map of degree 1 and is
consequently an isomorphism. Since the j-invariant classifies curves up to isomorphism, we have

j(E) = j(E(p2)) = j(E)p
2
.

To see why the last equality is true, recall the j-invariant is a homogeneous expression on the
coefficients of E; raising these coefficients to any power has the effect of raising the j-invariant to
that same power because we are working over in a field of positive characteristic.

(v =⇒ i) Suppose (i) is false. Then by Theorem 2.17 K := EndE ⊗ Q is either the field of
rational numbers or a quadratic imaginary extension of it.

Let E′ be an elliptic curve isogenous to E by a map ψ. Since ψ◦[p] = [p]◦ψ and [p] is inseparable
in EndE, it follows by a degree count that [p] is inseparable in EndE′. This means

#E′[p] = degs[p] = 1,

where the first equality is a consequence of Theorem 2.3. By the chain of implications (iv) =⇒
(iii) =⇒ (v) it follows that j(E′) ∈ Fp2 . Hence there are finitely many isomorphism classes of
curves isogenous to E.

Choose a prime l ∈ Z different from p such that l is prime in each EndE′ as E′ ranges through
isomorphism classes of curves isogenous to E (since there are finitely many such classes the integer l
exists). Then Theorem 2.13 gives E[li] ∼= Z/liZ×Z/liZ for all i ≥ 1. Since each E[li] is a subgroup
of E there exists a sequence of groups of points of E

H1 ⊂ H2 ⊂ · · · ⊂ E with Hi
∼= Z/liZ

By Theorem 2.4 there exists an elliptic curve Ei and an isogeny E → Ei whose kernel is Hi. Since
there are finitely many isomorphism classes of curves isogenous to E there are only finitely many
distinct Ei. Thus, for some pair of positive integers m,n The curves Em+n and En are isomorphic.
Let π : Em → Em+n be the natural projection map. The map

λ : Em
π−→Em+n

∼−→Em

is an endomorphism of Em. By construction, its kernel is Hm+n/Hn, and is therefore cyclic of
order ln. On the other hand, ln = # kerλ = deg λ and since l is prime in EndEm by assumption,
we must conclude n is even and λ = u ◦ [ln/2]. However, the kernel of the map [ln/2] is never cyclic,
and this is a contradiction.

So far we know that in the supersingular case, the endomorphism ring of a curve is an order in
a rational quaternion algebra. We will devote the rest of this chapter to making this result more
precise. First, we will see which quaternion algebras correspond to supersingular elliptic curves.

Theorem 5.2. Let E/k be a supersingular curve. Then the quaternion algebra H = EndE ⊗Q is
ramified only at p = char k and infinity.

Proof. Let l be a prime different from p. Recall there is an injection (cf. Theorem 2.14)

EndE ⊗ Zl ↪→ EndTl(E).

For l 6= p we know Tl(E) ∼= Zl × Zl, so EndTl(E) ∼= M2(Zl). The above injection gives in
turn an injection of the quaternion algebra H ⊗Q Ql into M2(Ql). A dimension count tells us
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H ⊗Q Ql
∼= M2(Ql), so l does not ramify in H. We saw in our proof to Theorem 2.17 that the

quaternion algebra H is of the form (a, b)Q, where a, b are negative rational numbers. This means
the Hilbert symbol (a, b)∞ is negative and by Theorem 4.13 the algebra H must ramify at infinity.
Since a rational quaternion algebra must ramify at an even number of places (by the Hilbert product
law), H must also ramify at p.

Now we focus our efforts on the endomorphism ring of a supersingular curve. To show this ring
is a maximal order in B{p,∞} we will need to develop some machinery involving formal groups. We
will return to our goal in §5.5.

5.2 The Formal Group Law of an Elliptic Curve

The basic theory of formal group laws presented in this section can be found in more detail in [Sil 1,
Ch. IV] and [Lang, Appendix].

R will always denote a commutative ring with unit. A one-dimensional commutative formal
group law over R is a power series F (X,Y ) ∈ R[[X,Y ]] that satisfies

(i) F (X,Y ) ≡ X + Y mod deg 2.

(ii) F (X,F (Y, Z)) = F (F (X,Y ), Z).

(iii) F (X,Y ) = F (Y,X).

(iv) There is a unique power series i(X) ∈ R[[X]] such that F (X, i(X)) = 0.

(v) F (X, 0) = X = F (0, X).

Here, two power series are said to be congruent mod deg n if they coincide on all terms of degree
strictly less than n.

Example 5.1. The formal additive group law

F (X,Y ) = X + Y.

Example 5.2. The formal multiplicative group law

F (X,Y ) = X + Y +XY.

Our next example is the one of interest for our purposes. We will show how to associate a formal
group law to an elliptic curve. In essence, we will “steal” the abelian group law on the curve. Recall
how we add two points P and Q on an elliptic curve. First, we consider the line joining P and Q (if
P = Q we consider the line tangent to the curve at that point). This line intersects the curve at a
third auxiliary point. Next, we consider the line between this auxiliary point and the distinguished
point O (the origin). This line intersects the curve at a third point, which we call P +Q.

Thus far, we have avoided explicit work with Weierstrass equations for elliptic curves. It would
be inconvenient to continue with this approach in our discussion of formal group laws (this will
become apparent soon). A Weierstrass model for an elliptic curve E is an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (5.2)
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where ai ∈ K for i = 1, . . . , 6; if ai ∈ K we say E is defined over K. Every elliptic curve (including
those over characteristic 2 or 3 fields) has a Weierstrass equation. When charK 6= 2, 3 this equation
may be simplified to one of the form given in Chapter 2.

For an elliptic curve E defined by a Weierstrass equation (5.2) we define

z = −x
y
, w = −1

y
so x =

z

w
, y = − 1

w
. (5.3)

In these new variables, the Weierstrass equation (5.2) becomes

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw
2 + a6w

3. (5.4)

Let f(z, w) denote the right hand side of (5.4). Without regards to convergence we substitute the
equation into itself recursively. This way we obtain a power series expansion in z for w:

w = z3 + a1z
4 + (a2

1 + a2)z5 + (a3
1 + 2a1a2 + a3)z6 (5.5)

+ (a4
1 + 3a2

1a2 + 3a1a3 + a2
2 + a4)z7 + · · · (5.6)

= z3(1 +A1z +A2z
2 + · · · ), (5.7)

where An ∈ Z[a1, . . . , a6] is a polynomial of weight n in the ai. This procedure gives a power series
in Z[a1, . . . , a6][[z]] that satisfies the equation

w(z) = f(z, w(z))

(cf. [Sil 1, Proposition IV.1.1]). Using (5.3) we obtain the Laurent series expansions

x =
1
z2
− a1

z
− a2 − a3z − (a4 + a1a3)z2 + · · · (5.8)

y =
x

z
= − 1

z3
+
a1

z2
+
a2

z
+ a3 + · · · . (5.9)

The coefficients of these expansions are in Z[a1, . . . , a6].
To obtain a formal group law from E we consider the power series that formally gives the

addition law on E. Let Pi = (zi, wi(zi)), i = 1, 2. The line connecting P1 to P2 has slope

λ =
w2 − w1

z2 − z1
=

∞∑
n=3

An−3
zn2 − zn1
z2 − z1

∈ Z[a1, . . . , a6][[z1, z2]],

where the An are the polynomials from before. The line connecting P1 and P2 has equation
w = λz + v, where v = w1 − λz1. Substituting this expression for w into the (z, w)-Weiertrass
equation (5.4) we obtain a cubic equation in z; z1 and z2 give two solutions for the equation.
Looking at the coefficient of the quadratic term we find the third root z3:

z3 = −z1 − z2 +
a1λ+ a3λ

2 − a2v − 2a4λv − 3a6λ
2v

1 + a2λ+ a4λ2 + a6λ3
.

The points (z1, w1), (z2, w2) and (z3, w3) add up to O (this follows from the definition of the group
law on E). Hence the sum of P1 and P2 is the inverse of (z3, w3). Using the Weiertrass equation
for E one may compute the inverse of a point (x, y) ∈ E to be (x,−y− a1x− a3) (cf. [Sil 1, p.58 ]).
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Using (5.8) and (5.9), and remembering that z = −x/y, the z-coordinate of the inverse of (z, w) is
just

i(z) =
x

y + a1x+ a3
=

z−2 − a1z
−1 − · · ·

−z−3 + 2a1z−2 + · · ·
.

In this way we obtain the formal group law in Z[a1 . . . , a6][[z1, z2]]:

F (z1, z2) = i(z3)

= z1 + z2 − a1z1z2 − a2(z2
1z2 + z1z

2
2)

− (2a3z
3
1z2 − (a1a2 − 3a3)z2

1z
2
2 + 2a3z1z

3
2) + · · ·

Since we have “stolen” the additive law of E, we easily check that F (z1, z2) is indeed a formal
group law from the corresponding properties of the former law.

A homomorphism between two formal group laws F and G is a power series f(T ) ∈ R[[T ]] that
satisfies

f(F (X,Y )) = G(f(X), f(Y )).

Example 5.3. Every formal group law F comes equipped with multiplication by m maps, m ∈ Z,
which we denote [m]F . We can define these maps inductively by setting [0]F (T ) = 0 and letting

[m+ 1]F (T ) = F ([m]F (T ), T ),
[m− 1]F (T ) = F ([m]F (T ), i(T )).

These maps are endomorphisms of F . Using forwards and backwards induction one may show that

[m](T ) = mT + · · · . (5.10)

Example 5.4. Let p be a rational prime. There is a nice way to write the multiplication by p map
(cf. [Sil 1, Corollary IV.4.4]):

[p](T ) = pf(T ) + g(T p)

for some power series f, g ∈ R[[T ]] that vanish at 0.

The set of endomorphisms of F forms a ring which we denote EndF . We make two preliminary
observations about this ring. First, we note that EndF has no zero divisors whenever R is an
integral domain. Indeed, suppose that f and g are nonzero elements of EndE, and that

f ≡ frxr mod deg(r + 1) and g ≡ gsxs mod deg(s+ 1),

where fr, gs ∈ R are nonzero. Then

f · g = f ◦ g = frg
r
sx

r+s mod deg(r + s+ 1) 6= 0.

Second, if F is a formal group law over a field of positive characteristic p, then the (unique) identity
preserving homomorphism Z→ EndF given in Example 5.3 can be extended to a homomorphism

Zp → EndF
m = lim←−

i

mi 7→ lim←−
i

[mi]F ,
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provided the inverse limit of the [mi]F exists (if it does then it would be an endomorphism by the
properties of the inverse limit). Using induction on m one may show that

[m+ p]F (T ) ≡ [m]F (T ) mod deg(m+ 1).

Since mi+1 = mi + xpi+1 it follows that

[mi+1]F (T ) ≡ [mi]F (T ) mod deg(mi + 1) for all i,

whence lim←−[mi]F exists. It follows that EndF is a Zp-module.
The ring EndF over a separably closed field of nonzero characteristic will be our main object of

study in the next few pages. A good understanding of this ring will provide a key step in describing
the endomorphism ring of a supersingular elliptic curve.

5.3 Formal Group Laws in Characteristic p

Let R be a ring of positive characteristic p, and let f : F → G a homomorphism of formal group
laws over R. The height of f , which we denote ht(f) is defined as the largest integer h such that

f(T ) = g(T p
h
),

where g(T ) is a power series over R. When f is the zero homomorphism we set ht(f) = ∞. The
height of the formal group law F is by definition the height of the multiplication by p map. We
note that height adds over composition of formal group law homomorphisms.

For example, when m and p are relatively prime, ht([m]) = 0 by (5.10). By Example 5.4 it
follows that [p](T ) = g(T p) for some power series g over R since we are working in characteristic p.
Hence ht([p]) ≥ 1.

It is natural to ask what are the possible heights of the formal group associated to an elliptic
curve. The following theorem will answer this question for us [Sil 1, Theorem IV.7.4].

Theorem 5.3. Let E be an elliptic curve over a field k of positive characteristic p, with associated
formal group law F . Let φ be an endomorphism of E and denote f its corresponding formal group
law homomorphism. Then

degi φ = pht(f).

Corollary 5.4. Let E be an elliptic curve over a field k of positive characteristic p, with associated
formal group law F . Then ht(F ) = 1 or 2.

Proof. Let φ = [p] in Theorem 5.3. We know the map [p] has degree p2 (cf. Theorem 2.12(iii)); the
Corollary follows immediately.

The height of the formal group law associated to an elliptic curve yields a new criterion for
supersingularity.

Theorem 5.5. Let E be an elliptic curve over a field k of positive characteristic p. Then E is
supersingular if and only the formal group law F associated to E has height 2.
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Proof. Let φ : E → E(p) be the p-th power Frobenius endomorphism; this map is purely inseparable
and has degree p. Since φ̂ ◦ φ = [p] we obtain

degi φ̂ = (degi(φ̂ ◦ φ))/p = (degi[p])/p = pht(F )−1,

where the last equality follows from Theorem 5.3. Since deg φ̂ = p (cf. Theorem 2.12(iv)), and
since E is supersingular if and only if φ̂ is purely inseparable it follows E that is supersingular if
and only if ht(F ) = 2.

5.4 The Endomorphism Ring of a Formal Group

In this section we will prove the endomorphism ring of a formal group law F over a separably closed
field of characteristic p > 0 is a maximal order in a local division algebra. This result is central
to our proof that the endomorphism ring of a supersingular elliptic curve is a maximal order in a
rational quaternion algebra. The theorem is due to Lubin (cf. [Lub, §5.1.3]), though our exposition
is closer to that in [Froh, Ch. III] or [Haz, §20]; whenever we omit the proof to a standard theorem
or lemma concerning formal groups we will give appropriate references from these books.

To begin, we state a result due to Lazard (cf. [Froh, Theorem 1, § III.1]). Define the Lazard
polynomials

Bn(X,Y ) = (X + Y )n −Xn − Y n and

Cn(X,Y ) =

{
Bn(X,Y ) if n is not a prime power,
1
lBn(X,Y ) if n = lr, l a prime number.

Theorem 5.6 (Lazard). Let F and G be formal group laws over a ring R such that F ≡ G mod
deg n. Then there exists an a ∈ R for which

F ≡ G+ aCn mod deg(n+ 1).

Let k be a separably closed field of characteristic p > 0, and let q = ph, where h is a fixed
positive integer. A formal group law F over k of finite height h is said to be in normal form if

(i) [p]F (X) = Xq and

(ii) F (X,Y ) = X + Y + cCq(X,Y ) mod deg(q + 1),

(the division by p in necessary to compute Cq(X,Y ) is a formality, i.e., first expand Bq(X,Y ) and
take out one power of p from each coefficient; the resulting polynomial is Cq(X,Y )). Every formal
group law over k is isomorphic to another such law in normal form (cf. [Froh, Lemma 5,§ III.2]);
this proposition makes use of the separably closed hypothesis imposed on k.

Let F denote the set of formal group laws in normal form of height h over k, and let M be the
Fp-vector space of polynomials of the form

a(X) =
h−1∑
i=0

aiX
pi
.

It is clear M has dimension h2 over Fp. We can make M into a ring with unit by defining multi-
plication through composition and then moding out by deg q.
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Lemma 5.7. Let F be a formal group law in F. Then the k-linear map

Xk[[X]]→ Xk[X]

f(X) =
∞∑
j=1

fjX
j 7→ f̄(X) =

q−1∑
j=1

fjX
j

is a surjective ring homomorphism EndF →M with kernel p(EndF ).

Proof. We must first make sure that the above map makes sense, i.e., that if f ∈ EndF then
f̄ ∈M . Since F is in normal form we know [p]F (X) = Xq, from which we deduce that

f(Xq) = f ◦ [p]F = [p]F ◦ f = f(X)q,

so f is defined over Fq. Moreover, we know

f ≡ X + Y mod deg q,

from which we obtain

f(X + Y ) ≡ f(F (X + Y )) = F (f(X), f(Y )) ≡ f(X) + f(Y ) mod deg q.

Hence f mod deg q is a polynomial in Xp, which means f̄ ∈M .
Next, we briefly show the map is a ring homomorphism. Compatibility of the map with mul-

tiplication (composition) is straightforward, and x̄ = x. To see compatibility with addition note
that

(f + g)(X) = F (f(X), g(X)) ≡ f(X) + g(X) mod deg q

because F is in normal form. Since deg f̄ ,deg ḡ < q, we deduce that

(f + g)(X) = f(X) + g(X) = f̄(X) + ḡ(X).

Now we prove EndF → M is surjective. The polynomials a(X) ∈ M whose last coefficient a0 is
nonzero generate M as an additive group. Since the above map is a homomorphism of rings, it
is enough to show each such a has a preimage f ∈ EndF . The idea is to construct f using the
completeness of Fq[[X]]. Explicitly, we construct a sequence {fn} of invertible power series (n ≥ q)
such that

(i) fq = a,

(ii) fn ◦ F ≡ F ◦ fn mod deg n,

(iii) fn+1 ≡ fn mod deg n.

Suppose we have constructed fm. Set G = f−1
m ◦F ◦ fm. By property (ii) above F ≡ G mod degm,

so by Theorem 5.6 there exists a constant c ∈ Fq such that

F ≡ G+ cCm mod deg(m+ 1).

If m 6= pr then cCm = bBm for some b ∈ Fq. Otherwise cCm = 0. In any case

F ≡ G+ bBm mod deg(m+ 1) for some b ∈ Fq.
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We claim there is an invertible power series g(X) such that

g(X) ≡ X mod degm and g ◦ F ◦ g−1 ≡ G mod deg(m+ 1).

Indeed, g(X) ≡ X − bXm mod deg(m+ 1) will do the trick. Explicitly,

g(F (X,Y )) ≡ F (X,Y )− b(X + Y )m mod deg(m+ 1)
≡ G(X,Y ) + b(X + Y )m − bXm − bY m − b(X + Y )m mod deg(m+ 1)
≡ G(X,Y )− bXm − bY m mod deg(m+ 1)
≡ G(g(X), g(Y )) mod deg(m+ 1).

Now set fm+1 = fm ◦g. This power series satisfies conditions (ii) and (iii). Now put f = limn→∞ fn
(the limit exists by completeness of Fq[[X]]). By construction f̄ = a and f ∈ EndF . This concludes
the proof of surjectivity.

Finally we look at the kernel of the map. We claim that

pn EndF = {f ∈ EndF | ht(f) ≥ nh}. (5.11)

On the one hand, if f = [p]nF ◦ g then

ht(f) = n ht([p]F ) + ht(g) ≥ nh.

On the other hand, if f ∈ EndF and ht(f) ≥ nh then there is a power series g(X) with f(X) =
g(Xqn

) by definition of height (recall q = ph). Hence f = g ◦ [p]nF ; if we can show g ∈ EndF we are
in good shape. By Remark 5.8 below, the formal group law F is defined over Fq, so

f(F (X,Y )) = g(F (X,Y )q
n
) = g(F (Xqn

, Y qn
)),

while
F (f(X), f(Y )) = F (g(Xqn

), Y qn
),

from which we conclude that
g(F (X,Y )) = F (g(X), g(Y )),

which is to say that g is an endomorphism of F , as required. It is now clear p(EndF ) is the kernel
of the map EndF →M .

Remark 5.8. We have shown in the proof above that a formal group law F over k in normal form
has all its endomorphims defined over Fq. Since [p]F ◦ F = F ◦ [p]F and [p]F = Xq, the formal
group law itself is also defined over Fq.

We are now in a position to prove the main theorem of this section.
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Theorem 5.9 (Lubin). Let F be a formal group law of height h over a separably closed field
k. Then EndF is a free Zp-module of rank h2. Furthermore, it is the maximal order in the local
division algebra D = EndF ⊗Zp Qp.

Proof. We already know EndF is a Zp-module without zero divisors, i.e., it is a torsion-free Zp-
module. To show this module has rank h2 note that Lemma 5.7 gives an isomorphism of Fp-
vector spaces (EndF )/p(EndF ) ∼= M . Hence (EndF )/p(EndF ) has dimension h2 over Fp and by
Nakayama’s lemma EndF has rank h2 as a Zp-module (cf. [A–M, Proposition 2.8]).

It follows D = EndF ⊗Zp Qp is a local division Qp-algebra of dimension h2. It remains to show
EndF is the maximal order in this algebra (note the maximal order is unique as we are working
over a local field). Recall the p-adic valuation v of Qp extends to a unique valuation of D, which
we also denote v, and the set

O = {x ∈ D | v(x) ≥ 0}

is the maximal order of D (cf. §4.3.2–the remarks of this section apply to general local division
algebras). The inclusion EndF ⊂ O is clear. To see the other inclusion first note that the map
f 7→ h−1 ht f is a valuation of EndF that coincides with the usual p-adic valuation when restricted
to Zp (when we write f ∈ Zp we mean f = a · [1]F for some a ∈ Zp). By uniqueness of the extension
of a valuation to D we obtain

ht f = h · v(f), f ∈ EndF. (5.12)

If f ∈ O then pnf ∈ EndF for some n ≥ 0 because EndF spans the algebra D over Qp. We know
v(pnf) ≥ n, so from (5.12) we deduce that ht pnf ≥ nh, whence pnf ∈ pn EndF by (5.11). This
means f ∈ EndF and so O ⊂ EndF .

5.5 The Endomorphism Ring of a Supersingular Elliptic Curve

We are almost ready to prove the endomorphism ring of a supersingular elliptic curve is a maximal
order in a quaternion algebra.

Let E be an curve defined over a finite field k and let l be a prime number different from
char k = p. Tate’s Theorem (2.16) gives an isomorphism

EndGE ⊗ Zl
∼−→EndG Tl(E), (5.13)

where EndGE is the subring of endomorphims of E that commute with the action of G = Gal(k̄/k),
similarly for EndG Tl(E). This isomorphism is crucial to our proof of the maximality of EndE.

There is a p-adic analogue of the l-adic Tate module. It is called a Dieudonné module and
is denoted Tp(E) to emphasize the analogy. Tate proved that over a finite field k there is an
isomorphism

EndGE ⊗ Zp
∼−→EndG Tp(E), (5.14)

where as usual G = Gal(k̄/k). When an elliptic curve E is supersingular, the Dieudonné module
can be identified with the formal group F of the curve. We will not even attempt to define what a
Dieudonné module is. This task, as well as a proof of both of Tate’s isomorphisms, is quite beyond
the level of this thesis. The interested reader may consult [W–M]. What is important is that the
reader be aware that it is possible to identify EndGE ⊗ Zp with EndG F .
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Theorem 5.10. Let E be a supersingular elliptic curve over a separable closure k of Fp. Then
EndE is a maximal order in a rational quaternion algebra ramified at p and ∞.

Proof. We know EndE is an order in B{p,∞}; it remains to show it is maximal. It is enough to
prove maximality of the order locally (cf. Lemma 4.20). As a preliminary remark, we note that
since k is a separable closure of a perfect field it is also an algebraic closure of Fp.

First, we consider a prime l 6= p. We saw the j-invariant of E satisfies j(E) = j(E)p
2
, so E

descends to a curve over the field Fp2 . The group Gal(Fp2/Fp2) = Gal(k/Fp2) is generated by the
square of the Frobenius map φ : E → E(p) (denoted φ2), which on E is an automorphism of the
curve composed with multiplication by p. By the definition of isomorphism of two elliptic curves,
it is not hard to see that automorphisms can only have finite order equal to 1, 2, 3, 4 or 6. This
means that over an extension F of Fp2 of degree equal to the order of the pertinent automorphism,
the Frobenius map is a power of p. Hence the group Gal(k/F) acts on Tl(E/F) by scalars. Since

Tl(E/F) ∼= Zl × Zl whenever l 6= p,

it follows that
EndGal(k/F) Tl(E/F) ∼= M2(Zl)

because every element of EndTl(E/F) commutes with scalar matrices. As we are now working over
a finite field, Tate’s isomorphism implies

EndGal(k/F)E/F⊗ Zl ∼= M2(Zl),

which is to say EndGal(k/F)E/F⊗Zl is a maximal order in the quaternion algebra EndGal(k/F)E/F⊗Q
Ql.

Any endomorphism of E is defined over some finite field F′, which we assume contains F. Since
F′ = k, the group Gal(F′/F′) is contained in the group Gal(k/F); consequently the former Galois
group also acts by scalars on the Tate module Tl(E) and hence EndGal(F′/F′)E ⊗ Zl ∼= M2(Zl) as
before. As this is true for any endomorphism, it follows that EndE⊗Zl ∼= M2(Zl), i.e., EndE⊗Zl
is a maximal order in the quaternion algebra EndE ⊗Ql.

Next, to show EndE ⊗Zp is a maximal order in the local division algebra D = EndE ⊗Qp we
use our work on formal group laws. Let F be the formal group law associated to the curve E. Since
E is supersingular we know F has height 2, and consequently EndF is a Zp-module of rank 4 and
is the maximal order O in the local (quaternion) division algebra EndF ⊗Qp (cf. Theorem 5.9).

As before, any endomorphism of E is defined over some finite field F. The isomorphim 5.14
together with the identification of Tp(E) with F in the supersingular case tell us that

EndGal k/FE/F⊗ Zp ∼= O.

Since this is true for any endomorphism, EndE ⊗ Zp is the maximal order of D.

There are other known proofs of this result, due to Deuring [Deu, §2.4] and Waterhouse [Wat,
Theorem 4.2]. Cornut found a proof recently [Cor, Proposition 2.1] which is unfortunately beyond
the level of this paper.



Chapter 6

Reduction of CM–Elliptic Curves and
Gross–Zagier Numbers

In this Chapter we will study the reduction of CM–Elliptic curves and the behavior of their en-
domorphism rings under reduction. As an application, we will explain the high divisibility of
Gross–Zagier Numbers. As in Chapter 3, the curves we consider will have complex multiplication
by the ring of integers of an imaginary quadratic field. The exposition of the theory of reduction
is influenced by [Sil 2] and [Lang, Ch. 13].

Remark. In our study of elliptic curves in Chapter 2 we assumed the field we worked over had
characteristic different from 2 or 3. We did this for pedagogical reasons, as this assumption greatly
simplified the presentation of the material without sacrificing the generality of all the theorems
presented therein. This approach backfires, however, when one considers reduction mod 2 or 3.
The reader interested in seeing how the material from Chapter 2 applies to fields with these two
characteristics should consult [Sil 1, Ch. III and Appendix A].

6.1 Good Reduction of Elliptic Curves over Number Fields

We begin with the concept of reduction at a prime P of a local field L.
Let L be a local field, OL its ring of integers and let P be a prime in OL. Given an elliptic curve

E/L with equation
y2 = 4x3 − g2x− g3,

if we replace (x, y) by (u−2x, u−3y), we find g2 7→ u4g2 and g3 7→ u6g3, so if we take u divisible by
a large power of P we obtain an equation for E such that vP(∆(E)) ≥ 0, where vP denotes the
usual valuation, and ∆ is the discriminant of E (cf. §2.1). Among all such equations, there is at
least one that minimizes the quantity vP(∆(E)) ≥ 0. We call this a minimal equation for E at P.
It is unique up to an isomorphism (x, y) 7→ (u−2x, u−3y) with u ∈ OL.

Given a minimal equation for an elliptic curve E at P, we can reduce its coefficients modulo P

to obtain a possibly singular curve with coefficients in the field k := OL/POL,

Ẽ : y2 = 4̃x3 − g̃2x− g̃3.

We say Ẽ/k has good reduction if it is nonsingular.
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Now let K be a number field, and let vP be the discrete valuation of K associated to the prime
P ∈ OK . We say that an elliptic curve E/K has good reduction at P if E has good reduction when
considered as a curve over the completion KvP

(a local field).
The following lemma, whose proof can be found in [Sil 1, Proposition VIII.1.4] or in [Lang,

§13.4], will provide a key ingredient in showing that isogenies are well behaved under reduction.

Lemma 6.1. Let E/K be an elliptic curve over a number field K, and let l be a rational prime
relatively prime to the characteristic of kv (the residue field of the local field Kv). If Ẽ/kv is
nonsingular then

(E/K)[ln] ∼= (Ẽ/kv)[ln] for all n ∈ Z≥1.

By the definition of the Tate Module (cf. §2.5) it follows that, under the conditions of the
Lemma, Tl(E) ∼= Tl(Ẽ).

Theorem 6.2. Let E1/K and E2/K be two elliptic curves over a number field K with good re-
duction at a prime ideal P ∈ OK . Denote Ẽ1 and Ẽ2 their reductions at P, respectively. Then the
natural reduction map

Hom(E1, E2) −→ Hom(Ẽ1, Ẽ2)

φ 7−→ φ̃

is injective, and deg(φ) = deg φ̃.

Proof. We follow the approach in [Sil 2, Proposition II.4.4]. The injectivity of the map above
follows from the equality of degrees, since the only degree zero map is the trivial one.

To show the equality of degrees we will use the definition and properties of the Weil pairing
(cf. Theorem 2.19). Let l be a rational prime relatively prime to P. We will prove that

efE1
(x̃, ỹ)deg φ = efE1

(x̃, ỹ)deg eφ for all x̃, ỹ ∈ Tl(Ẽ1). (6.1)

Since the Weil pairing is nondegenerate, the desired equality of degrees follows from (6.1).
Let E/K be a curve with good reduction at P. One checks using the definition of the pairing

eE : Tl(E)× Tl(E)→ Tl(µ) that

˜eE(x, y) = e eE(x̃, ỹ) for all x, y ∈ Tl(E).

Let x, y ∈ Tl(E1). Then

eE1(x, y)
deg φ = eE1((deg φ)x, y) = eE1(φ̂φx, y) = eE2(φx, φy),

where the last equality follows from the adjointness of φ : E1 → E2 and φ̂ : E1 → E2 for the pairing
(cf. Theorem 2.20). Analogously, we show that

efE1
(x̃, ỹ)deg eφ = efE2

(φ̃x̃, φ̃ỹ).

Hence, for any x, y ∈ Tl(E)

efE1
(x̃, ỹ)deg φ = ˜eE1(x, y)

deg φ
= ˜eE2(φx, φy)

= efE2
(φ̃x̃, φ̃ỹ) = efE1

(x̃, ỹ)deg eφ.
Since the above holds for all x, y ∈ Tl(E), it also is true for any x̃, ỹ ∈ Tl(Ẽ1). This proves (6.1).
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An immediate corollary of this theorem is that the endomorphism ring of an elliptic curve E
over a number field K injects into the endomorphism ring of the reduction Ẽ/kv at some prime
P ∈ OK . In particular, since an elliptic curve E/C with complex multiplication by OK is defined
over the number field Q(j(E)) (cf. Theorem 3.7) (and consequently the endomorphisms of E are
defined over the compositum L = KQ(j(E))—cf. Theorem 3.7 given a prime P in OL we obtain
an injection

EndE ↪→ End Ẽ (6.2)

where Ẽ is the reduction of E at P.
The above injection need not be a surjection. Indeed, there are CM elliptic curves over C

whose reduced endomorphism ring is an order in a quaternion algebra (note this is possible because
the reduced curve is defined over a field of nonzero characteristic). Such curves are said to have
supersingular reduction at the residue field characteristic p. Otherwise we say the curve has ordinary
reduction.

Theorem 6.3. Let E/L be an elliptic curve over a number field L. Assume E has complex
multiplication by the ring of integers of a quadratic imaginary field K, and that E has good reduction
Ẽ at a prime P ∈ OL which lies over the rational prime p. Then Ẽ is supersingular if and only if
p ramifies or remains inert in K.

Proof. Suppose p splits completely in K as pOK = pp′. To show E has ordinary reduction at P we
prove Ẽ[p] 6= O (cf. Theorem 5.1(iv) ). Let

Φ : K ↪→ EndE ⊗Q

be the extension by scalars of normalized embedding1 OK ↪→ EndE. Let m be a positive integer
such that pm and p′m are principal ideals, say pm = αOK and p′m = βOK (hence αβ = pm). Since
Φ is normalized and α /∈ p′ it follows that

Φ∗(α)ω = αω 6= 0 mod p′

for ω ∈ ΩE . This means Φ̃(α) is a separable map (cf. Theorem 2.5). We know from Theorem 6.2
that

deg(Φ̃(α)) = deg(Φ(α)) = pr.

Since Φ̃(α) is a separable map it follows that

# ker(Φ̃(α)) = deg(Φ̃(α)) = pr.

We conclude that Ẽ has a torsion point of order p—any nontrivial element of order p in the group
ker(Φ̃(α)) will do. Hence Ẽ[p] 6= O, as desired.

We will not prove the reverse direction, as a complete exposition of the required machinery
necessitates more room than we have to develop (in any case, we will not use this part of the
theorem in the rest of the paper). The interested reader is referred to [Lang, Theorem 13.4.12] for
a proof.

1We defined the normalized embedding for an elliptic curve over C. To see how one defines the normalized
embedding over a number field L see [Lang, §9.4]
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6.2 Primes Dividing Gross–Zagier Numbers

We defined Gross–Zagier numbers in §3.7; let us recall the definition.
Let K and K ′ be quadratic imaginary fields, and let {E1, . . . , Eh1} and {E′

1, . . . , E
′
h′} be sets

of representatives for E(OK1) and E(OK2), respectively (remember E(O) is the set of elliptic curve
with complex multiplication by Oint up to Q-isomorphism). Then the norm

N(jK − j′K) =
h∏

m=1

h′∏
n=1

(
j(Ei)− j(E′

j)
)

is a Gross–Zagier number.
We now give a bound for the primes that divide N(jK−j′K). Let D and D′ be the discriminants

of K and K ′, respectively. We will assume D and D′ are relatively prime. Let p be a rational prime
and suppose p

∣∣N(jK − j′K). Then

j(Em)− j(E′
n) ≡ 0 mod P

for some prime P of the number field Q(j(Em), j(E′
n)) that lies over p (note both Em and E′

n are
defined over this number field). This means the reductions Ẽm and Ẽ′

n at P are isomorphic over
the algebraic closure of the field with p elements. Let Ẽ denote a curve in the same isomorphism
class. Then by Theorem 6.2 and the discussion that follows it we obtain injections2

OK ∼= EndEm
HHHHj

End Ẽ

����*

OK′ ∼= EndE′
n

(6.3)

However, this can only happen if End Ẽ is a maximal order in the quaternion algebra B{p,∞}.
Otherwise, End Ẽ would be an order O in some quadratic imaginary field K ′′ and then passing to
the fraction fields in (6.3) would give injections

K ↪→ K ′′ and K ′ ↪→ K ′′

Since each of these fields is a two-dimensional vector space over Q, the above injections are actually
isomorphisms, in which case we conclude K ∼= K ′, which is absurd.

Theorem 6.4 (Gross–Zagier). Let D and D′ be relatively prime discriminants corresponding to
the imaginary quadratic fields K and K ′. Let p be a rational prime dividing N(jK − jK′). Then
p ≤ DD′/4.

Proof. Our considerations so far show that OK and OK′ inject into a maximal order R of a rational
quaternion algebra B{p,∞} ramified at p and infinity (cf. Theorem 5.10). It is well known that

OK = Z +

(
D +

√
D

2

)
Z and OK′ = Z +

(
D′ +

√
D′

2

)
Z,

2We assume the curves Em and E′
n have good reduction at P. This is possible by a Theorem of Serre and Tate

which goes beyond the scope of this paper (cf. [S–T]).
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see for example [F–T, II.1.33]. It follows that the order

S = Z +

(
D +

√
D

2

)
Z +

(
D′ +

√
D′

2

)
Z +

(
D +

√
D

2
· D

′ +
√
D′

2

)
Z

is contained in R. By Corollary 4.19 we get the containment disc(S) ⊂ disc(R). We use Theo-
rem 4.18 to compute the reduced discriminant of S. Let x denote the reduced trace of

√
DD′.

Then

t

(
D +

√
D

2

)
= D, t

(
D′ +

√
D′

2

)
= D′, t

(
D +

√
D

2
· D

′ +
√
D′

2

)
=
DD′ + x

2
,

from which it follows that

disc2(S) =

∣∣∣∣∣∣∣∣
2 D D′ (DD′ + x)/2
D D(D + 1)/2 (DD′ + x)/2 0
D′ (DD′ + x)/2 D′(D′ + 1)/2 0

(DD′ + x)/2 0 0 X

∣∣∣∣∣∣∣∣ Z

where X = (DD′ + D)(DD′ + D′)/8 + DD′x/2. Expanding the determinant and taking square
roots we obtain

disc(S) =
(
DD′ − x2

4

)
Z.

Since R is a maximal order Theorem 4.22 gives disc(R) = pZ. Since disc(S) ⊂ disc(R) we conclude
that

p

∣∣∣∣∣ DD′ − x2

4
=⇒ p ≤ DD′

4
.

Corollary 6.5. Let K be an imaginary quadratic field of discriminant D. If 3 - D and p is a prime
dividing N(jK) then p ≤ 3|D|/4.

Proof. Let K ′ = Q(
√
−3). Then C(OK′) consists of one element and jK′ = j((1 +

√
−3)/2) = 0,

hence
N(jK − jK′) = N(jK − 0) = N(jK).

Suppose p divides N(jK). Since 3 - D, Theorem 6.4 implies p ≤ −3 ·D/4 = 3|D|/4, as claimed.

Example 6.1. Let K = Q(
√

(− 133)). We know from §3.3 that

N(jK) = −(28 · 34 · 54 · 112 · 232 · 292 · 383)3.

Theorem 6.4 gives the bound p ≤ 399 for a prime dividing N(jK). Note how good the bound is
(recall N(jK) is a 53-digit number in this case).

Example 6.2. Let K = Q(
√

( − 7)) and K ′ = Q(
√
−19). These imaginary quadratic fields both

have class number 1, and so the singular moduli jK and jK′ are already Gross–Zagier numbers, as
is their difference, which is

j

(
1 +
√
−7

2

)
− j

(
1 +
√
−19

2

)
= −33 · 53 + 215 · 33 = 37 · 13 · 31.

Theorem 6.4 gives the bound p < 34.
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6.3 Embeddings into the Rational Quaternion Algebras B{p,∞}

Let K1 and K2 be imaginary quadratic fields with discriminants D1 and D2, which we assume are
relatively prime. In the course of proving Theorem 6.4 we showed that if p divides N(jK1 − jK2)
then both OK1 and OK2 must inject into a maximal order in a rational quaternion algebra ramified
at p and infinity. In this section we will show how to embed one ring OK1 into an algebra of the
form B{p,∞}. Showing how two rings of integers embed into a B{p,∞}-algebra is already a very
difficult task, let alone showing explicitly an embedding into a maximal order. The purpose is of
this computation is two-fold: the embedding provides a kind of ‘sanity check’ to our earlier work
and at the same time it shows how useful Hilbert symbols are.

Suppose p is odd and divides N(jK1 − jK2). Then Theorem 6.3 tells us p is either inert or
ramified in both OK1 and OK2 . We will assume p is an inert prime in OK1 .

Theorem 6.6. Let K be an imaginary quadratic field of odd discriminant D, and let p be a rational
prime which is inert in OK . Then there exists an embedding OK ↪→ B{p,∞}.

Proof. We claim there is a prime q for which OK ↪→ (D,−pq)Q. Choose q so that p, q and D are
pairwise relatively prime (we know p and D are relatively prime since p is inert in OK). Since
D < 0 it is clear that (D,−pq)∞ = −1. Using Theorem 4.9(iv) we compute

(D,−pq)p =
(
D

p

)
= −1,

where the last equality follows because p is inert in OK . The algebra (D,−pq)Q is ramified at p and
infinity. We now impose congruence conditions on q so that it doesn’t ramify at any other place.

The only other possible places at which (D,−pq)Q ramifies are 2, q and odd primes l that divide
D. The Hilbert symbol at q is

(D,−pq)q =
(
D

q

)
.

If q splits in OK we will obtain (D,−pq)q = 1. For odd primes l dividing D we compute

(D,−pq)l =
(
−pq
l

)
.

To obtain (D,−pq)l = 1 we must choose q so that(
q

l

)
=
(
−p
l

)
for all odd l dividing D. (6.3)

Each equation in (6.3) gives (at least) one congruence condition for q modulo l. By the Chinese
remainder theorem, these conditions can be put together into a single congruence condition for
q. Dirichlet’s theorem on arithmetic progressions guarantees the existence of at least one prime
satisfying this global condition. We have to make sure that q can split in OK . Jacobi reciprocity
tells us that (

D

q

)(
q

D

)
= (−1)

(D−1)(q−1)
4

Multiplying all the equations in (6.3) we obtain(
q

D

)
=
(
−p
D

)
.
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Hence, if q splits in OK it must be true that

(−1)
(D−1)(q−1)

4 =
(
D

q

)(
q

D

)
=
(
q

D

)
=
(
−p
D

)
.

This gives a congruence condition for q modulo 4. The global condition we had before was a
congruence modulo an odd number. A new application of the Chinese remainder theorem and
Dirichlet’s theorem guarantees the existence of a prime q such that (D,−pq)Q is unramified at
every place except possibly 2, p,∞. However, we already know (D,−pq)Q ramifies at p and infinity,
so the Hilbert product law implies (D,−pq)Q is unramified at 2. Hence (D,−pq)Q is of the form
B{p,∞}. The inclusion OK ↪→ (D,−pq)Q then gives the desired injection.
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