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Abstract

We prove, using class field theory, that there is an algorithm to determine which
rational primes p are represented by the form x2 + ny2 (n > 0). Then, with the aid
of lattices that admit complex multiplication, we briefly show how one may implement
this algorithm.

1 Introduction

It is in general hard to determine which positive integers can be represented by a positive
definite binary quadratic form with integer matrix. In this paper we focus on the form x2+ny2

(n > 0) and give an algorithm to determine whether a rational prime p is represented by
this form. We will first show that such an algorithm exists by using the full force of the
class field theory of imaginary quadratic fields. Then we will briefly outline how one may
use lattices that admit complex multiplication to make explicit the criterion furnished by
class field theory.

2 Class Field Theory

We begin the paper with a quick summary of the necessary class field theory to study which
primes are of the form x2 + ny2. The reader wishing to find proofs of the theorems stated
in this section might look at [Neu], [Jan] or [Lang], for example. We will follow a mixture
between the presentations of [Sil 2, §II.3] and [Cox, §8] in our exposition.

Unless otherwise stated, K will be a totally imaginary field, i.e., a field with no real
embeddings. This means we can forget about the real infinite primes of K, which will
make the definitions and the theorems of class field theory easier to state. We note that
a quadratic imaginary field is totally imaginary, and since we are only concerned with the
class field theory of such fields we lose nothing by making this extra assumption about our
ground field.
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Let L be a finite abelian extension of K (that is, a finite Galois extension with abelian
Galois group), and denote the rings of integers of these fields by OL and OK , respectively.
Let p be an prime in OK unramified in OL and P be a prime in OL lying over p. Recall
OL/P is a finite extension of OK/p; we will write fP/p for the degree of this extension.

Lemma 1. With the preceding notation, there is a unique element σ ∈ Gal(L/K) such that
for all α ∈ OL,

σ(α) ≡ αN(p) mod P, (1)

where N(p) = NK
Q (p) = #OK/p.

Proof. Let DP and IP denote the decomposition and inertia groups of P, respectively. Ex-
plicitly,

DP = {σ ∈ Gal(L/K) |σ(P) = P},
IP = {σ ∈ Gal(L/K) |σ(x) ≡ x mod P ∀x ∈ OL}.

Clearly, an element σ ∈ DP induces an element σ̄ ∈ G := Gal((OL/P) / (OK/p)). It is well
known that IP is a normal subgroup of DP and that DP/IP is isomorphic to G [Mar, p.101].
Since p is unramified, #IP = eP|p = 1, so that DP is isomorphic to G. We know, however,
that G is cyclic, generated by the Frobenius automorphism x → xN(p). We conclude there
is a σ ∈ DP that maps to this element, i.e., for all α ∈ OL

σ(α) ≡ αN(p) mod P.

It is not hard to show that any σ satisfying (1) must be in DP, from which the uniqueness
of σ follows.

Note that the relation (1) can be extended to α ∈ L, by which we mean that σ(α)−αN(p)

has positive P-adic valuation. We call the unique σ in the above lemma the Artin symbol
and denote it ((L/K)/P). From its uniqueness we deduce that for σ ∈ Gal(L/K)(

L/K

σ(P)

)
= σ

(
L/K

P

)
σ−1,

so if Gal(L/K) is abelian, the Artin symbol is determined by p = P∩OK because Gal(L/K)
acts transitively on the set of primes that lie above p. In this case, we will denote the symbol
((L/K)/p).

Remark 2. As above, if p is a prime of K unramified in L, then DP
∼= G. Since #G = fP/p,

we conclude the Artin symbol ((L/K)/p) has order fP/p. Now, an unramified prime p splits
completely in L if and only if fP/p = 1. Hence p splits completely if and only if the Artin
symbol is the identity element of Gal(L/K). This means that the unramified primes in the
kernel of the Artin Map are those primes of K that split completely in L.
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Definition 1. Let K be a total imaginary field. A modulus m in K is a formal product over
all primes p ∈ OK

m =
∏

p

pnp

where the np are non-negative integers only finitely many of which are non-zero. If np = 0
for all p, then we set m = 1.

Let I(m) be the group of fractional ideals in OK that are relatively prime to m, and let
a =

∏r
i=1 pri

i be an ideal in I(m). If m is divisible by all primes of K that ramify in L, we
can define the Artin map through the Artin symbol, extended by linearity as follows(

L/K

·

)
m

: I(m) → Gal(L/K)(
L/K

a

)
m

:=
r∏

i=1

(
L/K

pi

)ri

We can now state a weak version of the Artin reciprocity theorem.

Theorem 3 (Artin Reciprocity). Let L be an abelian extension of a totally imaginary
field K. Then there exists a modulus m of K divisible by precisely those primes of K that
ramify in L such that(

L/K

(α)

)
m

= 1 for all α ∈ K∗ such that α ≡ 1 mod m.

If the theorem is true for two moduli m1 and m2 then it is true for their sum m1 + m2,
so there is a largest modulus for which Artin Reciprocity is true. We call this modulus the
conductor of L/K and denote it cL/K . An important theorem of CFT asserts the existence
of a maximal abelian extension Km of K with conductor m. This extension is called a ray
class field of K for the modulus m. More precisely,

Definition 2. Let m be a modulus of K. A ray class field of K for the modulus m is a finite
abelian extension Km/K such that for any other finite abelian extension L/K

cL/K |m =⇒ L ⊂ Km.

The simplest example of a ray class field is obtained by setting m = 1. The field thus
obtained is the maximal unramified abelian extension of K. It is known as the Hilbert Class
Field of K.

In view of the weak Reciprocity theorem above, it is natural for us to consider the group
P (m) of principal ideals of OK congruent to 1 modulo m

P (m) = {(α) |α ∈ K∗, α ≡ 1 mod m}.
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Note that for (α) to belong to P (m) we only require there exist ζ ∈ O∗
K such that ζα ≡

1 mod m.
It is true that P (m) has finite index in I(m) [Cox, p.160]. A group G is called a congruence

subgroup if
P (m) ⊂ G ⊂ I(m)

and I(m)/G is called a generalized ideal class group for the modulus m. The key theme of
CFT is that generalized ideal class groups are the Galois groups of abelian extensions of the
ground field K, and the link between these two kinds of groups is provided by the Artin
map. We may restate Theorem 3 as follows.

Theorem 4 (Artin Reciprocity). Let L/K be a finite abelian extension, then there is a
modulus cL/K, divisible precisely by the ramified primes of K and such that the Artin Map(

L/K

·

)
cL/K

: I(cL/K) → Gal(L/K)

is a surjective homomorphism. Its kernel G is a congruence group for the conductor cL/K,
and thus Gal(L/K) ∼= I(cL/K)/G is a generalized ideal class group for the modulus cL/K.

The following theorem asserts that every generalized ideal class group is a Galois group
for some abelian extension L/K.

Theorem 5 (Existence Theorem). Let m be a modulus for K and let G be a congruence
subgroup for m. Then there is an abelian extension L/K, all of whose ramified primes divide
m such that G is the kernel of the Artin map(

L/K

·

)
m

: I(m) → Gal(L/K)

Example 1. Consider the modulus m = fOK , where f is the conductor of an order O in
an imaginary quadratic field K. Recall there is an abelian group C(O) attached to every
order called the order class group. It is the quotient of proper fractional O-ideals I(O) by
principal O-ideals. Let IK(f) denote the group of OK-ideals that are prime to the conductor
f , i.e., OK-ideals a such that a + fOK = OK , or equivalently, gcd(N(a), f) = 1. Now let
PK(f) be the subgroup of IK(f) generated by principal ideals αOK , where α ∈ OK and
α ≡ a mod fOK for an integer a relatively prime to f . There is an isomorphism

C(O) = I(O)/P (O) ∼= IK(f)/PK(f), (2)

see, for example, [Cox, Prop. 7.22]. We also have inclusions

P (fOK) ⊂ PK(f) ⊂ IK(f) = I(fO)
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which show C(O) is a generalized ideal class group of K for the modulus fOK . By Theorem 5
there is an abelian extension L/K, called the ring class field of the order O, such that the
ramified primes of K in L divide fOK . Furthermore, the Artin map gives an isomorphism

C(O) ∼= IK(f)/PK(f) ∼= Gal(L/K).

The following corollary of Theorem 5, whose proof we omit (see [Cox, Corollary 8.7]) will
be of great use for us.

Corollary 6. Let L and M be two abelian extensions of K. Then L ⊂ M if and only if
there is a modulus m, divisible by all the ramified primes of K in L or M , such that

P (m) ⊂ ker

((
M/K

·

)
m

)
⊂ ker

((
L/K

·

)
m

)

3 A nonconstructive criterion

Let K be a quadratic imaginary field with number ring OK . Let O be an order in K of
conductor f , so that [1, fwk] is a Z-basis for O, where wk = (dK +

√
dK)/2 and dK is the

discriminant of K. We denote the size of the order class group #C(O) by h(disc(O)).
We want to give a criterion to determine when a prime p is of the form x2 + ny2. This

is the content of the following theorem:

Theorem 7. Let n be a positive integer. There is a monic irreducible polynomial fn(X) ∈
Z[X] of degree h(−4n) such that if an odd prime p divides neither n nor the discriminant of
fn(X) then

p = x2 + ny2 ⇐⇒


(
−n

p

)
= 1 and fn(X) ≡ 0 mod p

has a solution for some x ∈ Z.

Moreover, the polynomial fn can be the minimal polynomial of a real algebraic integer which
is a primitive element α for the ring class field of the order O = Z[

√
−n] in K = Q(

√
−n).

We remark that Theorem 7 does not explicitly give the polynomial fn(X), it merely
asserts that the polynomial exists. We will come back to point in the next section.

We begin our task of proving Theorem 7 by proving the following:

Theorem 8. Let L be the ring class field of Z[
√
−n] (n > 0). Suppose p is an odd prime

that does not divide n. Then p = x2 + ny2 if and only if p splits completely in L.
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Proof. The discriminant of the order O = Z[
√
−n] is −4n. Since p is odd and does not divide

n we conclude p - disc O, which is to say that p is unramified in K.
We claim that

p = x2 + ny2 ⇐⇒ pOK = pp, p 6= p, and p = αOK , α ∈ O.

Indeed, suppose p = x2 + ny2 = (x +
√
−ny)(x−

√
−ny). Let p = (x +

√
−ny)OK , so that

pOK = pp. Then p 6= p because p is unramified in K. Conversely, if pOK = pp, p 6= p and
p = αOK , α ∈ O then we can set α = x +

√
−ny for some integers x and y and consequently

p = x2 + ny2.
Now, to say that p = αOK for some α ∈ O is equivalent to the assertion that p ∈ PK(f).

On the one hand, if p = αOK for some α ∈ O, we know that p + fOK = OK because
gcd(p, f) = 1, so p is certainly in IK(f) (see Example 1). Since α ∈ O = [1, fwK ] we
see that α ≡ a mod fOK for some integer a. Furthermore, we know N(α) = p, and so
gcd(N(α), f) = 1; it is clear that N(α) ≡ a2 mod fOK , from which we conclude that
gcd(a, f) = 1. Hence p ∈ PK(f). On the other hand, if p ∈ PK(f) we know that p = αOK

and α ≡ a mod fOK for some integer a which is relatively prime to f . Since O = [1, fwK ]
and α = a + fw for some w ∈ OK it follows that α ∈ O.

From this equivalence we infer that

p = x2 + ny2 ⇐⇒ pOK = pp, p 6= p, and p ∈ PK(f).

Since C(O) is a generalized ideal class group for the modulus fOK , the Artin map gives a
surjective homomorphism

IK(f) → Gal(L/K)

(see Example 1). However, since C(O) ∼= IK(f)/PK(f), it follows that

p ∈ PK(f) ⇐⇒
(

L/K

p

)
= 1.

but the Artin symbol is trivial if and only if p splits completely in L (see Remark 2). Hence

p = x2 + ny2 ⇐⇒ pOK = pp, p 6= p, and p splits completely in L.

It remains to show that

pOK = pp, p 6= p, and p splits completely in L ⇐⇒ p splits completely in L.

Suppose that L is a Galois extension of Q. If pOK = pp splits completely in K and p splits
completely in L then

pOL = P1 · · ·Pmp,

where Pi are the distinct prime factors of p in L. Say p factors as P′
1
e1 · · ·P′

n
en . Then the

full factorization of p in OL would be

pOL = P1 · · ·PmP′
1
e1 · · ·P′

n
en .
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But if L is Galois over Q the ramification indices and the inertia degrees of the primes of L
above p are all equal (this a general property of number fields), i.e., e1 = · · · = en = 1 and
[OL/P : Fp] = 1 for each P ∈ L above p. This means p splits completely in Q. The converse
implication is clear.

It remains to show that L is Galois over Q; we do this in a separate, slightly more general
Lemma below.

Lemma 9. Let L be the ring class field of an order O in a quadratic imaginary field K.
Then L is a Galois extension of Q.

Proof. Let τ denote complex conjugation and set [L : K]. The extension L/Q is Galois if
and only if # AutL/Q = 2m. We certainly know that # AutL/Q ≥ m because L/K is Galois
and # AutL/K = m. If τ(L) = L then τ ∈ AutL/Q. However, τ /∈ AutL/K because τ does
not fix K. Hence, under the assumption that τ(L) = L we know that # AutL/Q ≥ m + 1
and since # AutL/Q |2m we conclude # AutL/Q = 2m.

Thus, to show L is Galois over Q it suffices to prove that τ(L) = L. Let m be the modulus

fOK . By Theorem 5 and Example 1 we know that ker

(
L/K

·

)
m

= PK(f) and therefore

ker

((
τ(L)/K

·

)
m

)
= τ

(
ker

((
L/K

·

)
m

))
= τ(PK(f)) = PK(f) = ker

((
L/K

·

)
m

)
,

where the first equality follows easily from the definition of the Artin symbol (1). Since

ker

((
τ(L)/K

·

)
m

)
= ker

((
L/K

·

)
m

)
,

the equality τ(L) = L is now an easy consequence of Corollary 6.

We can now prove the main theorem of this paper:

Proof of Theorem 7. Let L be the ring class field of the order Z[
√
−n] in the imaginary

quadratic field K = Q(
√
−n). By Lemma 9 we know that L/Q is Galois. We claim that at

least one of the primitive elements that generates L/K is a real algebraic integer. Indeed,
begin by noting L ∩ R is the fixed field of L under complex conjugation (an automorphism
of order 2). Hence

[L ∩ R : Q] = [L : K]. (3)

Let α be an element such that L ∩ R = Q(α). Then L = K(α). Indeed, it follows from (3)
that [Q(α) : Q] ≥ [K(α) : K]. But

[K(α) : Q(α)] · [Q(α) : Q] = [K(α) : K] · [K : Q] (4)

=⇒ [K(α) : Q(α)]

2
=

[K(α) : K]

[Q(α) : Q]
≤ 1. (5)

Hence [K(α) : Q(α)] = 1 or 2. But α is real and K is quadratic imaginary, so [K(α) :
Q(α)] = 2. From (5) we deduce that [L : K] = [Q(α) : Q] = [K(α) : K], whence L = K(α).
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Now take α ∈ OL ∩ R such that L ∩ R = Q(α). Then L = K(α) by the above remarks.
Let fn(X) ∈ Z[X] be the minimal polynomial for this α over K. Since the discriminant of
O = Z[

√
−n] is −4n it follows that

deg fn(X) = [L : K] = h(O) = h(−4n)

where the second equality holds because L is the ring class field for O. Recall that, by
Theorem 8, p = x2 + ny2 if and only if p splits completely in L. Thus, we want to show that

p splits completely in L ⇐⇒


(
−n

p

)
= 1 and fn(X) ≡ 0 mod p

has a solution for some x ∈ Z.
(6)

If p splits completely in L then it splits completely in K (this is due to the transitivity of
inertial degrees and ramification indices). It is a well-known fact in algebraic number theory
that a rational p splits in a quadratic imaginary field if and only if the discriminant of the

field is a square modulo p and so

(
−n

p

)
= 1. Let K = Q(

√
−n); then dK = −n or −4n. In

either case we conclude that

pOK = pp, p 6= p ⇐⇒
(
−n

p

)
= 1.

Since p - disc fn(X) by hypothesis we know that fn(X) is separable over Fp. But p splits
completely in K, which means OK/p ∼= Fp, and so fn(X) is separable over OK/p ∼= Fp.
Hence

p splits completely in L ⇐⇒ fn(X) ≡ 0 mod p has a solution in OK

(this is a standard result; see [Mar, Theorem 27]). Since OK/p ∼= Fp we have

fn(X) ≡ 0 mod p has a solution in OK ⇐⇒ fn(X) ≡ 0 mod p has a solution in Z.

Thus

p splits completely in L =⇒


(
−n

p

)
= 1 and fn(X) ≡ 0 mod p

has a solution for some x ∈ Z.

For the other direction, note that if fn(X) ≡ 0 mod p has a solution in Z then fn(X) ≡
0 mod p has a solution in OK and so p splits completely in L. We know p splits completely
in K and so by an argument similar to that at the end of the proof to Theorem 8 we conclude
p splits in L, as desired.

4 When is p = x2 + ny2?

Recall that Theorem 7 does not explicitly give the polynomial fn(X) which can be used to
determine when p = x2 + ny2; it merely asserts that the polynomial exists. In this section
we give a method for computing fn(X)1.

1This section is rather concise since I did much of this for my thesis. The bulk of what I learned for this
project is in §2 and 3.
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Let L be a lattice and define the quantities

g2(L) = 60
∑

ω∈L−{0}

1

ω4
and g3(L) = 140

∑
ω∈L−{0}

1

ω6

These sums are absolutely convergent. We define the j-invariant of a lattice by

j(L) =
1728g2(L)3

g2(L)3 − 27g3(L)2
.

This quantity is always defined as one can show that ∆(L) := g2(L)3 − 27g3(L)2 does not
vanish. The j-invariant of a lattice characterizes the lattice up to homothety. If the lattice
L is of the form [1, τ ] for some τ with positive imaginary part then we write j(τ) instead of
j(L).

Let O be an order in an imaginary quadratic field K and let a be a proper fractional
O-ideal. Then a = [α, β] for some α, β ∈ K. These numbers are linearly independent over R
since K is imaginary quadratic and thus a gives rise to a lattice. We denote its j-invariant
by j(α).

The first main theorem of complex multiplication asserts that j(a) is a primitive element
for the ring class field of the order O (see [Cox, Theorem 11.1]).

Theorem 10. Let K be an imaginary quadratic field and let O be an order in K. Suppose
a is a proper fractional O-ideal. Then j(a) is an algebraic integer and K(j(a)) is the ring
class field for the order O.

In particular, we consider the order O = Z[
√
−n] in the ring K = Q[

√
−n]. If we can

show that j(
√
−n) is a real number, then Theorem 10 reduces the search for the polynomial

fn(X) of Theorem 7 to the computation of the minimal polynomial for j(
√
−n).

Theorem 11. The algebraic integer j(
√
−n) is a real number.

Proof. Let L denote the conjugate lattice to L. It is clear that

g2(L) = g2(L) and g3(L) = g3(L),

and therefore j(L) = j(L). Now, j(L) is real if and only if j(L) = j(L), and by the previous
remarks this happens if and only if j(L) = j(L). Since the j-invariant of a lattice classifies
the lattice up to homothety, we conclude j(L) is real if and only if L and L are homothetic
lattices. This is clear when L = [1,

√
−n]. Hence j(

√
−n) is real, as desired.

It remains to compute the minimal polynomial H−4n(X) for j(
√
−n). Then we will have

a criterion that tells us when p = x2+ny2 for primes that don’t divide −4n or disc H−4n(X)2.
It turns out that

H−4n(X) =

h(−4n)∏
i=1

(X − j(ai))

2It turns out that if p|disc H−4n(X) then
(
−n

p

)
6= 1—see [Cox, Corollary 13.22]; that is, the condition

p - disc H−4n(X) is superfluous.
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as ai ranges through a representative system of ideal classes in C(O). See, for example, [Cox,
Proposition 13.2].

4.1 An example: p = x2 + 21y2

We now show a simple example of how one can implement the algorithm presented in The-
orem 7. We consider the case when n = 21. In this case the order Z[

√
−21] is the maximal

order of K = Q(
√
−21).One may check that the ideal class group of this field is the Klein

group. Explicitly,
C(OK) = {[OK ], [P2], [P3], [P5]},

where

P2 = (2,
√
−21− 1),

P3 = (3,
√
−21),

P5 = (5,
√
−21− 3),

and the relations [P2]
2 = [OK ], [P3]

2 = [OK ] and [P5] = [P2] · [P3] hold.
With the aid of the widely available PARI-GP software (which uses the method of q-

expansions to compute j-invariants), we compute the approximations

j(
√
−21) = 3196802718613.9132928032899986...

j

(√
−21− 1

2

)
= −1787216.6012476570198674...

j

(√
−21

3

)
= 15488.6808931242445923...

j

(√
−21− 3

5

)
= 58.0070617294852765...

Using the above approximations for the elements of J , we conjecture, with some margin
of error, that the irreducible polynomial for j(OK) is

P (X) = x4 − 3196800946944x3 − 5663679223085309952x2

+ 88821246589810089394176x− 5133201653210986057826304

To see whether a prime p can be written in the form x2 + ny2 we need only check that(
−21

p

)
= 1 and that P (X) has a solution over Fp. This last step is easily done with

computer power.
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