Math 101 Section 003 – Midterm 1 Extra Extra Problem Solutions

Below are the solutions to the extra extra problems provided. Graphs have been omitted. Please see me if you have trouble with graphs.

1. Let \(f(x) = x^2 - 2x + 3 \).

 (a) Notice that \(f(x) = x^2 - 2x + 3 = (x^2 - 2x + 1) + 2 = (x - 1)^2 + 2 \).

 (b) Domain(\(f\)): \((−∞, ∞)\).

 Range(\(f\)): \([2, ∞)\).

 (c) \([-1, ∞)\).

 (d) \(f^{-1}(x) = \sqrt{x - 2} + 1\).

 (a) \(f(x) = -\sin(2x) + 2 \). Domain(\(f\)): \((−∞, ∞)\). Range(\(f\)): \([1, 3]\). This is not 1-1 on entire domain. It is 1-1 on \([-\pi/4, \pi/4]\).

 On this interval, \(f^{-1}(x) = \frac{1}{2} \arcsin(-x + 2) \). Domain(\(f^{-1}\)): \([1, 3]\). Range(\(f^{-1}\)): \([-\pi/4, \pi/4]\).

 (b) \(g(x) = \ln(2x) - 4 \). Domain(\(g\)): \((0, ∞)\). Range(\(g\)): \((−∞, ∞)\). This is 1-1.

 \(g^{-1}(x) = \frac{e^{x+4}}{2} \). Domain(\(g^{-1}\)): \((−∞, ∞)\). Range(\(g^{-1}\)): \((0, ∞)\).

 (c) \(h(x) = 2\sqrt{x + 1} \). Domain(\(h\)): \([-1, ∞)\). Range(\(f\)): \([0, ∞)\). This is 1-1.

 \(h^{-1}(x) = \frac{1}{4} x^2 - 1, x ≥ 0 \). Domain(\(h^{-1}\)): \([0, ∞)\). Range(\(h^{-1}\)): \([-1, ∞)\).

3. \(f(x) = \begin{cases} \sqrt{-x - 2}, & \text{if } x < -2, \\ 5 - x, & \text{if } -2 ≤ x < 1, \\ (x - 3)^2, & \text{if } x > 1. \end{cases} \)

 (a) \(i. \lim_{x→-2^+} f(x) = 7 \)

 \(ii. \lim_{x→-2^-} f(x) = 0 \)

 \(iii. \lim_{x→-2} f(x) \text{ DNE since} \)

 \[\lim_{x→-2^+} f(x) = 7 ≠ \lim_{x→-2^-} f(x) = 0 \]

 (b) \(\text{iv. \lim}_{x→-1^+} f(x) = 4 \)

 \(\text{v. \lim}_{x→-1^-} f(x) = 4 \)

 \(\text{vi. \lim}_{x→-1} f(x) = 4 \)

 (b) \(f \) is discontinuous at \(x = 2 \). It is continuous on \((-∞, -2) \cup (-2, ∞)\).

 (c) Graph.

 (d) \(f \) is differentiable on \((-∞, -2) \cup (-2, 1) \cup (1, ∞)\) since these are our basic differentiable functions on these intervals. It is not differentiable at \(x = -2 \) since here it is not continuous. It is not differentiable at \(x = 1 \) since

 \[\lim_{x→-1^+} \frac{f(x) - f(1)}{x - 1} ≠ \lim_{x→-1^-} \frac{f(x) - f(1)}{x - 1} \]

 (i.e. There is a kink in the graph).

4. (a) Domain(\(h\)): \((−∞, ∞)\).

 Notice that \(\cos(x) \) is continuous on \((-∞, ∞)\) and it’s range is \([-1, 1]\). Since \(e^x \) is continuous on \([-1, 1]\), it follows from theorem 9 on page 125 that \(e^{\cos(x)} \) is continuous on \((-∞, ∞)\).

 Furthermore, \(x^3 \) is continuous on \((-∞, ∞)\) and thus \(h(x) = x^3 e^{\cos(x)} \), being the product of these, is continuous on \((-∞, ∞)\) by theorem 4 on page 122.
(b) Domain(g): \([-2, -\sqrt{3}) \cup (-\sqrt{3}, \sqrt{3}) \cup (\sqrt{3}, 2]\). Call this \(D\).

Notice that \(x^2 - 4\) is continuous on \((-\infty, \infty)\) and is therefore continuous on \(D\). \(\sqrt{x}\) is continuous on \([0, \infty]\) and \(x^2 - 4 \geq 0\) when \(-2 \leq x \leq 2\). This means \(\sqrt{x^2 - 4}\) is continuous on \([-2, 2]\) by theorem 9 on page 125. It is therefore continuous on \(D\). Now, \(x^2 - 3\) is continuous on \((-\infty, \infty)\) and is therefore continuous on \([-2, 2]\) but \(x^2 - 3 = 0\) when \(x = \sqrt{3}, -\sqrt{3}\). Then, by theorem 4 on page 122, \(g\) is continuous on \(D\).

5. (a) No, \(f_1\) is NOT differentiable at \(x = 1\), since

\[
\lim_{x \to 1^+} \frac{f_1(x) - f_1(1)}{x - 1} = 1 \neq \lim_{x \to 1^-} \frac{f_1(x) - f_1(1)}{x - 1} = -1
\]

(b) No, \(f_2\) is NOT differentiable at \(x = 1\), since \(f_2(1)\) is undefined.

(c) No, \(f_3\) is NOT differentiable at \(x = 1\), since the following limit does not exist.

\[
\lim_{x \to 1^-} \frac{f_3(x) - f_3(1)}{x - 1}
\]

(d) Yes. \(f_4\) is differentiable at \(x = 1\).