Yesterday, we talked a lot about sequences and some about series.

Turns out sequences aren't really what we care about: We care what happens when we add up all the terms.

⇒ For calculus we really care about SERIES.

Today, we discuss a few special types of series and try to determine when a series converges

(Since this means some INTEGRAL will converge ...)
Important Series

The geometric series: \(a \) and \(r \) are real numbers

\[
\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \ldots
\]

- If \(r = 1 \) \(\Rightarrow \) \(S_n = a + a + \ldots + a = na \) and \(S_n \to \infty \)
 and \(\sum ar^{n-1} \) diverges.

- If \(r \neq 1 \) \(\Rightarrow \)

 \[
 S_n = a + ar + \ldots + ar^{n-1} \\
 rS_n = ar + \ldots + ar^n
 \]

 \[
 \Rightarrow S_n - rS_n = a - ar^n \\
 \Rightarrow S_n (1-r) = a - ar^n = a \left(1 - r^n \right) \\
 \Rightarrow S_n = \frac{a (1 - r^n)}{1 - r}
 \]

Q: Does \(\lim_{n \to \infty} S_n \) exist?

Using limit laws

\[
\lim_{n \to \infty} a (1-r^n) = a \lim_{n \to \infty} 1 - r^n = a - a \lim_{n \to \infty} r^n
\]

\[
\lim_{n \to \infty} 1-r = 1-r
\]

So \(\lim_{n \to \infty} S_n = \frac{a - a \lim_{n \to \infty} r^n}{1-r} \)

\[
\lim_{n \to \infty} r^n = \begin{cases}
0 & -1 < r < 1 \\
\infty & \text{otherwise}
\end{cases}
\Rightarrow \lim_{n \to \infty} S_n = \begin{cases}
\frac{a}{1-r} & -1 < r < 1 \\
\pm \infty & \text{otherwise}
\end{cases}
\]
This means when $|r| < 1$, the series converges
and $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$

Otherwise it diverges.

e.g. Use the geometric series.
Show the series is convergent and find the sum.

(a) $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n}$

\[\frac{(-3)^{n-1}}{4^n} = \frac{1}{4} \cdot \frac{(-3)^{n-1}}{4^{n-1}} = \frac{1}{4} \left(-\frac{3}{4} \right)^{n-1}. \quad r = -\frac{3}{4} \]

$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{4} \left(-\frac{3}{4} \right)^{n-1} = \frac{\frac{1}{4}}{1 - \left(-\frac{3}{4} \right)} = \frac{1}{7}$

(b) $\sum_{n=1}^{\infty} \frac{n^n}{3^{n+1}}$

If $\sum_{n=1}^{\infty} a_n$ converges, we clearly need $\lim_{n \to \infty} a_n = 0$. However, just because $\lim_{n \to \infty} a_n = 0$ does not mean $\sum_{n=1}^{\infty} a_n$ converges.
e.g. The harmonic series
\[\sum_{n=1}^{\infty} \frac{1}{n} \] diverges!

* Related to why \(\int_{1}^{\infty} \frac{1}{x} \, dx \) diverges.
(For a current proof, see book)

Test for Divergence

If \(\lim_{n \to \infty} a_n \neq 0 \) or does not exist, then \(\sum a_n \)
diverges.

Properties of Sums

If \(\sum a_n, \sum b_n \) converge and \(c \) is a #,

- \[\sum_{n=1}^{\infty} c a_n = c \sum_{n=1}^{\infty} a_n \]
- \[\sum_{n=1}^{\infty} a_n + b_n = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n \]
- \[\sum_{n=1}^{\infty} a_n - b_n = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n \]

e.g. Does the series converge? If so, find the sum

\[\sum_{n=1}^{\infty} \frac{3}{5^n} + \frac{2}{n} \]
\[\sum_{n=1}^{\infty} \ln \left(\frac{n^2 + 1}{2n^2 + 1} \right) \]
Consider the series:
\[\sum_{n=1}^{\infty} \frac{0.1}{n^2+1}. \]

What are some partial sums?

\[S_1 = \]
\[S_2 = \]
\[S_3 = \]

Note that the sequence \(\{ \frac{1}{n^2+1} \} \) is related to the function \(f(x) = \frac{1}{x^2+1} \).

The series \(\sum \frac{1}{n^2+1} \) is related to Riemann sums for this function.

So it's clear that \(\sum \frac{1}{n^2+1} \) should somehow be related to the integral \(\int_{1}^{\infty} \frac{1}{x^2+1} \).

Q: Is \(\sum \frac{1}{n^2+1} \) exactly \(\int_{1}^{\infty} \frac{1}{x^2+1} \)?

Why or why not?

We can use this integral to test for convergence of the series!

The Integral Test

If \(f \) is continuous, positive, decreasing on the interval \([1, \infty)\), and \(a_n = f(n) \) for every integer \(n \), then...
the series \[\sum_{n=1}^{\infty} \frac{1}{n^p} \] converges exactly whenever the integral \[\int_{1}^{\infty} x^{p-1} dx \] converges.

e.g. Does our series \[\sum_{n=1}^{\infty} \frac{1}{n^{p+1}} \] converge or diverge?

Important Integral Test example

\textbf{p-series}: \[\sum_{n=1}^{\infty} \frac{1}{n^p} \]

Using the integral test, determine if the p-series converges:

\[p \neq 1: \quad \int_{1}^{\infty} \frac{1}{x^p} \, dx = \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^p} \, dx \]

\[= \lim_{n \to \infty} \left[\frac{1}{1-p} \cdot \frac{1}{x^{p-1}} \right]_{1}^{n} \]

\[= \frac{1}{1-p} \lim_{n \to \infty} \left(\frac{1}{n^{p-1}} - 1 \right) \]

So \(\sum \frac{1}{n^p} \) converges exactly when this limit converges? For what \(p \) does this limit converge?

\textbf{HINT}: Make sure to consider all possible \(p \).

\textbf{e.g.}: \(p=3, p=0, p=-3, p=\ldots \)
$$\int_1^\infty \frac{1}{x} \, dx = \lim_{n \to \infty} \int_1^n \frac{1}{x} \, dx$$

$$= \lim_{n \to \infty} \ln |x| \bigg|_1^n$$

$$= \infty$$

What does this mean for the series $\sum_{n=1}^\infty \frac{1}{n}$?

Theorem

$\sum_{n=1}^\infty \frac{1}{n^p}$ converges when p and diverges when

WARNING

Most of the time, the sum of the series $\sum_{n=1}^\infty a_n$ and $\int_1^\infty f(x) \, dx$ are **NOT** the same!

E.g., $\sum_{n=1}^\infty \frac{1}{n^2 + 1}$ is the area:

$\int_1^\infty \frac{1}{x^2 + 1} \, dx$ is the area:

however the integral does give us an estimate on the sum.

Notice that by taking $\sum_{n=1}^\infty a_n = \sum_{n=1}^\infty f(n)$, these are "upper estimates" for $\int_1^\infty f(x) \, dx$.

(since $\sum_{n=1}^\infty a_n$ is more area than $\int_1^\infty f(x) \, dx$).
If instead of starting at \(n = 1 \), we started at \(n = 2 \), the series \(\sum_{n=2}^{\infty} a_n \) gives a lower bound for \(\int_1^{\infty} f(x) \, dx \).

\[
\Rightarrow \quad \sum_{n=2}^{\infty} a_n \leq \int_{1}^{\infty} f(x) \, dx \leq \sum_{n=1}^{\infty} a_n
\]

In fact, for any \(k \), we can see

\[
\sum_{n=k+1}^{\infty} a_n \leq \int_{k}^{\infty} f(x) \, dx \leq \sum_{n=k}^{\infty} a_n
\]

Or equivalently

\[
\int_{k+1}^{\infty} f(x) \, dx \leq \sum_{n=k+1}^{\infty} a_n \leq \int_{k}^{\infty} f(x) \, dx.
\]
So... That's cool what does it mean?
It means if we found the partial sum S_n, we have a decent bound on the actual sum S.

Since

$$S = S_n + \sum_{n=k+1}^{\infty} a_n$$

Let R_n be the remainder $= S - S_n$.

Remainder Estimate for Integral Test

If $f(n) = a_n$ and f is continuous
- positive
- (eventually) decreasing

and $\sum a_n$ converges, then

$$\int_{n+1}^{\infty} f(x) \, dx \leq S - S_n \leq \int_{n}^{\infty} f(x) \, dx$$

* Use this theorem to estimate

$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

to 3 decimal places.