An example:

Consider \(\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} \).

Since \(\lim_{n \to \infty} \frac{1}{n} = 0 \) and

\(\frac{1}{n+1} < \frac{1}{n} \) for all \(n \) \(\Rightarrow \) the series converges by the alternating series test.

What about \(\sum_{n=1}^{\infty} \frac{1}{n} \)?

This is the harmonic series which we know diverges!

\(\Rightarrow \) So although

\[\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} \text{ CONVERGES, } \sum_{n=1}^{\infty} |(-1)^{n-1}\frac{1}{n}| = \sum_{n=1}^{\infty} \frac{1}{n} \text{ DIVERGES.} \]

It's actually common for a series \(\sum a_n \) to converge while \(\sum |a_n| \) is divergent. When they both converge, we give the series a special name...

defn A series \(\sum a_n \) is **ABSOLUTELY CONVERGENT** if the series \(\sum |a_n| \) is convergent.

The alternating series \(\sum (-1)^{n-1} \frac{1}{n} \) is convergent but **NOT** absolutely convergent.

defn A series which is convergent but **NOT** absolutely convergent is **CONDITIONALLY CONVERGENT**.
\[\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2}{3^{n-1}} \]

Is the series convergent? Absolutely convergent?

Theorem: If a sequence is absolutely convergent, it must also be convergent.

\[\Rightarrow \quad \text{ABSOLUTE CONVERGENCE IS STRONGER THAN CONVERGENCE} \]

Why? If \(\Sigma |a_n| \) converges, then \(\Sigma |a_n| = S \).

\[\Rightarrow \quad |\Sigma a_n| \leq \Sigma |a_n| = S \quad (*) \]

So \(\Sigma a_n \) converges by the “comparison test.”

This is the triangle inequality: \(|x+y| \leq |x| + |y|\).

\[\square \]

We can test for absolute convergence too...

The Ratio Test: Given \(\sum_{n=1}^{\infty} a_n \).

1. \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \Rightarrow \sum a_n \text{ is absolutely convergent} \)
 (and so it's convergent)

2. \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \text{ or } \infty \Rightarrow \sum a_n \text{ diverges} \)

3. \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1 \Rightarrow \sum a_n \text{ is ?} \) (Just can't say!)
* The ratio test is AWESOME and you will learn to love it.

e.g. \(\sum_{n=1}^{\infty} \frac{(1.1)^n}{n^4} \).

Use the ratio test:

\[
\lim_{n \to \infty} \left| \frac{(1.1)^{n+1}/(n+1)^4}{1.1^n/n^4} \right| = \lim_{n \to \infty} \left| \frac{(1.1)^{n+1}n^4}{(1.1)^n(n+1)^4} \right|
\]

\[
= \lim_{n \to \infty} 1.1 \frac{n^4}{(n+1)^4}
\]

\[
= 1.1 \lim_{n \to \infty} \frac{n^4}{n^4 + 4n^3 + 6n^2 + 4n + 1}
\]

\[
= 1.1 \lim_{n \to \infty} \frac{1}{1 + \frac{4}{n} + \frac{6}{n^2} + \frac{4}{n^3} + \frac{1}{n^4}}
\]

\[
= 1.1
\]

\(\implies \) The series diverges.

e.g. \(\sum_{n=0}^{\infty} \frac{(-10)^n}{n!} \).
One last test...
* This test is helpful whenever we have n's in an exponent!

The **Root Test**

Given Σa_n,

1. $\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1 \Rightarrow \Sigma a_n$ is ABSOLUTELY CONVERGENT.
2. $\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1 \Rightarrow \Sigma a_n$ DIVERGES!
3. $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1 \Rightarrow$ NO RESULT.

[* If the ratio test fails, so does the root test. Unfortunately, and vice versa.*]

e.g. \[\sum_{n=2}^{\infty} \left[\frac{-2n}{n+1} \right]^{5n} \]

Use the root test...

\[
\lim_{n \to \infty} \sqrt[n]{\left[\frac{-2n}{n+1} \right]^{5n}} = \lim_{n \to \infty} \left| \frac{-2n}{n+1} \right|^{5n} = \left[\lim_{n \to \infty} \frac{-2n}{n+1} \right]^{5} = \left[2 \lim_{n \to \infty} \frac{n}{n+1} \right]^{5} = 2^{5}
\]

m> The series diverges.

e.g. \[\sum_{n=2}^{\infty} \frac{n}{(ln n)^n} \]

\[(Hint: \lim_{n \to \infty} n^{1/n} = \lim_{n \to \infty} e^{ln(n^{1/n})} = e^{\lim_{n \to \infty} \frac{ln(n)}{n}})\]
e.g. *Recursively defined series.*

If $a_1 = 1$ and $a_{n+1} = \frac{2 + \cos(n)}{\sqrt{n}} a_n$

Does $\sum a_n$ converge? diverge? ...

Q1 Is the series a special type?

(a) Geometric: $\sum_{n=1}^{\infty} ar^{n-1}$

Converges when ____________________________

Diverges when ____________________________

(Sum is ____________________________)

(b) p-series: $\sum_{n=1}^{\infty} \frac{1}{n^p}$

Converges when ____________________________

Diverges when ____________________________

No? Then we gotta use a test...
Q2 Does $\lim_{n \to \infty} a_n = 0$?
If not...
What test is this? ______________

Q3 Is $\sum a_n$ similar to one of a special type?
@ YES! Are all the terms positive?
(Yes! Use a comparison test! (limit comparison or regular))
(No... Use comparison test with $|a_n|$.

B No? Shucks...

Q4 Is it alternating??
If so Alternating series test.
$\sum_{n=1}^{\infty} (-1)^n a_n$ converges when
1) __________________
2) __________________

Q5 Is there an "easily integrable $f(x)$ so that $f(n)$ is a_n? INTEGRAL TEST!
Need $f(x)$ to be 1) ________ 2) ________ 3) ________
$\sum a_n$ converges when ______________
$\sum a_n$ diverges when __________________
Q6. Is an a power like $(b_n)^n$?

→ Try the Root Test.

\[\sum a_n \text{ converges when } \ldots \]
\[\sum b_n \text{ diverges when } \ldots \]

Q7. Ratio test, maybe?

\[\sum a_n \text{ converges when } \ldots \]
\[\sum a_n \text{ diverges when } \ldots \]

Remember:
1. The comparison tests only work for series with POSITIVE terms.
2. But you could use them to test for absolute convergence (and thus convergence)
3. The $f(x)$ in the integral test must be positive, decreasing, and continuous!

Which tests do you like the best? Why? Discuss pros & cons of them all...
\[\sum_{n=1}^{\infty} \frac{1}{n + 3^n} \]

\[\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln(n)} \]

\[\sum_{n=1}^{\infty} \frac{(-2)^{2n}}{n^n} \]

\[\sum_{k=1}^{\infty} \frac{5^k}{3^k + 4^k} \]