Rice University
Shelley Harvey

Colloquium
University of California, Riverside

Knot Concordance Group
Filtrations of the
A knot is a smooth embedding

\[S^1 \to \mathbb{R}^3 \]

\[\gamma : \mathbb{R} \to \mathbb{R}^3 \]

Ex: Figure-8 knot

Ex: Right handed trefoil

Ex: Left handed trefoil

\[(z, w) \in \mathbb{C} \times \mathbb{C}, |z|^2 + |w|^2 = 1 \]

\[\mathbb{S}^2 \to \mathbb{R}^3 \]
Consider the complex curve \(C \) defined by
\[
\mathbb{Z}_3 - M_3 = 0.
\]
The singularity at \((z, w) = (0, 0)\).

The link of the singularity is
\[
\{ z \in \mathbb{C} | |z| + |w| = 3 \}.
\]
This is a 1-dimensional (real) curve in \(S^3 \) (i.e., a knot or link).

Several components

\(A \) is \(S^3 \) = \(S^3 \).
\[L = \{ (R, \theta) \in \mathbb{R}^2 \times \mathbb{R} \mid R \neq 0, \theta \neq \frac{2}{3} \pi + \frac{k}{3} \pi, \text{ for } k \in \mathbb{Z} \} \]
Through itself, the other in S^3 without passing the other in S^3 equivalent if you can deform one into the other up to isotopy: two knots are equivalent if you can deform one into the other up to isotopy.

In knot theory, one usually studies...
$\circ = \bigcirc \neq \bigcirc$
Examples of Distinct Knots up to Isotopy

Left-handed Right-handed
Trefoil Trefoil
Figure 8 Trivial knot
The trivial knot O is the only knot that bounds an embedded disk in S^3.

\[\text{Diagram: A simple circle} \]
There is a binary operation on knots:

\[K \# K = \bigcirc \quad = \bigcirc \# \bigcirc \]

\(K \) and \(K' \), and \(K_1 \) and \(K_2 \).

Connected sum of knots:

\[K \# K' = K_1 \# K_2 \]
new equivalence relation called concordance.

To get a group structure, define a

\[\# K = 0 \]

Thus \[\# (\{\text{knots}\}, \#) \text{ forms a} \]

Exercise: there is no knot \(K \) such that

does not have inverses.

However \(K \) is not a group since it

Moreover with unity = 0.
$B_{\epsilon} = \{ (z', m)(z, m) | |z'|^2 + |m|^2 = \epsilon^2 \}$

$\Sigma = \partial B_{\epsilon} = \{ (z, m) | |z|^2 + |m|^2 = \epsilon^2 \}$

In $B_{\epsilon} = \mathbb{H}_{\text{dim. ball}}$, D is a 2-dimensional disk (smoothly) embedded.

DEF: A knot K is Σ-slice if $\Sigma = \partial D$ where $\partial \Sigma$ is trivial.

We will think of "slice" knots as "trivial".
Singularity is neverSilicel

However, if turns out that the link of a
can replace singularity with a smooth disk.

• If the link of a singularity is Silicel, remove a plane curve singularity.

Knot being Silicel to understand when one could

Fox-Milnor first studied the notion of a
To obtain embedded in B, push interior of red disc. Into interior of B.

$8^b = \pi(\text{im} \text{merged})$

Example: Any ribbon knot is slice.
The 9_{46} knot is slice
Proof: "Spin" K through \mathbb{R}^4. K = mirror image of $K = reverse all crossings $]$

If K is any knot then $\#K$ is slice.
Since \(Af(h') \neq 0 \),

\[
\overline{h' \# h'} = \overline{h'} \# \overline{h'} \text{ is \textit{Silico}}.
\]

Claim: \(h' \) is not \textit{Silico} but \(h' = h \).

So

(Figure-8)

(exercise) \(h' = h \):

\[
\text{Exercise: } h' = h.
\]
If K is slice then $\rho_0(K) = 0$.

For we define

\[\sigma_0(K) := \sum \omega(K)(1-w)(1-w^2)v^t \]

\[\rho_0(K) := \sum \omega(K) dw \]

where

\[k = \omega \text{(surface)} \]

Levine-Tristram signature: Sliceness Obstructions

\[V = \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} \]

\[\text{linking matrix} \]

\[\beta \text{link}(a,b^+) \]
So triangle is not slice.

\[p_0(\text{triangle}) = -\frac{4}{3} \neq 0 \]

\[\delta_0(\text{triangle}) = -2 \]

\[\delta_\ell(\text{triangle}) = 0 \]

\[\ell_\delta(\text{triangle}) = 0 \]

\[w = \frac{2}{1 + \sqrt{3}} \]

\[\varphi = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \]

\[\omega = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \]

EX: Triangle is not slice.
Def: Knots K_0 and K_1 are concordant if $K_0 \times \mathbb{I}$ and $K_1 \times \mathbb{I}$ cobound a smoothly embedded annulus in $S^3 \times \mathbb{I}$.

In $S^3 \times \mathbb{I}$ the knot $K_1 \times \mathbb{I}$ is concordant to the trivial knot.
\[0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

\[\text{K is slice } \iff [K] = 0 \]

\[[\begin{pmatrix} \ast & g \\ \ast & 0 \end{pmatrix}] = [g] + [0] \]

\[\text{Connected sum of knots.} \]

\[\text{G is an abelian group under the operation} \]

\[\text{\texttt{Def.}} \ \text{C} = \{ \text{knots in } S^3 / \text{concordance} \} \]
is not slice but 0 \# is slice.

[0] is a torsion in \(\mathcal{E} \) since

\[\text{Note:} \]

\[[x] = [0] \]

\[\text{-} \]

\text{K is slice.}

K is of the inverse of [K] is [K] slice.
$\ker \frac{\text{def}}{\text{det}} \subseteq \text{ Algebraically Slicely Knots}$

$\text{Group} \quad \begin{array}{c}
\mathbb{Z}^2 \times \mathbb{Z}^2 \to \mathbb{Z}^4 \\
\mathbb{Z}^2 \end{array}$

$\text{Algebraic Canonical} \leftarrow \text{Slicely Knots}$

To define epimorphism (including signatures and Art invariant)

Including signatures and Art invariant

Obtained from Seifert matrix

In late 60's Levine used invariants

In Milnor–Turaev used signatures

67, 67
Invariants to show $\eta_{46}(K)$ is not Slicee.

Signatures, Gilmer used Casson-Gordon

For K with certain non-vanishing

slice algebraically called

\[
\text{slice} = \eta_{46}(K)
\]

Slice in band

tie K

Ex: \[\eta_{46} = 0 \]
K into knot
the string

\[I + K = \text{if } k \]
Gordon invariants.

0.5 c Knots with Vanishing Casson-

osity.

0.5 = Algebraically Slice Knots

0.5 = Art Invariant Zero Knots

0 = Slice Knots, \{ c \cdots c, c \cdots c, c \cdots c \} = C

The (n)-Solvable Filtration of G (new)

In 1997, Cochran- Orr- Teichner defined
\[(A, B) = \{ a \mid \text{a is } A \} \text{ and } (B, A)\]

where

\[
g^{(n)} = \begin{cases} g, & g \in G_n \text{ for } n \geq 0, \\ (\varepsilon, \varepsilon), & n = 0. \end{cases}
\]

If \(G = \text{group} \Leftarrow \) derived series defined as

\[
\text{\"cube of 3-neighbor\" (K)}.
\]

\[
(S_3 \text{ -neighbor(K)} \cup \text{solid torus}) = \text{K} = \text{0 - surgery on K (closed 3-manifold)}
\]

If \(K \) is a knot,
If \(\tilde{\pi}_1'(\mathcal{T}) \subset \mathcal{T} \), \(\mathcal{T} \) as well then \(K \) is solvable.

(2) \(H_2(W) \) has a basis \(\{\xi_i\}_{i=1}^g \) of embedded surfaces (with trivial normal bundle) all disjoint.

(3) \(\mathcal{T} \subset \mathcal{T}' \), \(\mathcal{T} \subset \mathcal{T}'(g) \subset \mathcal{T}(g) \subset \mathcal{T}(n) \)

except for \(g = 1 \) (geometrically).

\[\text{Def} \quad \text{A knot is \((n-)solvabale \)} \]
Def: $K \in \mathcal{F}_n \iff$ is (n)-solvable

Hence slice knots are (n)-solvable.

(1) $H^* (M') \cong H^* (M') \quad \forall k$.

(... some steps...

Note: If K is slice then

(... some steps...)
Other work done at 41,15 year level by

\[\text{rank } \varphi_{n/0.5} \geq 1. \]

\(\text{rank } \varphi_{n/0.5} \geq 1. \)

\(\text{rank } \varphi_{n/0.5} \geq 1. \)

\(\text{rank } \varphi_{n/0.5} \geq 1. \)

For each \(n \geq 0, \)
S. Friedl, T. Kim and T. Glimmer.
Other work done at g, 3, 1, 5, level by

\[\text{rank } a \frac{q_{n+1}}{q_n} \geq 1. \]

For each \(n \geq 0 \),

\(T_{\text{thm}}(\text{cochrane-feichner} \sim 0,n) \),

For \(n = 0, 1, 2, 3, 4, 5, \) contains a \(\mathbb{Z}^2 \).

\(T_{\text{thm}}(\text{livingston}) \) \(\frac{q_1}{q_0}, \frac{q_2}{q_1}, \frac{q_3}{q_2}, \frac{q_4}{q_3}, \frac{q_5}{q_4}, \) contains a \(\mathbb{Z}^2 \).
Thm (Cochran-H-Leidy, 06): For each $n \geq 0,$
$\mathfrak{F}_n/\alpha_{\mathfrak{F}_n}$ has infinite rank.

* In fact we can show our examples are linearly independent of Cochran-Teichner examples that give a \mathbb{Z} in $\mathfrak{F}_n/\alpha_{\mathfrak{F}_n}.$

For this talk, I want to talk about special \mathbb{Z}^∞ subgroups of $\mathfrak{F}_n/\alpha_{\mathfrak{F}_n}$ associated to sequences of prime polynomials.
The string that intersects D into the slice knot

$K \rightarrow D(R,\alpha)(K)$.

Let R be a slice knot, α a curve in Σ. Let $R(\Sigma)$ be $\alpha = \partial D$, where $D = disk \ in \ Sigma$.

iterated doubling; how to create an α-solvable knots.
Example of $D(R,\alpha,\beta,\delta,\xi,\omega)$ (tree foul)

\[R = \alpha \delta \omega \]

We can iterate the doubling operators.
has a "fractal" structure.

If so (for any \(R^1 \)), then the knot concordance

is \(D(\mathbb{R}, \mathbb{R}) \) injective?

\[D(\mathbb{R}^1, \mathbb{R}^1) \quad \mathbb{D}(\mathbb{R}^2, \mathbb{R}^2) \quad \mathbb{D}(\mathbb{R}^3, \mathbb{R}^3) \]

Thus we have functions (not homomorphisms)

slice.

Fact: If \(K \) is slice then \(D(\mathbb{R}^1, \mathbb{R}^1)(K) \) is
7-inverse (L-signature defects).

To do this we use Cheeger-Gromov L-

However, in general, it is difficult to
tell if such a knot is \((n+1)\)-solvable.

\[
\sum \mathcal{D}_{(\mathcal{R}, \mathcal{D})} \left(D_{(\mathcal{R}, \mathcal{D})} (K) \right) \in \mathbb{Z},
\]

\[
K = 0 \text{ solvable (K \in \mathbb{Z}).}
\]

Let \(K \) be any knot with \(\text{Art}(K) = 0 \)

Proposition: If \(K \in \mathbb{Z}^+ \) then \(\mathcal{D}_{(\mathcal{R}, \mathcal{D})} (K) \).
In $\mathbb{F}_{p^n}/\mathbb{F}_p$ that survives in subgroup of $\mathbb{F}_{p^n}/\mathbb{F}_p$.

We show that for each P, there is a subgroup $\mathfrak{F}_P \subset \mathfrak{F}$, s.t. a subgroup $\mathfrak{F}_P \subset F$. For each sequence $P = (P_l(t), \ldots, P_r(t))$, we associate \mathfrak{F}_P. (n)-Solvable filtration
\[S_1 = \{ \frac{m}{n} \mid m \in \mathbb{Z}, n = \text{odd} \} \]

\[B = \mathbb{R}/\mathbb{Z} = \overline{\mathbb{R}/\mathbb{Z}} \]

\[B = \mathbb{R}/\mathbb{Z} = \overline{\mathbb{R}/\mathbb{Z}} \leftarrow B = \mathbb{R}/\mathbb{Z} \]

\[A = \mathbb{R}/3\mathbb{Z} \leftarrow A = \mathbb{R}/3\mathbb{Z} \]

\[A = \mathbb{R}/3\mathbb{Z} \leftarrow A = \mathbb{R}/3\mathbb{Z} \]

\[\exists x : p = 3 \cdot \boxed{a} = 3 \]

\[A_5 = \mathbb{A}_5 \mathbb{Z}_5 = \mathbb{A}_5 \mathbb{Z}_5 \]

\[\mathbb{A}_5 = \mathbb{A}_5 \mathbb{Z}_5 = \mathbb{A}_5 \mathbb{Z}_5 \]

\[\mathbb{A}_5 = \mathbb{A}_5 \mathbb{Z}_5 = \mathbb{A}_5 \mathbb{Z}_5 \]

Let \(S = \{ n \in \mathbb{N} \mid n \neq 0 \text{ and } \text{(p,n) = 1} \} \). Then \(S \) is a localizing system at the prime \(p \).

We can localize \(A \) at the prime \(p \).

Consider any module over \(\mathbb{Z} \) (i.e., abelian group).

If \(A \) is any module over \(\mathbb{Z} \) and \(a \) prime ideal of \(\mathbb{Z} \).

Example of Chen's localization.
Let a be a right divisor set.

\[S(\text{a}) = \{g \mid g(a) = \text{a}, \text{a} \in \text{A}, \text{a} \neq \text{e} \} \]

Prop.

A is a monomorphism if $\pi : A \to \mathbb{Z}$ is a field of fractions.

(\text{i.e., } \mathbb{Z} \subset \text{A}\text{f of fractions})

poly-torsion-free abelian group

A is an abelian and P_0 a \mathfrak{q}-field, \mathfrak{q} unit $\mathfrak{g} \neq 0$

$\mathfrak{q} = \{\mathfrak{q} \mid \mathfrak{q} \subset \mathcal{O}[\mathfrak{t}, t], \mathfrak{g} \neq \text{unit} \}$

Consider:

Non-commutative localization at a prime
otherwise, we say they are strongly coprime, \((p, q) = 1 \).

\[\text{mean} \rightarrow \text{cp} \rightarrow R^p = R^q \]

and some \(R^p \) of \(R^p \) and \(R^q \) of \(R^q \), and some denoted \((p, q) \neq 1 \) for some non-zero roots,

\[\text{Def: We say \((p, q) \) and \(R^p \) and \(R^q \) are isogenous,} \]

that are "coprime" to a fixed \(\text{p} \).

We would like to invert all "polynomials" \(\mathbb{F} \rightarrow \mathbb{F} \).

Hence we can invert the set \(S = S(0) \)
\[
\begin{align*}
(p_k, p_0) &= 1 \quad \text{when } k \neq 0, \\
\{ \frac{K}{K+1}, \frac{K+1}{K+2} \} \quad \text{roots } \quad R_{k, n} = \{ K \} \\
\mathbb{R}_k^+ \quad \text{for } \quad K \in \mathbb{R}^+ \\
K_{(t)} = (K_t - (K+1))(K+1) + K_t - K, \quad K \in \mathbb{R}^+ \\
\text{roots of } g \quad \text{root of } p \\
\text{"h" root of } g \\
S = 2 \quad \text{Sina } 2 \neq I \quad \text{Sina have no common root}.
\end{align*}
\]
\[M_{\gamma} = W_{\Omega_0\cdot s} \]

\[M \text{ is a (right) } \Omega_0\text{-module, then} \]

\[s^p = s \left(g \in \Omega_0 \mid (p, q) = 1 \right) \]

For \(p(t) \) (non-unital, non-zero) define \(p(b) \) in \(\Omega_0 \).

If \(p(a) \) is relatively prime to \(\text{group } F, \) and nonzero \(\mathbb{A}, b \in F \) for any \(f \), \(g \), \(\text{free abelian} \)

\[(p, q) = 1 \]

\[\text{Prop: } p, q \in \Omega_0 \text{ (non-zero, non-unit,} t \)
\[p = \{ p_1, \ldots, p_n \} \]

We can use this localization to define

\[f(p) = \begin{cases} 1 & \text{if } \bigcap_{i=1}^{g(a)} S^{p_i} = 0 \end{cases} \]

\[\overline{\bigcup \{ \text{for any } a \notin \Omega \}} \]
Let $P = \{p_1, \ldots, p_n\}$. For each $1 \leq l \leq n$,

\[
\left[\text{derived}\right]
\]
A knot K is (n', p')-solvable if
\[\mathcal{H}^g_1(M') \cap \mathcal{H}^g_1((\mathbb{Z}/p')M') = \mathcal{H}^g_1(M') \]
except for $g = 1$ (geometrically). All surfaces (with trivial normal bundle) all disjoint surfaces (with trivial normal bundle) all disjointly embedded have a basis $\{ g_i \}_{i=1}^g$ of embedded \mathbb{Z}^2.

\[H^2(W) \cong H^1(M') \cong H^1((n', p')M') \]

Let W (n-solution) s.t.

W (0-surgery on K) bounds a spin M^k if A knot K is (n', p')-solvable (neither n' nor p' is divisible by 2).
Hence $Z^d \cap Z^g = 0$.

And $\operatorname{Hom}(Z^d, Z^p)$ is a monomorphism.

If $Z^d \cong Z^p / \mathfrak{p}$, then the image of Z^d under $\mathfrak{f} \to \mathfrak{f}^{1+u}$ is 0.

If $\mathfrak{f} = (p_1, \ldots, p_n)$, then the image of \mathfrak{f}^{1+u} is strongly Cohen-Macaulay.

There is a subgroup $\mathbb{Z}^d \subseteq \mathbb{Z}^{\infty}$.

Theorem (Cohen-Keisler): For each $F = \{p_1, \ldots, p_n\}$,
Let $R^t = p^t(k)$ then

$$\forall x, y \in R^t : (x, y) = (p_1, \ldots, p_m) \Rightarrow m \leq k.$$
and \(\mathbb{Z} \neq \mathbb{Z} \cap \mathbb{P} \). When \((\ldots, m_0, \ldots) \neq (\ldots, m_0, \ldots) \)

Then \(\mathbb{Z} \cap \mathbb{P} = \mathbb{N} \) if \(\mathbb{Z} \) is an \(\mathbb{N} \)-module.

Define \(\ker(K, \ldots, m_n) = \mathbb{D}^{(\text{rank}(K, \ldots, m_n))} \) \(\ker(K, \ldots, m_n) \) over \(\mathbb{Z} \).

Let \(\{K_i\} \) be a infinite set of knots with