THE GROWTH RATE OF THE FIRST BETTI NUMBER IN ABELIAN COVERS OF 3-MANIFOLDS

TIM D. COCHRAN AND JOSEPH MASTERS

Abstract

We give examples of closed hyperbolic 3-manifolds with first Betti number 2 and 3 for which no sequence of finite abelian covering spaces increases the first Betti number. For 3-manifolds M with first Betti number 2 we give a characterization in terms of some generalized self-linking numbers of M, for there to exist a family of \mathbb{Z}_n covering spaces, M_n , in which $\beta_1(M_n)$ increases linearly with n. The latter generalizes work of M. Katz and C. Lescop [KL], by showing that the non-vanishing of any one of these invariants of M is sufficient to guarantee certain optimal systolic inequalities for M (by work of Ivanov and Katz [IK]).

INTRODUCTION

Motivated by the attempt to classify all 3-dimensional manifolds via the **Geometrization Conjecture** of W. Thurston, it has been variously conjectured that, if M is an orientable, irreducible closed 3-manifold with infinite fundamental group, then:

Virtual Haken Conjecture. (VHC) *M* is finitely covered by a Haken manifold;

Virtual Positive Betti Number Conjecture. (VPBNC) Some finite cover of *M* has positive first Betti number;

Virtual Infinite Betti Number Conjecture. (VIBNC) Either $\pi_1(M)$ is virtually solvable or M has finite covers with arbitrarily large first Betti number;

Virtual Fibering Conjecture. (VFC) M has a finite cover that fibers over the circle.

There are easy implications VIBNC \Longrightarrow VPBNC \Longrightarrow VHC and VFC \Longrightarrow VPBNC \Longrightarrow VHC. Each implies, if M is atoroidal, the long-standing conjecture of Thurston that such a manifold admits a geometric structure. It is interesting to note that even if M is **assumed** to be hyperbolic, the conjectures above are open.

In this paper, we restrict our attention to VIBNC. (We note in passing that the alternative " $\pi_1(M)$ is virtually solvable" is sometimes replaced by the a priori stronger alternative that "M is finitely covered by the 3-torus, a nilmanifold or a solvmanifold.") One rich source of finite covering spaces are those obtained as iterated (regular) finite **abelian** covering spaces. Thus specifically, in this paper we consider the stronger:

The first author was partially supported by the National Science Foundation. The second author was supported by a National Science Foundation Postdoctoral Research Fellowship.

Question A. Does there exist an integer m, such that, if M is any closed, atoroidal 3-manifold with $\beta_1(M) \ge m$ then $\beta_1(M)$ can be increased in a finite abelian covering space?

Note that some condition on $H_1(M)$ is necessary, for if $H_1(M) = 0$, then M admits no non-trivial abelian covering spaces. Counter-examples also exist for many manifolds with $\beta_1(M) = 1$. For if M is zero-framed surgery on a knot in S^3 , then it is easy to show that $H_1(\widetilde{M}; \mathbf{Q}) \cong \mathbf{Q} \oplus Q[t, t^{-1}]/\langle \Delta_k, t^n - 1 \rangle$ where \widetilde{M} is the *n*-fold cyclic cover and Δ_k is the Alexander polynomial of K. Thus $\beta_1(\widetilde{M}) = \beta_1(M) = 1$ except when Δ_k has a cyclotomic factor. We begin this paper by observing that counter-examples also exist in the cases $\beta_1(M) = 2$ and $\beta_1(M) = 3$.

Theorem. There exist closed hyperbolic 3-manifolds M with $\beta_1(M) = 2$ (respectively 3) for which no sequence of finite abelian covers increases the first Betti number.

It is noteworthy that Question A is still open.

If $\beta_1 > 0$, then there is an epimorphism $\pi_1(M) \to \mathbb{Z}$, and a corresponding sequence of finite cyclic covers of M. Our second contribution is, in the case $\beta_1(M) = 2$, to give necessary and sufficient conditions, of a somewhat geometric flavor, for the Betti number of these covers to increase linearly with the covering degree. This is the content of Section 2.

1. On abelian covers of hyperbolic 3-manifolds with $\beta_1(M)=2$ and 3

In this section, we observe that, if Question A has an affirmative answer, then the integer m must be at least 4.

Theorem 1.1. There exist closed hyperbolic 3-manifolds M with $\beta_1(M) = 2$ (respectively 3) such that if \widetilde{M} is obtained from M by taking a sequence of finite abelian covering spaces, then $\beta_1(\widetilde{M}) = \beta_1(M)$.

Proof. Begin with a "seed" manifold N whose fundamental group is nilpotent. If $\beta_1(N) = 2$ we let N be 0-framed surgery on the Whitehead link, commonly known as the **Heisenberg manifold**. The latter may also be described as the circle bundle over the torus with Euler class 1. It is well known that the fundamental group of this manifold is F/F_3 where F is the free group of rank 2 and F_3 is the third term of the lower-central series of F. If $\beta_1(N) = 3$, let $N = S^1 \times S^1 \times S^1$.

Next alter the seed manifold in a subtle way using the following result of A. Kawauchi [Ka; Corollary 4.3] (see also Boileau-Wang [BW section 4]).

Proposition 1.2. (Kawauchi) For any closed 3-manifold N, there exists a hyperbolic 3-manifold M and a degree 1 map $f: M \to N$ that induces an isomorphism on homology groups with local coefficients in $\pi_1(N)$. In particular, if \widetilde{N} is any regular covering space of N and $\widetilde{f}: \widetilde{M} \to \widetilde{N}$ is the pull-back, then \widetilde{f} induces isomorphisms on homology groups.

Proof. To the best of our knowledge, this result was first established by Kawauchi using his theory of **almost identical imitations**. We sketch a proof using the approach of Boileau and Wang. Recall that any 3-manifold N contains a knot J whose exterior is hyperbolic. With more work, Boileau and Wang ensure that there exists such a knot J which is "totally null-homotopic", i.e., bounds a map of a 2-disk, $\phi: D^2 \to N$, such that the inclusion map $\pi_1(\operatorname{image} \phi) \to \pi_1(N)$ is trivial. Let

 M_n be the result of 1/n-Dehn surgery on N along J. By work of W. Thurston, for almost all n, M_n is hyperbolic. Choose such an M_n and denote it by M. Since J is null-homotopic there is a degree one map $f: M \to N$ that induces an isomorphism on H_1 .

Let \widetilde{N} be a cover of N. Since J is null-homotopic, it lifts to \widetilde{N} , and there is an induced cover \widetilde{M} and an induced map $\widetilde{f} : \widetilde{M} \to \widetilde{N}$. Since J is totally null-homotopic, the pre-images of J bound disjoint Seifert surfaces in \widetilde{M} , and so $\widetilde{f} : \widetilde{M} \to \widetilde{N}$ is an isomorphism on homology.

It follows from Proposition 1.2 that, for **any** covering space \widetilde{M} of M that is "induced" from a cover \widetilde{N} of N, the induced map $\widetilde{f} : \widetilde{M} \to \widetilde{N}$ is an isomorphism on homology, so $\beta_1(\widetilde{M}) = \beta_1(\widetilde{N})$.

Specifically, letting \widetilde{N} be the universal cover, $H_1(\widetilde{M}) \cong H_1(\widetilde{N}) = 0$ showing that that $\pi_1(\widetilde{M})$ is a perfect group. But $\pi_1(\widetilde{M})$ is kernel (f_*) . Indeed, the condition that $f: M \to N$ induce an isomorphism on first homology with local coefficients in $\pi_1(N)$ is equivalent to the condition that the kernel of $f_*: \pi_1(M) \to \pi_1(N)$ be a perfect group.

Returning to the proof of our theorem, we claim that the manifold M satisfies the conclusion of the theorem. For suppose $\widetilde{M} \xrightarrow{p} M$ is a finite abelian covering space of M corresponding to a surjection $\psi : \pi_1(M) \to A$ where A is a finite abelian group. Since $f : M \to N$ induces an isomorphism on H_1 , ψ factors through $f_* :$ $\pi_1(M) \to \pi_1(N)$ via a surjection $\phi : \pi_1(N) \to A$. Therefore there is a finite abelian cover \widetilde{N} of N and a lift $\widetilde{f} : \widetilde{M} \to \widetilde{N}$. Thus by Proposition 1.2 $H_1(\widetilde{M}) \cong H_1(\widetilde{N})$. But we claim that $\beta_1(\widetilde{N}) \cong \beta_1(N)$. When N is $S^1 \times S^1 \times S^1$ this is clear. If N is the Heisenberg manifold, then first note that N is the circle bundle over a torus T with Euler class 1. The fiber is null-homologous so ϕ factors through $\pi_1(T)$. Thus there is a finite cover $g : \widetilde{T} \to T$ such that \widetilde{N} is the circle bundle over the torus \widetilde{T} obtained by pulling back N. Its Euler class, e, is equal to the degree of g, in particular is not zero. The fundamental group of \widetilde{N} is $\langle x, y, t : [x, y] = t^e, [x, t], [y, t] \rangle$ and from this we see that $\beta_1(\widetilde{N}) = 2 = \beta_1(N)$. Thus $\beta_1(\widetilde{M}) = \beta_1(\widetilde{N}) = \beta_1(N) = \beta_1(M)$ as claimed. This shows that the first Betti number of M cannot be increased by a *single* abelian cover.

By Proposition 1.2 and an easy induction, we see that any *sequence* of abelian covers of M must be induced from a sequence of abelian covers of N. To finish the proof we only need to observe that $\beta_1 N$ cannot be increased by any sequence of abelian covers. Again, in the case where $N \cong S^1 \times S^1 \times S^1$, this is clear. If N is the Heisenberg manifold, note that our special argument above works as well for any bundle whose Euler class is merely non-zero (the fiber is still rationally null-homologous). Thus the iterated abelian covers of N continue to be circle bundles with non-zero Euler class, and the arguments of the previous paragraph apply to show that these covers all have $\beta_1 = 2$.

2. LINEAR GROWTH OF BETTI NUMBERS IN CYCLIC COVERING SPACES

In this section we ask whether or not it is possible to increase the first Betti number with *linear growth rate* in some *compatible family* of cyclic covering spaces. If M_{∞} is a fixed infinite cyclic covering space corresponding to an epimorphism $\psi : \pi_1(M) \to \mathbb{Z}$ then by a *compatible family* we mean the usual family of finite cyclic covers M_n associated to $\pi_1(M) \to \mathbb{Z} \to \mathbb{Z}_n$. By a *linear growth rate* we mean $\lim_{\to \to} (\beta_1(M_n)/n)$ is positive. It already known that linear growth occurs precisely when $H_1(M_{\infty})$ has positive rank as a $\mathbb{Z}[t, t^{-1}]$ -module [Lu, Theorem 0.1][Lu, pg.35 Lemma 1.34,pg.453]. Therefore our contribution is to offer a more geometric way of viewing this criterion. We also point out an application to certain optimal systolic inequalities for such 3-manifolds as have appeared in work of Katz [IK][KL].

One should note from the outset that if $\pi_1(M)$ admits an epimorphism to $\mathbb{Z} * \mathbb{Z}$, then it is an easy exercise to elementary show that $\beta_1(M)$ can be increased linearly in finite cyclic covers since the same is patently true of the wedge of two circles. Such manifolds arise, for example, as 0-framed surgery on 2-component boundary links. This condition is not necessary however as we shall see in Example 2 below.

Suppose M is a closed, oriented 3-manifold with $\beta_1(M) = 2$. Given any basis $\{x, y\}$ of $H^1(M, \mathbb{Z})$ we shall define a sequence of higher-order invariants $\beta^n(x, y)$; $n \geq 1$ taking values in sets of rational numbers. The invariants can be interpreted as certain Massey products in M. The invariant $\beta^1(x, y)$ is always defined, is independent of basis, and essentially coincides with the invariant λ , an extension of Casson's invariant, due to Christine Lescop [Les]. If β^i is defined for all i < n and is zero, then β^n is defined (this is why the invariants are called higher-order). If $H_1(M)$ has no torsion, so that M can be viewed as 0-framed surgery on a 2-component link in a homology sphere (with Seifert surfaces dual to $\{x, y\}$) then β^n , when defined, is the same as the sequence of link concordance invariants of the same name due to the first author [C1]. In this case β^1 was previously known as the Sato-Levine invariant.

After defining the invariants $\beta^n(x, y)$, we show that their vanishing is equivalent to the linear growth of Betti numbers in the family corresponding to the infinite cyclic cover associated to x.

Theorem 2.1. Let M be a closed oriented 3-manifold with $\beta_1(M) = 2$. The following are equivalent.

- A. There exists a compatible family $\{M_n | n \ge 1\}$ of finite cyclic covers of M such that $\beta_1(M_n)$ grows linearly with n.
- B. There exists a primitive class $x \in H^1(M; \mathbb{Z})$ such that for any basis $\{x, y\}$ of $H^1(M; \mathbb{Z})$, $\beta^n(x, y) = 0$ for all $n \ge 1$.
- C. There exists a primitive class $x \in H^1(M; \mathbb{Z})$ such that for **some** basis $\{x, y\}$ of $H^1(M; \mathbb{Z})$, $\beta^n(x, y)$ can be defined and contains 0 for each $n \ge 1$.

Corollary 2.2. Let M be a closed oriented 3-manifold with $\beta_1(M) = 2$. Let \widetilde{M} denote the universal torsion-free abelian $(\mathbb{Z} \oplus \mathbb{Z})$ cover of M. Let [F] denote the class in $H_1(\widetilde{M})$ of a lift of a typical fiber of the Abel-Jacobi map of M (represented by a lift of the circle we called c(x, y) above). If, for some $\{X, Y\}$, and some n, $\beta^n(X, Y) \neq 0$ then [F] is non-zero.

The above Corollary generalizes an (independent) result of A. Marin (see Prop.12.1 of [KL]), which dealt with only the case n = 1. The significance of this Corollary is that it has been previously shown by Ivanov and Katz ([IK, Theorem 9.2 and Cor.9.3]) that the conclusion of Corollary 2.2 is sufficient to guarantee a certain optimal systolic inequality for M. The interested reader is referred to those works.

Suppose c and d are disjointly embedded oriented circles in M that are zero in $H_1(M; \mathbf{Q})$. Then the **linking number of** c with d, $\ell k(c, d) \in \mathbf{Q}$ is defined as follows. Choose an embedded oriented surface V_d whose boundary is "m times d" (i.e. a circle in a regular neighborhood N of d that is homotopic in N to md) for some positive integer m, and set:

$$\ell k(c,d) = \frac{1}{m} (V_d \cdot c).$$

Given this, the invariants $\beta^n(x, y)$ are defined as follows. Let $\{V_x, V_y\}$ be embedded, oriented connected surfaces that are Poincaré Dual to $\{x, y\}$ and meet transversely in an oriented circle that we call c(x, y) (by the proof of [C1, Theorem 4.1] we may assume that c(x, y) is connected). Let $c^+(x, y)$ denote a parallel of c(x, y) in the direction given by V_y . Note that $\{V_x, V_y\}$ induce two maps ψ_x, ψ_y from M to S^1 wherein the surfaces arise as inverse images of a regular value. The product of these maps yields a map $\psi : M \to S^1 \times S^1$ that induces an isomorphism on H_1 /torsion. Since c(x, y) and $c^+(x, y)$ are mapped to points under ψ , they represent the zero class in $H_1(M; \mathbf{Q})$. Therefore we may define $\beta^1(x, y) = \ell k(c(x, y), c^+(x, y))$. In fact, $-\beta^1(x, y) \cdot |\operatorname{Tor} H_1(M; \mathbf{Z})|$ is precisely Lescop's invariant of M [Les; p.90-94]. An example is shown in Figure 1 of a manifold with $\beta^1(x, y) = -k$.

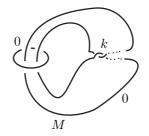


FIGURE 1. Example of $\beta^1(x, y) = -k$

The idea of the higher invariants is to iterate this process as long as possible (compare [C1]). Since $c^+(x,y)$ is rationally null-homologous, there is a surface $V_{c(x,y)}$ whose boundary is "k times $c^+(x,y)$)" (in the sense above). We could then define c(x,x,y) to be $V_x \cap V_{c(x,y)}$, an embedded oriented circle on V_x . If c(x,x,y) is rationally null-homologous, then $\beta^2(x,y)$ is defined as $\ell k(c(x,x,y),c^+(x,x,y))$ and we may also continue and define c(x,x,x,y). In general $c(x,x\ldots,x,y) = c(x^n,y)$ will be able to be defined using the chosen surfaces if $c(x^{n-1},y)$ is defined and is also rationally null-homologous (but to do so involves one more choice of a bounding surface). Once $c(x^n, y)$ is defined and is rationally null-homologous, we may define $\beta^n(x,y)$. In general, we do not claim that the value of $\beta^n(x,y)$ is independent of the choices of surfaces. Therefore the invariants can be thought of as taking values in a set, just like Massey products. This indeterminacy will not concern us here, for we are only interested in the first non-vanishing value (if it exists) and we shall see that this is independent of the surfaces.

Much of the time it is convenient to abbreviate $c(\overbrace{x \dots x}^n, y)$ as c(n) so c(x, y) = c(1).

Definition. If c(n) is defined and rationally null-homologous then $\beta^n(x, y)$ is defined to be the set of rational numbers $\ell k(c(n), c^+(n))$, ranging over all possible ways of defining such a c(n). If no such c(n) exists then $\beta^n(x, y)$ is undefined.

Example 1. Consider the manifold M, shown in Figure 2, obtained from 0-framed surgery on a two component link $\{L_x, L_y\}$. Use a genus one Seifert surface for L_y obtained from the obvious twice-punctured disk and a tube that goes up to avoid L_x . Let V_y be this surface capped-off in M. Similarly use the fairly obvious Seifert surface for L_x in the complement of L_y . Then $c^+(x, y)$ is shown. Since it has selflinking zero with respect to V_x , $\beta^1(x, y) = \beta^1(y, x) = 0$. Furthermore $\beta^2(x, y) =$ -1 (note the link $\{c^+(x, y), L_x\}$ is very similar to that of Figure 1). This means that $\pi_1(M)$ does **not** admit an epimorphism to $\mathbb{Z} * \mathbb{Z}$ since that would imply that $\{L_x, L_y\}$ were a homology boundary link. But $\beta^2(x, y) = -1$ precludes this by [C2]. Nonetheless, further c(yy...y, x) may be taken to be empty since $c^+(x, y)$ and L_y form a boundary link in the complement of L_x . Thus $\beta^n(y, x) = 0$ for all n, indicating, by Theorem 2.1, that the first Betti numbers will grow linearly in the family of finite cyclic covers corresponding to the map $\pi_1(M) \to \mathbb{Z}$ that sends a meridian of L_x to zero and a meridian of L_y to one.

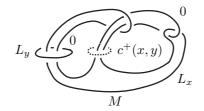


FIGURE 2. Example with linear growth in cyclic covers but no map to $\mathbb{Z} * \mathbb{Z}$

Example 2. Consider the family of manifolds M_k , shown in Figure 3 and Figure 4, obtained from 0-framed surgery on a two component link.

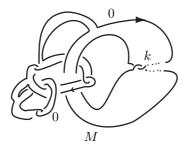


FIGURE 3. Example with $\beta^1(x,y) = 0, \beta^2(x,y) = -k, \beta^2(y,x) = -1$

If V_x denotes the capped-off Seifert surface (obtained using Seifert's algorithm) for the link component, L_x , on the right-hand side and V_y denotes the capped-off Seifert surface for the link component, L_y , on the left-hand side, then the dashed circle in Figure 4 is $c(x,y) = V_x \cap V_y$. The circle c(y,x) is merely this circle with opposite orientation. Since it lies on an untwisted band of V_x , $\beta^1(x,y) = 0 =$

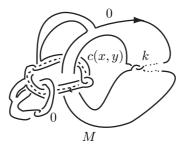


FIGURE 4. The circle c(x, y)

 $\beta^1(y,x)$. Therefore the Lescop invariant of M vanishes. But the link $\{c(x,y), L_x\}$ is the link of Figure 1 so $\beta^2(x,y) = -k$, whereas the link $\{c(y,x), L_y\}$ is a Whitehead link so $\beta^2(y,x) = -1$. We claim further that, as long as $k \neq 0$, for **any** basis $\{X,Y\}$ of $H^1(M)$, $\beta^2(X,Y) \neq 0$. It will then follow from Theorem 2.1 that the first Betti number of M will grow sub-linearly in **any** family of finite cyclic covers. A general basis, $\{V_X, V_Y\}$, of $H_2(M)$ can be represented as follows. Represent V_X by p parallel copies of V_x together with q parallel copies V_y , and represent V_Y by rparallel copies of V_x together with s parallel copies V_y , where $ps - qr = \pm 1$. Thus c(X,Y) = -c(Y,X) is represented by ps - qr parallel copies of c(x,y). It follows that $\beta^1(X,Y) = \beta^1(x,y) = 0$, reinforcing our above claim that β^1 is independent of basis. Hence $V_{c(X,Y)} = \pm V_{c(x,y)}$ so c(X,X,Y) is represented by $\pm pc(x,x,y) \mp$ qc(y,y,x). Since $\beta^2(X,Y)$ is the self-linking number of this class, it can be evaluated to be

$$p^{2}\beta^{2}(x,y) + q^{2}\beta^{2}(y,x) - 2pq\ell k(c(x,x,y),c(y,y,x))$$

but the latter mixed linking number is easily seen to be zero in this case. Hence $\beta^2(X, Y) = -kp^2 - q^2$ which is non-zero if k is non-zero.

Lemma 2.3. Suppose $c(1), \ldots, c(n)$ have been defined as embedded oriented curves on V_x arising as $c(1) = V_x \cap V_y$ and

$$c(j) = V_x \cap V_{c(j-1)} \qquad 2 \le j \le n$$

where $V_{c(j)}$, $1 \leq j \leq n-1$, is a embedded, oriented connected surface whose boundary is a positive multiple k_j of $c^+(j)$ (in the sense above). Then β^j is defined for $1 \leq j \leq n-1$ and the following are equivalent:

- B1: β^1, \ldots, β^n are defined using the given system of surfaces. B2: β^j is defined for $1 \le j \le n$ and is zero for $1 \le j \le \left\lceil \frac{n}{2} \right\rceil$
- B3: c(n+1) exists
- B4: For all s, t such that $1 \le s \le t$ and $s + t \le n$, $\ell k(c(s), c^+(t)) = 0$.

Proof of Proposition 2.3. Assume $1 \leq j \leq n-1$. The hypotheses imply that a positive multiple of $c^+(j)$ is (homotopic to) the boundary of a surface so $c^+(j)$ and c(j) are rationally null-homologous. Thus their linking number is well-defined, establishing the first claim.

B1 \iff **B3**: β^n is defined precisely when [c(n)] = 0 in $H_1(M; \mathbf{Q})$ which is precisely the condition under which c(n+1) can be defined.

B1 \Longrightarrow **B4**: If n = 1 the implication is true since B4 is vacuous. Thus assume by induction that the implication is true for n - 1, that is our inductive assumption is

that, for all s + t < n, $\ell k(c(s), c^+(t)) = 0$. Now consider the case that s + t = n. Since β^n is defined [c(n)] = 0 in $H_1(M; \mathbf{Q})$. We claim this is true precisely when $c(n) \cdot c(1) = 0$ (here we refer to oriented intersection number on the surface V_x). For suppose $\psi_x : M \to S^1$ and $\psi_y : M \to S^1$ are maps such that $\psi_x^{-1}(*) = V_x$ and $\psi_y^{-1}(*) = V_y$. Then $(\psi_x)_*([c(n)]) = 0$ since $c(n) \subset V_x$; and $(\psi_y)_*([c(n)]) = 0$ precisely when $c(n) \cdot V_y = c(n) \cdot c(1) = 0$. But the map $\psi_x \times \psi_y$ completely detects $H_1(M)$ /Torsion. Therefore, once c(n) exists, β^n is defined if and only if:

$$0 = c(n) \cdot c(1) = \pm (c(1) \cdot V_{c(n-1)})$$

= $\pm k_{n-1} \ell k(c(1), c^+(n-1))$

which establishes B4 in the case s = 1. But we claim that, if B4 is true for s + t < n, then for s + t = n and s < t,

$$k_{t-1}\ell k(c(s+1), c^+(t-1)) = k_s\ell k(c(s), c^+(t))$$

This equality can then be applied, successively decreasing s, to establish B4 in generality. This claimed equality is established as follows.

$$\pm k_{t-1}\ell k(c(s+1), c^+(t-1)) = \pm V_{c(t-1)} \cdot c(s+1)$$

$$= \pm V_{c(t-1)} \cdot (V_x \cap V_{c(s)})$$

$$= V_{c(s)} \cdot (V_x \cap V_{c(t-1)})$$

$$= V_{c(s)} \cdot c(t)$$

$$= k_s\ell k(c(t), c^+(s))$$

$$= k_s\ell k(c(s), c^+(t)).$$

The last step is justified by verifying that $c(s) \cdot c(t) = 0$ if s < t. For

$$c(s) \cdot c(t) = c(s) \cdot V_{c(t-1)}$$

= $\pm k_{t-1} \ell k(c(s), c^+(t-1))$

which vanishes by our inductive assumption since s + (t - 1) < n.

B4 \Longrightarrow **B1**: Since β^1 is always defined we may assume n > 1. It follows from B4 that $\ell k(c(1), c^+(n-1)) = 0$ if n > 1. But we saw in the proof of B1 \Longrightarrow B4 that once c(n) was defined, this was equivalent to β^n being defined.

 $B2 \Longrightarrow B1$: This is obvious.

B4 \Longrightarrow **B2**: Since B4 \Longrightarrow B1, we have β^j defined for $j \leq n$. Now suppose $1 \leq j \leq j$ $\left\lceil \frac{n}{2} \right\rceil$. Since $\beta^j = \ell k(c(j), c^+(j) \text{ and } 2j \leq n$, this vanishes by B4.

This completes the proof of Lemma 2.3.

Proof of Theorem 2.1. The proof shows slightly more, namely that there is a correspondence between the infinite cyclic cover implicit in part A and the class x in parts B and C. Suppose $\{M_n\}$ is a family of n-fold cyclic covers of M corresponding to the infinite cyclic cover M_{∞} . Note that $H_1(M_{\infty}; \mathbf{Q})$ is a finitely generated $\Lambda = \mathbf{Q}[t, t^{-1}]$ module (this involves a choice of generator of the infinite cyclic group of deck translations of M_{∞}). Throughout this proof, homology will be taken with rational coefficients unless specified otherwise.

Step 1: $\beta_1(M_n)$ grows linearly $\iff H_1(M_\infty; \mathbf{Q})$ has positive rank as a Λ -module.

This fact is well-known (see for example). We present a quick proof for the convenience of the reader. We are indebted to Shelly Harvey for showing us this elementary proof. Since Λ is a PID,

$$H_1(M_\infty) \cong \Lambda^{r_1} \oplus_j \frac{\Lambda}{\langle p_j(t) \rangle}$$

where $p_j(t) \neq 0$. By examining the "Wang sequence" with **Q**-coefficients

$$H_2(M_{\infty}) \longrightarrow H_2(M_n) \xrightarrow{\partial_*} H_1(M_{\infty}) \xrightarrow{t^n - 1} H_1(M_{\infty}) \xrightarrow{\pi} H_1(M_n) \xrightarrow{\partial_*} H_0(M_{\infty}) \xrightarrow{t^n - 1} H_1(M_n) \xrightarrow{d_*} H_0(M_\infty) \xrightarrow{t^n - 1} H_1(M_\infty) \xrightarrow{d_*} H_1(M_\infty) \xrightarrow{d_*}$$

$$H_1(M_n) \cong \frac{H_1(M_\infty)}{\langle t^n - 1 \rangle} \oplus \mathbf{Q}$$
$$\cong \left(\frac{\Lambda}{\langle t^n - 1 \rangle}\right)^{r_1} \oplus_j \frac{\Lambda}{\langle p_j(t), t^n - 1 \rangle} \oplus \mathbf{Q}.$$

The first summand contributes nr_1 to $\beta_1(M_n)$. The **Q**-rank of the second summand is bounded above by the sum of the degrees of the p_j , a number that is **independent** of n. Therefore $\beta_1(M_n)$ grows linearly with n if $r_1 \neq 0$ and otherwise is bounded above by a constant (independent of n).

Step 2: $H_1(M_{\infty})$ has positive Λ -rank $\iff H_1(M_{\infty})$ has no (t-1)-torsion (equivalently t-1 acts injectively). To verify Step 2, consider the "Wang sequence" with **Q**-coefficients

$$H_2(M_{\infty}) \longrightarrow H_2(M) \xrightarrow{\partial_*} H_1(M_{\infty}) \xrightarrow{t-1} H_1(M_{\infty}) \xrightarrow{\pi} H_1(M) \xrightarrow{\partial_*} H_0(M_{\infty}) \xrightarrow{t-1} H_0(M_{\infty})$$

associated to the exact sequence of chain complexes

$$0 \longrightarrow C_*(M_{\infty}; \mathbf{Q}) \xrightarrow{t-1} C_*(M_{\infty}; \mathbf{Q}) \xrightarrow{\pi} C_*(M; \mathbf{Q}) \longrightarrow 0.$$

Since $H_0(M_{\infty}) \cong \mathbf{Q}$, image $\partial_* \cong \mathbf{Q}$ on $H_1(M)$. If $\beta_1(M) = 2$ then it follows that $\mathbf{Q} \cong \ker \partial_* = \operatorname{image}(\pi) \cong \operatorname{cokernel}(t-1)$. It follows that $H_1(M_{\infty})$ contains at most one summand of the form $\Lambda / \langle (t-1)^m \rangle$ since each such summand contributes precisely one \mathbf{Q} to cokernel(t-1). Similarly each Λ summand of $H_1(M_{\infty})$ contributes one \mathbf{Q} to the cokernel. Therefore $H_1(M_{\infty})$ has positive Λ rank if and only if it has no summand of the form $\Lambda / \langle (t-1)^m \rangle$. The latter is equivalent to saying that it has no (t-1)-torsion, or that t-1 acting on $H_1(M_{\infty})$ is injective. This completes Step 2.

Step 3: $(t-1): H_1(M_{\infty}) \to H_1(M_{\infty})$ is injective \iff For any surface V_x , dual to x, and for each surface V_y such that $\{[V_y], [V_x]\}$ generates $H_2(M; \mathbb{Z})$, the class $[\tilde{c}(x, y)] \in H_1(M_{\infty}; \mathbb{Q})$ is zero. Moreover the latter statement is equivalent to one where "for each" is replaced by "for some".

Suppose that t-1 is injective. Note that the injectivity of t-1 is equivalent to $\partial_* : H_2(M) \to H_1(M_\infty)$ being the zero map. Then, for **any** $[V_y]$ as above, $\partial_*([V_y]) = 0$. But we claim that $\partial_*([V_y])$ is represented by $[\tilde{c}(x,y)]$, since V_x is Poincaré Dual to the class x defining M_∞ . For if $Y = M - \operatorname{int}(V_x \times [-1,1])$ then a copy of Y, denoted \tilde{Y} , can be viewed as a fundamental domain in M_∞ , as shown in Figure 5.

Moreover if \widetilde{V}_y denotes $p^{-1}(V_y) \cap \widetilde{Y}$ then \widetilde{V}_y is a compact surface in \widetilde{M} whose boundary is $t_*(\widetilde{c}(x,y)) - \widetilde{c}(x,y)$. Thus \widetilde{V}_y is a 2-chain in M_∞ such that $\pi_{\#}(\widetilde{V}_y)$ gives the chain representing $[V_y]$. Since $\partial \widetilde{V}_y$ is $(t-1)\widetilde{c}(x,y)$ in $C_*(M_\infty; \mathbf{Q})$, it follows from

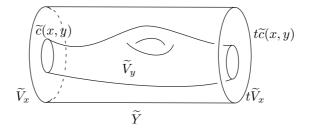


FIGURE 5. Fundamental Domain of M_{∞}

the explicit construction of ∂_* in the proof of the Zig-Zag Lemma [Mu,Section 24] that $\partial_*([V_y]) = [\tilde{c}(x, y)].$

Conversely, if $\partial_*([V_y]) = 0$ for some $[V_y]$ then ∂_* is the zero map (note that since V_x lifts to M_∞ , $[V_x]$ lies in the image of $H_2(M_\infty) \longrightarrow H_2(M)$ so $\partial_*([V_x]) = 0$ t).

Therefore the injectivity statement implies the "for each" statement which clearly implies the "for some" statement. Conversely, the "for some" statement implies the injectivity statement.

Step 4: The class $[\tilde{c}(x, y)]$ from Step 3 is 0 if and only if it is divisible by $(t-1)^k$ for every positive k. In fact it suffices that it be divisible by $(t-1)^N$ where N is the largest nonnegative integer such that $\Lambda / \langle (t-1)^N \rangle$ is a summand of $H_1(M_{\infty}, \mathbf{Q})$.

One implication is immediate, so assume that there exists a class $[V_y]$ as in Step 3 such that $\partial_*([V_y]) = [\tilde{c}_1] = (t-1)^N \beta$ for some $\beta \in H_1(M_\infty)$. Since $[\tilde{c}_1] \in \text{image } \partial_*$, it is (t-1)-torsion so β is $(t-1)^{N+1}$ -torsion. Moreover β lies in the submodule $A \subset H_1(M_\infty, \mathbf{Q})$ consisting of elements annihilated by some power of t-1, so, by choice of N, $(t-1)^N \beta = 0 = [\tilde{c}_1] = 0$ as desired. This completes the verification of Step 4.

Step 5: C \Rightarrow A Let $\{x, y\}$ be as in the hypotheses of C and let M_{∞} correspond to the class x. Let N be the positive integer as above. If $\beta^{(N+1)}$ can be defined, we know in particular that there exists some system of surfaces $\{V_x, V_y, ..., V_{c(N)}\}$ that defines $\{c(j)\}, 1 \leq j \leq (N+1)$. Choose a preferred lift \tilde{V}_x , of V_x to M_{∞} and a preferred fundamental domain \tilde{Y} as above lying on the positive side of \tilde{V}_x . Consider any $m, 1 \leq m \leq N$. Since c(m) and c(m+1) lie on V_x , they lift to oriented 1-manifolds $\tilde{c}(m)$ and $\tilde{c}(m+1)$ in \tilde{V}_x . Similarly $c^+(m)$ lifts to $\tilde{c}^+(m)$, which is a push-off of $\tilde{c}(m)$ lying in \tilde{Y} . Recall that $c(m+1) = V_{c(m)} \cap V_x$ where $\partial V_{c(m)} = k_m c^+_{(m)}$ for some positive integer k_m . Letting $\tilde{V}_{c(m)}$ be $V_{c(m)}$ cut open along c(m+1) we observe that $\tilde{V}_{c(m)}$ can be lifted to \tilde{Y} and viewed as a 2-chain showing that $k_m[\tilde{c}^+(m)] = (t-1)[\tilde{c}(m+1)]$ in $H_1(M_{\infty}; \mathbf{Q})$, as in Figure 6.

Thus $[\tilde{c}^+(1)] = (t-1)(1/k_1)[\tilde{c}(2)] = (t-1)^2(1/k_1)(1/k_2)[\tilde{c}(3)]$, et cetera, showing that $[\tilde{c}(1)]$ is divisible by $(t-1)^N$. By Steps 1 through 4, this implies A of Theorem 2.1, completing Step 5.

Step 6: A \Rightarrow B We assume that there is a primitive class $x \in H^1(M; \mathbb{Z})$ corresponding to M_{∞} and $\{M_n\}$ where $\beta_1(M_n)$ grows linearly. By Steps 1, 2, and 3, for any $\{x, y\}$ generating $H^1(M; \mathbb{Z})$, $H_1(M_{\infty}; \mathbb{Q})$ has no (t-1)-torsion, and for any surfaces dual to $x, y, [\tilde{c}(1)] = 0$. Recall that c(1) and c(2) are always defined. We shall establish inductively that for all $m \geq 2$, c(m) is defined and that for any

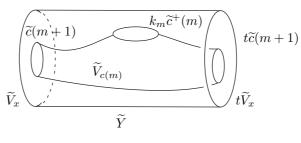


FIGURE 6

system of surfaces used to define c(m-1), $[\tilde{c}(m-1)] = 0$ in $H_1(M_{\infty}; \mathbf{Q})$. This has already been shown for m = 2. Suppose it has been established for m (and all lesser values). We now establish it for m+1. Since c(m) and c(m-1) exist, the argument in Step 5 (Figure 6) shows that $k_{m-1}[\tilde{c}(m-1)] = (t-1)[\tilde{c}(m)]$ in $H_1(M_{\infty}; \mathbf{Q})$. But $[\tilde{c}(m-1)] = 0$ so $[\tilde{c}(m)]$ is (t-1)-torsion. Since there is no non-trivial (t-1)-torsion, $[\tilde{c}(m)] = 0$ in $H_1(M_{\infty}; \mathbf{Q})$. Hence [c(m)] = 0 in $H_1(M; \mathbf{Q})$ so c(m+1) is defined. Since this holds for any system of defining surfaces, this completes the inductive step.

Since c(m) is defined for all $m \ge 1$, by Lemma 2.3, $\beta^n(x, y) = 0$ for all $n \ge 1$. This completes the proof of Step 6.

Since B clearly implies C, this completes the proof of Theorem 2.1.

Proof of Corollary 2.2. Assume some $\beta^m(x, y) \neq 0$. If [F] were zero then certainly, for the fixed infinite cyclic cover, M_{∞} , corresponding to x, $[\tilde{c}(x, y)] = 0$ in $H_1(M_{\infty}; \mathbb{Q})$ so by Steps 1-3 of the above proof, $\beta_1(M_n)$ grows linearly with n. By Theorem 2.1, this would imply that $\beta^m(x, y) = 0$ for all m, a contradiction. \Box

References

- [C1] T. Cochran, Geometric Invariants of Link Cobordism, Comment. Math. Helvetici, 60 (1985), 291-311.
- [C2] T. Cochran, Derivatives of links: Milnor's concordance invariants and Massey's products, Memoirs of AMS #427, American Math. Soc., Providence, RI, 1990.
- [BW] M. Boileau and S. Wang, Non-zero degree maps and surface bundles over S¹, J. Diff. Geometry 43 (1996), 789–806.
- [KL] M. Katz and C. Lescop, Filling Area Conjecture, Optimal Systolic Inequalities, and the fiber class in Abelian covers, preprint math.DG/0412011.
- [Ka1] Akio Kawauchi, An imitation theory of manifolds, Osaka J. Math. 26 (1989), 447-464.
- [Ka2] _____, Almost identical imitations of (3,1)-manifold pairs, Osaka Journal Math. 26 (1989), 743-758.
- [Kr] D. Kraines, Massey Higher Products, Trans. Amer. Math. Soc. 124 (1966), 431-449.
- [Les] C. Lescop, Global Surgery Formula for the Casson-Walker Invariant, Annals of Math Studies 140, Princeton Univ. Press, Princeton, N.J., 1996.
- [Lu] W. Lück, L²-invariants: Theory and Applications to Geometry and K-theory, A series of Modern Surveys in Mathematics volume44, Springer-Verlag, Berlin Heidelberg New York,(2002).

RICE UNIVERSITY, HOUSTON, TEXAS, 77005-1892 *E-mail address:* cochran@math.rice.edu

SUNY AT BUFFALO, BUFFALO,N.Y. E-mail address: jdmaster@eng.buffalo.edu