(1) Consider the system
\[y'_1 = -y_1, \quad y'_2 = -y_2 + z^2, \quad z' = z. \]

(a) Solve the system.
(b) Determine the conjugacy \(H \) between the system and the linearized system by successive approximation.
(c) Use \(H \) to determine the stable and unstable manifold.

(2) Consider the system
\[y' = -y, \quad z'_1 = z_1, \quad z'_2 = z_2 + y^2 + yz_1 \]
and proceed as in assignment (1).

(3) Consider the system
\[y'_1 = -y_1, \quad y_2 = -y_2 + y_1^2 z, \quad z' = z \]
and show that the approximations for \(\Phi \) in \(H = (\Phi, \Psi) \) do not converge globally.

(4) Consider the system
\[z'_1 = 2z_1, \quad z'_2 = 4z_2 + z_1^2. \]
Show that the approximations for \(H = \Psi \) do not converge globally. Furthermore show that if \(H \) is twice continuously differentiable then the Jacobian \(J(z) = \det DH(z) \) vanishes at \(z = 0 \) and conclude that the inverse of \(H \) is not differentiable at \(z = 0 \).