1. Suppose that \(f, g \in k[x, y] \) where \(f \) is irreducible, \(f \nmid g \), and \(f \not\in k[x] \). Show that if we regard \(f \) and \(g \) as elements of \(k(x)[y] \), it is still the case that \(f \) is irreducible and \(f \nmid g \). [Hint: use Gauss’s Lemma.]

2. Suppose that \(C = V(f) \) is an irreducible affine plane curve of degree \(n \geq 2 \) with infinitely many points, where \(f = f_{n-1} + f_n \), with \(f_j \) homogeneous of degree \(j \). Show that \(C \) is rational. [Hint: show that if your parameterization were constant, then \(f \) would be reducible.]

3. Show that if \(k \) is an algebraically closed field and \(f \in k[x, y] \) is a homogeneous polynomial of degree \(n \), then \(f \) factors into a product of \(n \) homogeneous linear polynomials.

4. Suppose \(\text{char } k \neq 2, 3 \). Show that the affine plane curve \(y^2 = x^3 + px + q \) over \(k \) is singular if and only if the polynomial \(x^3 + px + q \) has a multiple root in \(k \).

5. Suppose that \(C \) is an irreducible affine plane curve of degree 3 that has infinitely many points. Show that \(C \) can have at most one singular point and that a singular point of \(C \) must have multiplicity two. What if \(C \) is reducible?

6. Show that if \(P_1 \) and \(P_2 \) are distinct points of an affine plane curve \(C \), then there exists a rational function \(f \in k(C) \) so that \(f(P_1) = 0 \) and \(f(P_2) = 1 \).