MATH 499: Notes

November 5, 2009

Starting with the integers \(\mathbb{Z} \), if we fix a positive integer \(n \), we can construct the integers modulo \(n \) as follows: we let

\[
\mathbb{Z}/\langle n \rangle = \{0, 1, 2, \ldots, n-1\}
\]

be the set of possible remainders upon dividing an integer by \(n \). To add or multiply \(x, y \in \mathbb{Z}/\langle n \rangle \), we add or multiply them in \(\mathbb{Z} \) and then take the remainder upon division by \(n \), e.g. we would write \(xy = qn + r \), and the product of \(x \) and \(y \) in \(\mathbb{Z}/\langle n \rangle \) would be \(r \).

If we replace \(\mathbb{Z} \) with a polynomial ring \(\mathbb{C}[x] \) in one variable, we can do more or less the same thing. Given a non-zero polynomial \(f \in \mathbb{C}[x] \) of degree \(n \), we define

\[
\mathbb{C}[x]/\langle f \rangle = \{a_{n-1}x^{n-1} + \cdots + a_1x + a_0 : \ a_0, \ldots, a_{n-1} \in \mathbb{C}\}
\]

to again be the set of possible remainders upon division by \(f \). Again, for \(g, h \in \mathbb{C}[x]/\langle f \rangle \) we can define the sum or product of \(g \) and \(h \) to be the remainder upon division by \(f \) of their sum or product in \(\mathbb{C}[x] \).

With the help of Gröbner bases, we can do the same thing with polynomials in several variables. Fix a monomial order on \(\mathbb{C}[x_1, \ldots, x_k] \). Given an ideal \(I \subseteq \mathbb{C}[x_1, \ldots, x_k] \) we can find a Gröbner basis \(G \) for \(I \) and then define \(\mathbb{C}[x_1, \ldots, x_k]/I \) to be the set of possible possible remainders upon division by \(G \). But what are the possible remainders upon division by \(I \)?

1Alternatively, one says that \(x \) and \(y \) are congruent modulo \(n \) and write \(x \equiv y \pmod{n} \) if \(y - x \) is divisible by \(n \). One can check directly from the definition this relation satisfies the following properties (where \(\equiv \) denotes congruence modulo a fixed number \(n \)):

\[
\begin{align*}
 x & \equiv x \quad \text{for all } x \in \mathbb{Z} \\
 x \equiv y & \implies y \equiv x \quad \text{for all } x, y \in \mathbb{Z} \\
 x \equiv y \quad \text{and} \quad y \equiv z & \implies x \equiv z \quad \text{for all } x, y, z \in \mathbb{Z} \\
 x_1 \equiv x_2 \quad \text{and} \quad y_1 \equiv y_2 & \implies x_1 + y_1 \equiv x_2 + y_2 \quad \text{for all } x_1, y_1, x_2, y_2 \in \mathbb{Z} \\
 x_1 \equiv x_2 \quad \text{and} \quad y_1 \equiv y_2 & \implies x_1y_1 \equiv x_2y_2 \quad \text{for all } x_1, y_1, x_2, y_2 \in \mathbb{Z}
\end{align*}
\]

Properties 1-3 above show that congruence modulo \(n \) is an equivalence relation on \(\mathbb{Z} \), which thus partitions the set \(\mathbb{Z} \) into equivalence classes

\[
C_x = \{a \in \mathbb{Z} : \ a \equiv x \pmod{n}\}.
\]

We can then define

\[
\mathbb{Z}/\langle n \rangle = \{C_x : x \in \mathbb{Z}\}
\]

to be the set of equivalence classes, and define addition and multiplication on \(\mathbb{Z}/\langle n \rangle \) by setting \(C_x + C_y = C_{x+y} \) and \(C_x \cdot C_y = C_{xy} \); this is well-defined by properties 4 and 5 above. This is equivalent to the definition in terms of remainders: \(\mathbb{Z}/\langle n \rangle \) has \(n \) elements \(C_0, C_1, \ldots, C_{n-1} \) corresponding to the \(n \) possible remainders upon division by \(n \) and the addition and multiplication operations correspond to those defined above.

This definition has one advantage over the definition in terms of remainders: it generalizes (with no need for Gröbner bases) to the case where we replace \(\mathbb{Z} \) with \(\mathbb{Q}[x_1, \ldots, x_k] \) (or in fact any ring) and replace \(\langle n \rangle \) with any ideal \(I \). We define \(f \equiv g \pmod{I} \) to mean that \(g - f \in I \). Then we can again show that properties 1-5 above hold for this relation, and we set

\[
\mathbb{Q}[x_1, \ldots, x_k]/I = \{C_f : \ f \in \mathbb{Q}[x_1, \ldots, x_k]\}
\]

with addition and multiplication defined in the same way.
The possible remainders are those polynomials none of whose terms is divisible by a leading term of a polynomial in \(G \), or in other words the finite sums \(\sum \alpha a_\alpha x^\alpha \) where each \(x^\alpha \not\in \langle \text{LT}(I) \rangle \). It may then be the case that there are infinitely many monomials \(x^\alpha \) which are not in \(I \): for example, we may take \(I = \langle x^2y, xy^2 \rangle \subset C[x, y] \). Then the monomials that may appear in a remainder upon division by \(I \) are \(x^n \) and \(y^n \) for all \(n \geq 0 \), and the monomial \(xy^2 \). In this case \(C[x, y]/I \) is an infinite-dimensional vector space over \(C \), with basis the infinite set \{ \(x^\alpha : x^\alpha \not\in \langle \text{LT}(I) \rangle \) \}.

It is also possible that there are only finitely many monomials \(x^{\alpha_1}, \ldots, x^{\alpha_n} \) not in \(\text{LT}(I) \), so that

\[
C[x_1, \ldots, x_k]/I = \left\{ \sum_{i=1}^{n} a_\alpha x^{\alpha_i} \right\}
\]

is an \(n \) dimensional vector space over \(C \). For example, consider the ideal

\[
I = \langle x^2 + 2y^2 - 3, x^2 + xy + y^2 - 3 \rangle \subset C[x, y].
\]

We saw on the homework that in lex order, \(G = \{x^2 + 2y^2 - 3, xy - y^2, y^3 - y\} \) is a Gröbner basis for \(I \). There are thus exactly 4 monomials not in \(\langle \text{LT}(I) \rangle \), namely 1, \(x \), \(y \), and \(y^2 \). If \(X = V(I) \)

\begin{figure}[h]
\centering
\begin{subfigure}{0.49\textwidth}
\includegraphics[width=\textwidth]{a.png}
\caption{graphs of the curves}
\end{subfigure} \hspace{1cm}
\begin{subfigure}{0.49\textwidth}
\includegraphics[width=\textwidth]{b.png}
\caption{\(\langle \text{LT}(I) \rangle \) in lex order}
\end{subfigure}
\caption{The curves \(x^2 + 2y^2 = 3 \) and \(x^2 + xy + y^2 = 3 \)}
\end{figure}

is the set of four points where the polynomials of \(I \) all vanish, then we can think of \(C[x, y]/I \) as being the polynomial functions on \(X \). In our construction of \(C[x, y]/I \) we’re making functions \(f \) and \(g \) on the whole plane equivalent if they have the same remainder upon division by \(I \), i.e. if \(f = g + h \) where \(h \) is in \(I \) and thus is identically zero on \(X \). Thus in this example, the space of functions on the four points of \(X \) is four-dimensional, and so is \(C[x, y]/I \).

The dimension of \(C[x, y]/I \) isn’t always equal to the number of points in \(X = V(I) \) though. For example, consider the ideal

\[
J = \langle x^2 + 4y^2 - 4, 4x^2 - 8x + y^2 \rangle \subset C[x, y].
\]

Here, \(\{8x+15y^2-16, 225y^4-224y^2\} \) is a Gröbner basis for \(J \) in lex order, and \(Y = V(J) \) contains only 3 points, but there are 4 monomials not in \(\langle \text{LT}(J) \rangle \), namely 1, \(y, y^2 \), and \(y^3 \). Nor is this a

\footnote{The term order used to find the Gröbner basis for \(I \) doesn’t matter here because \(I \) itself is a monomial ideal}
peculiarity of lex order: if we use graded lex instead, we find that \{15y^2 + 8x - 16, 15x^2 - 32x + 4\} is a Gröbner basis and that \{1, x, y, xy\} is a vector space basis for \(\mathbb{C}[x, y]/J\), which still has dimension 4 as a vector space over \(\mathbb{C}\). This reflects the fact that while the curves \(x^2 + 4y^2 = 4\) and \(4x^2 - 8x + y^2 = 0\) only intersect in 3 points, their intersection at (1, 0) has “multiplicity 2” because the two curves are tangent there.

The Tjurina number of a plane curve singularity

Suppose \(C = V(f)\), with \(f \in \mathbb{C}[x, y]\) is a plane curve with a single singular point \(p\). We consider the Tjurina ideal

\[
I_f = \langle f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle
\]

and set \(T_f = \mathbb{C}[x, y]/I_f\) and define the Tjurina number \(\tau(f)\) to be the dimension of \(T_f\) as a vector space over \(\mathbb{C}\), or in other words, the number of monomials not in \(\langle LT(I_f) \rangle\) for a fixed monomial order on \(\mathbb{C}[x, y]\). Since \(p\) is the only singular point of \(C\), it is also the only common zero of \(f\), \(\frac{\partial f}{\partial x}\), and \(\frac{\partial f}{\partial y}\).

It turns out that, like the multiplicity of the singularity, the Tjurina number \(\tau(f)\) is an invariant (e.g. if \(f\) is affine equivalent to \(g\), then \(\tau(f) = \tau(g)\)). Also, it is a new invariant: the Tjurina number is not simply a function of the multiplicity.

\[\text{3}\]

More generally, the particular monomials not in \(\langle LT(J) \rangle\) may depend on the monomial order, but the dimension of \(\mathbb{C}[x, y]/J\) as a \(\mathbb{C}\)-vector space (i.e. the number of such monomials) does not. This is because \(\mathbb{C}[x, y]/J\) can be defined abstractly in terms of congruence classes modulo \(J\), and this agrees with the construction of \(\mathbb{C}[x, y]/J\) using each monomial order.

\[\text{4}\]

We’ve only defined the intersection multiplicity of a curve and a line. For more information on the intersection multiplicity of two curves at a point in general, see section 8.7 of Cox, Little, and O’Shea, where it is defined using resultants.