Homework 11, due Friday 11/18

1. p. 293, problem 17, 18.

3. p. 303, problem 10 (remember what numbers and properties matrices \(A \) and \(P^{-1}AP \) have in common).

4. Let \(A \) be a \(3 \times 3 \)-matrix. Assume that a calculation shows that in particular \(\lambda = 1 \) and \(\lambda = 2 + i \) are eigenvalues. Show that \(A \) is diagonalizable.

5. Let \(A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \) with \(a, b, c \in \mathbb{R} \). Show that \(A \) always has two REAL eigenvalues.

6. Let \(h(k) \) denote the number of hares in the year \(k \), and \(r(k) \) the number of rabbits in the year \(k \). Assume that \(h(0) = 2 \) and \(r(0) = 100 \). Assume that the number of foxes and rabbits changes over the years according to the following rule:

\[
\begin{align*}
 r(k+1) &= 10r(k) - 3h(k) \\
 h(k+1) &= 4r(k) + 2h(k).
\end{align*}
\]

What is the number of hares and rabbits after 2 years? After 20 years? Hint, write

\[
\begin{pmatrix} r(k+1) \\ h(k+1) \end{pmatrix} = A \begin{pmatrix} r(k) \\ h(k) \end{pmatrix}
\]

for some matrix \(A \).

7. Let \(A = \begin{pmatrix} 3 & 1 \\ -9 & -3 \end{pmatrix} \). Find a matrix \(P = (v_1 \ v_2) \) such that \(P^{-1}AP \) is of the form

\[
\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}.
\]

Note that \(v_1 \) is an eigenvector.