Homework 13 – This homework will NOT be collected

1. p. 224, problems 1,2.

2. Let \(v_1 = (1, 2, 0, 4)^t, v_2 = (0, 1, 0, 1)^t \).
 (a) Show that \(V := \{ v \in \mathbb{R}^4 \text{ orthogonal to } v_1 \text{ and } v_2 \} \) is a subspace of \(\mathbb{R}^4 \).
 (b) Find a basis for \(V \).

4. Let \(v_1 = (1, 2, 0, 2)^t, v_2 = (0, 1, 1, 0)^t, v_3 = (0, 0, 1, 0)^t \). Using Gram-Schmidt find an orthogonal basis for the subspace \(V \) spanned by \(v_1, v_2, v_3 \).

5. Let \(v_1 = (0, 0, 3, 4, 0)^t, v_2 = (0, -1, 1, 0, 2)^t, v_3 = (1, 0, 1, 0, 0)^t \). Using Gram-Schmidt find an orthogonal basis for the subspace \(V \) spanned by \(v_1, v_2, v_3 \).

6. Let \(V \) be the subspace spanned by \((1, 2, 2)^t \) and \((-2, 2, -1)^t \).
 (a) Find an orthonormal basis for \(V \).
 (b) Compute the projection of \(e_1, e_2, e_3 \) onto \(V \).
 (c) Find the matrix representing the projection \(\mathbb{R}^3 \to V \) with respect to the standard basis of \(\mathbb{R}^3 \) and the basis for \(V \) you found in (a).

7. We know that if \(v_1, \ldots, v_k \in V \) is an orthonormal basis for \(V \subseteq \mathbb{R}^l \), then given any \(w \in V \) we can write
 \[w = (v_1 \cdot w)v_1 + \cdots + (v_k \cdot w)v_k. \]

 Put differently, using the inner product we can easily write \(w \) as a linear combination of \(v_1, \ldots, v_k \). Now assume that \(v_1, \ldots, v_k \in V \) is an orthogonal basis for \(V \subseteq \mathbb{R}^l \) (i.e. we no longer know that \(|v_i| = 1 \)). How can we still write \(w \) as a linear combination of \(v_1, \ldots, v_k \) using the inner product?