2. Let \(B := \{v_1; v_2; v_3\} \) be an ordered basis for a vector space \(V \). What is \(c_B(0), c_B(-v_2), c_B(v_1 + v_3) \)?

Answer: \(c_B(0) = (0, 0, 0), c_B(-v_2) = (0, -1, 0), c_B(v_1 + v_3) = (1, 0, 1) \).

4. Let \(B = \{v_1; v_2; v_3\} \) be an ordered basis. Let \(\tilde{B} := \{v_1 + v_2; v_3; v_2\} \). What is the base change matrix from \(B \) to \(\tilde{B} \), i.e. what is the matrix \(M \) such that

\[c_B(v) = M c_{\tilde{B}}(v) \]

for all \(v \)?

Recall that \(M \) is given by the coefficients of expressing \(\tilde{v}_1, \tilde{v}_2, \tilde{v}_3 \) in terms of \(v_1, v_2, v_3 \) and then taking the transpose:

\[
\begin{align*}
\tilde{v}_1 &= 1 \cdot v_1 + 1 \cdot v_2 + 0 \cdot v_3 \\
\tilde{v}_2 &= 0 \cdot v_1 + 0 \cdot v_2 + 1 \cdot v_3 \\
\tilde{v}_3 &= 0 \cdot v_1 + 1 \cdot v_2 + 0 \cdot v_3.
\end{align*}
\]

So

\[M = \begin{pmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}^t = \begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}. \]

5. (a) Let \(B := \{v_1; v_2; v_3\} \) be an ordered basis for a vector space \(V \). Use the principle of isomorphism to show that \(v_1 + v_2 - v_3 \) and \(v_1 + 2v_2 + v_3 \) are linearly independent.

The idea is to find \(c_B(v_1 + v_2 - v_3) \) and \(c_B(v_1 + 2v_2 + v_3) \) first. Then by the principle of isomorphism we only have to check whether the resulting vectors in \(\mathbb{R}^3 \) are linearly independent:

\[
c_B(v_1 + v_2 - v_3) = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, c_B(v_1 + 2v_2 + v_3) = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}.
\]

Combining these two column vectors we get a \(3 \times 2 \)-matrix. Now compute the row–echelon form and we see that both columns are leading columns. Therefore the vectors in \(\mathbb{R}^3 \) are linearly independent. By the principle of isomorphism we get that \(v_1 + v_2 - v_3 \in V \) and \(v_1 + 2v_2 + v_3 \in V \) are linearly independent as well.
6. Are the polynomials \(1 + t + t^3, 1 - 2t + 3t^3, 2 - t + t^3 \) linearly independent in the vector space \(V := \{ \text{polynomials of degree less or equal than 3} \} \).

The idea is to pick an ordered basis for \(V \), then compute the coordinate vectors and check linear independence for the coordinate vectors.

The easiest ordered basis for \(V \) is \(B = \{ 1; t; t^2; t^3 \} \). Then

\[
c_B(1 + t + t^3) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad c_B(1 - 2t + 3t^3) = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \quad c_B(2 - t + t^3) = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}.
\]

Now check linear independence of these vectors using the row–echelon form method.