AN ELEMENTARY PROOF OF THE GROUP LAW FOR ELLIPTIC CURVES

Abstract. We give a proof of the group law for elliptic curves using explicit formulas.

1. Introduction

In the following \(K \) will denote an algebraically closed field with \(\text{char}(K) > 3 \). An elliptic curve is defined as a pair \((E, O)\) where \(E \) is a smooth algebraic curve of genus one and \(O \in E \) a point.

Proposition 1.1. [S86, prop. 3.1] Let \(E \) be an elliptic curve \(E \). Then there exist \(a, b \in K \) with \(4a^3 + 27b^2 \neq 0 \) and an isomorphism of curves

\[
\phi : E \to E_{a,b} := \{ (x : y : z) \in \mathbb{P}(K)^2 | zy^2 = x^3 + axz^2 + bz^3 \}
\]

such that \(\phi(O) = [0 : 1 : 0] \). Conversely, for any \(a, b \) with \(4a^3 + 27b^2 \neq 0 \) the variety \((E_{a,b}, [0 : 1 : 0])\) is an elliptic curve.

Corollary 1.2. Let \(E \) be an elliptic curve \(E \). Then there exist \(a, b \in K \) with \(4a^3 + 27b^2 \neq 0 \) and a bijection

\[
\phi : E \to E_{a,b}^{\text{affine}} := \{ (x, y) \in K^2 | y^2 = x^3 + ax + b \} \cup \{ O \}
\]

such that \(\phi(O) = O \).

In the following we will take the affine point of view, i.e. an elliptic curve \(E \) will mean the set \(E_{a,b}^{\text{affine}} \) for some \(a, b \in K \) with \(4a^3 + 27b^2 \neq 0 \). The point \(O \) is called the ‘point at infinity’. For points \(A, B, C, \ldots \in E \setminus \{O\} \) we will write \(A = (x_A, y_A), B = (x_B, y_B), C = (x_C, y_C), \ldots \) for the coordinates.

Definition. We define \(+ : E \times E \to E, (A, B) \mapsto A + B \) as follows. We set \(A + O = O + A := O \) for all \(A \). If \((x_A, y_A) = (x_B, -y_B) \), then \(A + B := O \). Otherwise \(A + B := (x_{AB}, y_{AB}) \) where

\[
x_{AB} := \alpha(A, B)^2 - x_A - x_B
\]
\[
y_{AB} := -y_A + \alpha(A, B)(x_A - x_{AB})
\]

with \(\alpha(A, B) = \frac{y_A - y_B}{x_A - x_B} \) if \(x_A \neq x_B \) and \(\alpha(A, B) = \frac{3x_A^2 + a}{2y_B} \) if \(x_A = x_B \).
Remark. This definition is motivated by geometry. If $A, B \neq O$, then we can take the line through A and B (respectively the tangent to A if $A = B$). This line intersects the curve E in three points (counted with multiplicities) A, B, C. Then define $A + B := -C$ where $-C$ is the reflection of C about the x-axis.

Theorem 1.3. $(E, +)$ is an abelian group with neutral element O.

This theorem is of course well known. For example in [S86] it is shown that the above structure is isomorphic to the group structure of $\text{Pic}^0(E)$, the Picard group of E. In particular $(E, +)$ forms a group. A more geometric argument, that $(E, +)$ defines a group is given in [K95, p. 87] or [H87]. Perhaps the most elementary proof can be found for $K = \mathbb{C}$ using the Weierstrass function (cf. [L78]). By the Lefschetz principle this shows the theorem for any algebraically closed field of characteristic zero.

We will give a completely elementary proof, just using the above explicit definition of the group structure through formulas. It was always clear that such a proof exists, but it turns out that this direct proof is more difficult than one might have imagined initially. Many special cases have to be dealt with separately and some are non trivial. Furthermore it turns out that the explicit computations in the proof are very hard. The verification of some identities took several hours on a modern computer; this proof could not have been carried out before the 1980’s.

It is clear that $+$ is commutative, that O is a neutral element and that the inverse element for $A = (x_A, y_A)$ is given by $-A := (x_A, -y_A)$. The only difficult part is to show that “$+$” is in fact associative. This proof will require the remainder of this paper.

2. Proof of the Associativity Law for Elliptic Curves

In the following let E be a fixed elliptic curve. We will use the following facts which follow immediately from the definition.

1. “$+$” is commutative.
2. For $A = (x_A, y_A) \in E \setminus \{O\}$ we have $A + A = O$ if and only if $y = 0$.
3. If $A, B \in E \setminus \{O\}$ and $x_A = x_B$, then $A = B$ or $A = -B$.

Except for three special cases the operation “$+$” is given by formula 1. In section 2.1 we will show the associativity in 3 out of 4 cases in which addition is given by either of the two formulas. This will be done using explicit calculations.

In section 2.2 we will prove several lemmas, which we will use in section 2.3 to give the proof in the general case.

2.1. Proof for the generic cases. In this section we consider the cases in which only formula 1 is being used in the definitions of $(A + B) + C$ and $A + (B + C)$.
Lemma 2.1. Let \(A, B, C \in E \setminus \{O\} \). If \(A \neq \pm B \), \(B \neq \pm C \), \(A + B \neq \pm C \) and \(B + C \neq \pm A \), then
\[
(A + B) + C = A + (B + C).
\]

Proof. Write \((x_1, y_1) := (A + B) + C\) and \((x_2, y_2) := A + (B + C)\). Let
\[
\alpha := \frac{y_B - y_A}{x_B - x_A}, \quad \beta := \frac{y_A + y_C - a(2x_A + x_B - a^2)}{x_A + x_B + x_C - a^2}, \\
\gamma := \frac{y_B - y_C}{x_B - x_C}, \quad \tau := \frac{y_A + y_B - \gamma(2x_B + x_C - \gamma^2)}{x_A + x_B + x_C - \gamma^2}.
\]

We get using formula 1
\[
x_1 = \beta^2 + x_A + x_B - x_C - \alpha^2, \quad y_1 = -y_C + \beta(2x_C - x_A - x_B - \beta^2 + \alpha^2), \\
x_2 = \tau^2 + x_B + x_C - x_A - \gamma^2, \quad y_2 = -y_A + \tau(2x_A - x_B - x_C - \tau^2 + \gamma^2).
\]

Setting
\[
\bar{\alpha} := y_B - x_A, \quad \bar{\beta} := (y_A + y_C)(x_B - x_A)^3 - \bar{\alpha}((2x_A + x_B)(x_B - x_A)^2 - \bar{\alpha}^2), \\
\bar{\gamma} := y_B - y_C, \quad \bar{\tau} := (y_A + y_B)(x_B - x_C)^3 - \bar{\gamma}((2x_B + x_C)(x_B - x_C)^2 - \bar{\gamma}^2), \\
\bar{\eta} := x_B - x_A, \quad \bar{\mu} := x_B - x_C.
\]

one can show that \(x_1 = x_2 \) is equivalent to
\[
(\bar{\beta}^2(x_B - x_C)^2 + (((2x_A - 2x_C)(x_B - x_C)^2 + \bar{\gamma}^2)(x_B - x_A)^2 - \bar{\alpha}^2(x_B - x_C)^2) \\
((x_A + x_B + x_C)(x_B - x_A)^2 - \bar{\alpha}^2)((x_A + x_B + x_C)(x_B - x_A)^2 - \bar{\gamma}^2)^2 \\
- \bar{\tau}^2((x_A + x_B + x_C)(x_B - x_A)^2 - \bar{\alpha}^2)^2(x_B - x_A)^2 = 0
\]

and \(y_1 = y_2 \) is equivalent to
\[
(y_B - y_C)((x_A + x_B + x_C)\bar{\eta}^2 - \bar{\alpha}^2)((x_A + x_B + x_C)\bar{\mu}^2 - \bar{\gamma}^2)^2\bar{\eta}^2\bar{\mu}^2 \\
+ \bar{\beta}(((2x_C - x_A - x_B)\bar{\eta}^2 + \bar{\alpha}^2)((x_A + x_B + x_C)\bar{\eta}^2 - \bar{\eta}^2)^2 - \bar{\beta}^2) \\
((x_A + x_B + x_C)\bar{\mu}^2 - \bar{\gamma}^2)^3\bar{\eta}^3 \\
- \bar{\tau}(((2x_A - x_B - x_C)\bar{\mu}^2 + \bar{\gamma}^2)((x_A + x_B + x_C)\bar{\eta}^2 - \bar{\gamma}^2)^2 - \bar{\tau}^2) \\
((x_A + x_B + x_C)\bar{\eta}^2 - \bar{\alpha}^2)^3\bar{\eta}^3 = 0.
\]

By abuse of notation we now consider the equations over the polynomial ring \(P := \mathbb{Z}[x_A, x_B, x_C, y_A, y_B, y_C, a, b] \). It suffices to show that the equalities hold in \(P/I \) where
\[
I := \langle y_B - x_A - ax_A - b, y_B - x_B - ax_B - b, y_C - x_C - ax_C - b \rangle.
\]
This is equivalent to showing that both left hand sides lie in \(I \). This was shown using the commutative algebra package ‘cocoa’. \(\square \)

In a very similar way one can show the following two lemmas.

Lemma 2.2. If \(A, B \neq O, A \neq -A, A \neq \pm B, A + A \neq \pm B \) and \(A + B \neq \pm A \), then
\[
(A + A) + B = A + (A + B).
\]
Lemma 2.3. If $A \neq O, A \neq -A, A + A \neq -(A + A), (A + A) + A \neq \pm A$ and $A + A \neq \pm A$, then

$$(A + A) + (A + A) = A + (A + (A + A)).$$

The next step would be to show that under the usual restrictions, $(A + B) + (A + B) = A + (B + (A + B))$. We will show this without reverting to explicit computations in the proof of theorem 2.13.

2.2. Proof of basic properties.

Lemma 2.4.

$$-A - B = -(A + B)$$

Proof. The cases $A = O, B = O$ and $A = -B$ are trivial. In the other cases the lemma follows from an easy calculation using formula 1. \qed

Lemma 2.5. If $A + B = A - B$ and $A \neq -A$, then $B = -B$.

Proof. The cases $A = O$ respectively $B = O$ are trivial. If $A = \pm B$, then $B = -B$ follows easily from the uniqueness of the inverse element. So assume that $A, B \neq O, A \neq \pm B$. Using formula 1 we get

$$\left(\frac{y_B - y_A}{x_B - x_A}\right)^2 - x_A - x_B = \left(\frac{-y_B - y_A}{x_B - x_A}\right)^2 - x_A - x_B.$$

This simplifies to $-2y_A y_B = 2y_A y_B$. Since $A \neq -A$ it follows that $y_A \neq 0$. We get $y_B = 0$ since $\text{char}(K) > 3$, hence $B = -B$. \qed

Lemma 2.6 (Uniqueness of the neutral element). If $A + B = A$, then $B = O$.

Proof. The cases $A = O$ and $A = -B$ are trivial. Now assume that $A \neq O, A \neq -B$. Assume that $B \neq O$. Write $(x_C, y_C) := A + B = A = (x_A, y_A)$. It follows from formula 1 that

$$y_A = y_C = -y_A + \alpha(P, Q)(x_A - x_C) = -y_A$$

i.e. $y_A = 0$, therefore $A = -A$. It follows that

According to lemma 2.5 this means that $B = -B$, i.e. $y_B = 0$. In particular $A \neq B$, because otherwise we would get $B = A = A + B = A + A = A - A = O$. According to formula 1 we get

$$x_A = x_C = \left(\frac{y_B - y_A}{x_B - x_A}\right)^2 - x_A - x_B = -x_A - x_B$$

since $y_A = y_B = 0$. Therefore x_A and $x_B = -x_A - x_A$ are zeros of the polynomial $P := X^3 + aX + b$. It follows that $x_0 = -x_A - x_B = x_A$ is the third zero since the second highest coefficient of P is zero. In particular x_A is a zero of degree 2. This
follows that \(\text{Lemma 2.8.}\)

The cases \(\text{Lemma 2.7.}\) which in turn is equivalent to \(\text{Proof.}\)

\(\square\)

easy computation using formula 1.

\(x\)

Since we excluded the case \(\text{Lemma 2.9}\).

\(B\)

Therefore \(\text{Cancellation rule).}\)

\(\text{Proof.}\) If \(\text{Lemma 2.9}\).

\(A, B, \tilde{B}\) we get

\(\text{Writing} A + B = A + B =: (x_C, y_C)\) we get

\(x_C = \alpha(A, B)^2 - x_A - x_B = \alpha(A, \tilde{B})^2 - x_A - \tilde{x}_B\)

\(y_C = -y_A + \alpha(A, B)(x_A - x_C) = -y_A + \alpha(A, \tilde{B})(x_A - x_C).\)
From $A + B \neq \pm A$ it follows that $x_A \neq x_C$, from the second equation we get $\alpha(A, B) = \alpha(A, \tilde{B})$. Using the first equation we get $x_B = \tilde{x}_B$, i.e. $B = -\tilde{B}$, or $B = \tilde{B}$. We consider the following two cases:

1. If $A = -A$, then $B, \tilde{B} \neq -A = A$, hence

$$\frac{y_B - y_A}{x_B - x_A} = \alpha(A, B) = \alpha(A, \tilde{B}) = \frac{\tilde{y}_B - y_A}{\tilde{x}_B - x_A}.$$

Since $x_B = \tilde{x}_B$ we get $y_B = \tilde{y}_B$, therefore $B = \tilde{B}$.

2. If $A \neq -A$, then assume that $B = -\tilde{B}$. It follows that $A + B = A + \tilde{B} = A - B$.

By lemma 2.5 $B = -B$, since $A \neq -A$. Therefore $B = \tilde{B}$.

□

Lemma 2.10.

$$(A + B) - B = A$$

Proof. The cases $A = O, B = O$ respectively $A = -B$ are trivial. The case $A = B$ follows from lemma 2.7. If $A + B = -B$ and $A \neq -B$, then by lemma 2.8 $A = -B - B$, hence $(A + B) - B = -B - B = A$.

Now assume that $A, B \neq O, A \neq \pm B, A + B \neq -B$. This case follows from an explicit computation using formula 1.

□

Corollary 2.11. If $A + B = C$, then $A = C - B$.

Proof. From lemma 2.10 we get $A + B = A + (C - A)$, the corollary now follows from lemma 2.9.

□

2.3. **Completion of the proof.**

Lemma 2.12. Assume that

1. $(A + B) \neq C$ and $A \neq (B + C)$, or
2. $A = B$, or $B = C$, or $A = C$, or
3. $O \in \{A, B, C, A + B, B + C, (A + B) + C, A + (B + C)\}$,

then

$$(A + B) + C = A + (B + C).$$

Proof. The cases $A = O, B = O, C = O$ and $A = C$ are trivial. The cases $A = -B$ and $C = -B$ follow immediately from lemma 2.10. If $A + B = -C$, then by lemma 2.10

$$(A + B) + C = O = A - A = A + (B + (-B - A)) = A + (B + C).$$

The case $B + C = -A$ works the same. We thus established part (3) of the lemma.

We can therefore assume that $A, B, C \neq O, A \neq C, B \neq -A, -C, A + B \neq -C$ and $B + C \neq -A$.

□
If $A = B$, then we have to show that $(A + A) + C = A + (A + C)$. This follows from lemmas 2.2 ($C \neq A + A$) and 2.3 ($C = A + A$). The case $B = C$ again works the same. This shows part (2) of the lemma.

The remaining cases of part (1) now follow immediately from lemma 2.1. □

Theorem 2.13. Let $A, B, C \in E(K)$, then

$$(A + B) + C = A + (B + C)$$

Proof. By lemma 2.12, we only have to prove the theorem for A, B, C with $A + B = C$ or $B + C = A$. It is clearly enough to consider only the case $A + B = C$. We therefore have to show that

$$(A + B) + (A + B) = A + (B + (A + B)).$$

By lemma 2.12 we can assume that $A, B, C, A + B, B + C, (A+B)+C, A+(B+C) \neq 0$ and A, B, C are pairwise different.

If $(A + B) + (A + B) = -A$, then $A + B = (-B - A) - A$ by corollary 2.11. Furthermore $-B - A - A = -B + (-A - A)$ by the second part of lemma 2.12, hence $A + B = -B + (-A - A)$. We get

$$A + (B + (A + B)) = A + (B + (-B + (-A - A))) = A + (-A - A) =$$

$$= -A = (A + B) + (A + B).$$

If $(A + B) + (A + B) \neq -A$, then $((A + B) + (A + B)) - A = (A + B) + ((A + B) - A)$ by the second part of lemma 2.12. Hence

$$((A + B) + (A + B)) - A = (A + B) + ((A + B) - A) = (A + B) + B =$$

$$= (A + (B + (A + B))) - A.$$

From lemma 2.9 it follows, that $(A + B) + (A + B) = A + (B + (A + B)).$ □

References

