Midterm Exam #1
Math 101 – Single Variable Calculus
Summer 2009

Instructions: This is a 2 hour exam. You may not consult any notes or books
during the exam, and no calculators are allowed. Please show your work and
justify your answers.

Name:

Honor Pledge: On my honor, I have neither received nor given any unau-
thorized aid on this exam.

Signature:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
1. Find the largest possible domain for each function. Express this domain as an interval or a union of intervals. (10 points)

(a) \(g(x) = \sqrt{x^2} \)

(b) \(f(x) = (\sqrt{x})^2 \)
2. (10 points)

(a) The line L with slope $m = 2$ passing through $(1, 4)$. Write a linear equation for the line described above. Give your equation in slope-intercept form.

(b) $x^2 + y^2 + 2x + 2y = 2$. Sketch the translated circle described above. Indicate the center and radius of it.
3. Calculate each given limit. Justify each step with the appropriate limit rule. (10 points)

(a) \(\lim_{x \to 0} \frac{\sin 5x}{x} \)

(b) \(\lim_{x \to -2} \frac{x+2}{x^2+4} \)
4. For each function, calculate the derivative using the limit definition of the derivative. (10 points)

(a) \(f(x) = 2x - 1 \)

(b) \(g(x) = \sqrt{2x + 1} \) for \(x > -\frac{1}{2} \)
5. For the curve given below, find all points on the graph where the tangent line is either horizontal or vertical.

\[y = x^{1/2} - x^{3/2} \]

(15 points)
6. For each function, state where it is differentiable and calculate the derivative. Justify each step using the appropriate derivative law or limit law. (15 points)

(a) \(g(x) = \frac{x^2-4}{x^2+4} \)

(b) \(h(x) = \frac{3x}{x^3+7x-5} \)
7. Let \(f(x) \) and \(g(x) \) be differentiable at \(x \). (15 points)

(a) Show that, for any \(h \neq 0 \) where \(f(x + h) \) and \(g(x + h) \) are defined,
\[
\frac{f(x + h)g(x + h) - f(x)g(x)}{h} = g(x + h)\frac{f(x + h) - f(x)}{h} + f(x)\frac{g(x + h) - g(x)}{h}.
\]

(b) Evaluate the limit
\[
\lim_{h \to 0} \left(g(x + h)\frac{f(x + h) - f(x)}{h} + f(x)\frac{g(x + h) - g(x)}{h} \right).
\]
Write your answer in terms of \(f(x) \), \(g(x) \), \(f'(x) \), and \(g'(x) \).
(c) State the product rule for derivatives and use (a) and (b) to give a proof of it.
8. **Find the maximum and minimum of each function on the given interval.** (15 points)

(a) \(f(x) = 3x - 2 \) on the interval \([-2, 3]\).

(b) \(g(x) = 2x^3 - 9x^2 - 12x \) on the interval \([0, 4]\).