Homework 2, due Thursday, Sept.11.

2.5, # 3, # 4(a)(b)(c)(d),

Extra Problem 1. Suppose u and h are twice continually differentiable functions on the closed ball \bar{B} and

$$\int_{B} (|Du|^{2} + hu) \, dx \le \int_{B} (|Dv|^{2} + hv) \, dx$$

for any twice continually differentiable function v on \overline{B} with v = u on ∂B . Find the PDE satisfied by u.

Extra Problem 2. (**Corrected**) Find a function $\Psi(x)$ on \mathbb{R}^3 so that for any smooth function f on \mathbb{R}^3 , the function $u(x) = \int_{\mathbb{R}^3} \Psi(x-y) f(y) dy$ satisfies the PDE

$$\Delta u(x) = 2f(x) + f(x + (1, 0, 0)).$$

Some Hints:.

2.5#3 Try using the third Green's formula on page 628 with the region $\mathbf{B}(0,r) \setminus \mathbf{B}(0,\epsilon)$ and then let $\epsilon \to 0$.

2.5#4(b) Repeat the proof of 2.2.3 Theorem 4.