Homework 6, due Thursday, Oct.16

2.5, # 15(a)(b)

2.5, #16

Extra Problem 1. Recall that a real-valued function f on \mathbf{R} belongs to C^k if f and its first k derivatives are all continuous functions. Show that:

- (a) |x| belongs to C^0 but not to C^1 .
- (b) x|x| belongs to C^1 but not to C^2 .
- (c) $x^2|x|$ belongs to C^2 but not to C^3 .

Hint: Find the formulas for the one-sided derivatives.

Extra Problem 2. Suppose that u is a smooth function on a bounded region U. Show that

u is harmonic if and only if $\int_U u(x)\Delta v(x) dx = 0$

for any smooth function v on U which vanishes near ∂U . Hint: Use integration by parts. For the "if" part, argue by contradiction and then choose a nonconstant, nonnegative v to have support in a region where Δu has constant nonzero sign.

Extra Problem 3. Suppose that a smooth functions u on \mathbb{R}^n is a solution of a linear PDE

$$M[u] \equiv \sum_{|\alpha| \le k} c_{\alpha} D^{\alpha} u = 0 ,$$

where the c_{α} are constants. Show that any partial derivative u_{x_i} is also a solution. That is, $M[u_{x_i}] = 0$.

1