Existence of a Minimizer with Dirichlet Boundary Data

Then initial goal in the course is to describe, for a given smooth function \(g \) on the boundary of a smoothly bounded domain \(U \subseteq \mathbb{R}^n \), how to obtain in the admissible class
\[
\mathcal{A} = \{ u \in C^\infty(U) : u|\partial U = g \} ,
\]
a minimizer for a functional \(I[u] = \int_U L(Du, u, x) \, dx \) for certain smooth integrands \(L : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \). This is not true for all integrands, and we will need to impose further conditions (in (2) and (6) below) on \(L \). Also this existence problem is usually solved in 3 steps:

Step I. Prove the existence of a minimizer \(u \) in a larger admissible class of \(W^{1,q}(U) \) Sobolev functions (with \(q < n \) depending on \(L \)).

Step II. Showing that \(u \) satisfies (in a weak sense) the Euler-Lagrange Dirichlet problem
\[
- \sum_{i=1}^{n} (L_{p_i}(Du, u, x))_{x_i} + L_z(Du, u, x) = 0 \quad \text{on} \ U ,
\]
\[
u = g \quad \text{on} \ \partial U .
\]
The weak sense of the PDE here means, for any \(v \in C^\infty_0(U) \)
\[
\int_U \sum_{i=1}^{n} L_{p_i}(Du, u, x)v_{x_i} + L_z(Du, u, x)v \, dx = 0 ,
\]
and we already derived this formula in our computation of the first variation of \(I[u] \) with respect to the variation \(v \).

Step III. Prove the Regularity Theorem that any \(W^{1,q} \) weak solution of this Dirichlet problem is actually smooth and lies in the original class \(\mathcal{A} \). This final step is the heart of elliptic regularity theory which is a big subject. Later we will prove some results under additional restrictions on the form of \(L \).

We now outline Step I while mentioning the key properties of Sobolev spaces that we need.

(1). Show there exists at least one \(w \in \mathcal{A} \). This is not a difficult construction using the function \(x \mapsto \operatorname{dist}(x, \partial U) \).

(2). Assume \(L \) satisfies a coercivity condition: \(L(p, z, x) \geq \alpha|p|^q - \beta \) which will imply that
\[
\inf_{u \in W^{1,q}(U)} I[u] > -\infty ,
\]
and that any sequence \(u_k \in W^{1,q}(U) \) with \(u_k|\partial U = g \) and \(I[u_k] \rightarrow \inf \mathcal{A} I \) automatically has
\[
\sup_k \int_U |Du_k|^q \, dx < \infty .
\]
(3). The functions \(v_k = u_k - w \) then belong to \(W^{1,q}_0(U) \).

(4). The \textit{Sobolev Inequality} for \(v \in W^{1,q}_0(U) \) states that
\[
\left(\int_U |v|^{q^*} \, dx \right)^{1/q^*} \leq C \left(\int_U |v|^q \, dx \right)^{1/q}
\]
where \(q^* = \frac{nq}{n-q} \). This, along with Hölder’s inequality,
\[
\left(\int_U |v|^q \, dx \right)^{1/q} \leq C(U,q) \left(\int_U |v|^{q^*} \, dx \right)^{1/q^*},
\]
(since \(q < q^* \)) implies that \(\sup_k \int_U |v_k|^q \, dx < \infty \).

(5). With the bounds from (2) and (4), we can use the \textit{Sobolev Weak Compactness Theorem} to guarantee that a subsequence \(v_{k'} \) converges weakly in \(W^{1,q} \) to some function \(v \in W^{1,q}(U) \). Also \(v \) belongs to \(W^{1,q}_0(U) \) by \textit{Sobolev Trace Theory}. It follows that \(u_k \) converges weakly in \(W^{1,q} \) to \(u \equiv v + w \in W^{1,q}(U) \) and that \(u = g \) on \(\partial U \) in the trace sense.

(6). Suppose now that \(p \mapsto L(p,z,x) \) is \textit{convex}, which is equivalent to the pointwise condition that
\[
\sum_{i,j=1}^n L_{p_i,p_j}(p,u,x)\xi_i\xi_j \geq 0 \quad \text{for all } \xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n.
\]
This implies that, under this \(W^{1,q} \) weak convergence, we have the \textit{lower semi-continuity}
\[
I[u] \leq \liminf_{k' \to \infty} I[u_{k'}] = \inf \mathcal{A} I.
\]
We conclude that \(u \) is an \(I \) minimizer among \(W^{1,q}(U) \) functions having trace \(g \) on \(\partial U \). This completes Step I.