
Existence of a Minimizer with Dirichlet Boundary Data

Then initial goal in the course is to describe, for a given smooth function g on the
boundary of a smoothly bounded domain U ⊂ Rn, how to obtain in the admissible class

A = {u ∈ C∞(Ū) : u|∂U = g} ,

a minimizer for a functional I[u] =
∫

U
L(Du, u, x) dx for certain smooth integrands

L : Rn×R×U → R. This is not true for all integrands, and we will need to impose further
conditions (in (2) and (6) below) on L. Also this existence problem is usually solved in 3
steps:

Step I. Prove the existence of a minimizer u in a larger admissible class of W 1,q(U)
Sobolev functions (with q < n depending on L).

Step II. Showing that u satisfies (in a weak sense) the Euler-Lagrange Dirichlet
problem

−
n∑

i=1

(
Lpi

(Du, u, x)
)
xi

+ Lz(Du, u, x) = 0 on U ,

u = g on ∂U .

The weak sense of the PDE here means that, for any v ∈ C∞0 (U)∫
U

n∑
i=1

Lpi(Du, u, x)vxi + Lz(Du, u, x)v dx = 0 ,

and we already derived this formula in our computation of the first variation of I[u] with
respect to the variation v.

Step III. Prove the Regularity Theorem that any W 1,q weak solution of this Dirichlet
problem is actually smooth and lies in the original class A. This final step is the heart
of elliptic regularity theory which is a big subject. Later we will prove some results under
additional restrictions on the form of L.

We now outline Step I while mentioning the key properties of Sobolev spaces that we
need.

(1). Show there exists at least one w ∈ A. This is not a difficult construction using
the function x 7→ dist (x, ∂U).

(2). Assume L satisfies a coercivity condition: L(p, z, x) ≥ α|p|q − β which will imply
that

inf
u∈W 1,q(U)

I[u] > −∞ ,

and that any sequence uk ∈ W 1,q(U) with uk|∂U = g and I[uk] → infA I automatically
has

sup
k

∫
U

|Duk|q dx < ∞ .



(3). The functions vk = uk − w then belong to W 1,q
0 (U).

(4). The Sobolev Inequality for v ∈ W 1,q
0 (U) states that

( ∫
U

|v|q
∗
dx

)1/q∗ ≤ C
( ∫

U

|v|q dx
)1/q

where q∗ = nq
n−q . This, along with Hölder’s inequality,

( ∫
U

|v|q dx
)1/q ≤ C(U, q)

( ∫
U

|v|q
∗
dx

)1/q∗

,

(since q < q∗) implies that supk

∫
U
|vk|q dx < ∞.

(5). With the bounds from (2) and (4), we can use the Sobolev Weak Compactness
Theorem to guarantee that a subsequence vk′ converges weakly in W 1,q to some function
v ∈ W 1,q(U). Also v belongs to W 1,q

0 (U) by Sobolev Trace Theory. It follows that uk

converges weakly in W 1,q to u ≡ v + w ∈ W 1,q(U) and that u = g on ∂U in the trace
sense.

(6). Suppose now that p 7→ L(p, z, x) is convex, which is equivalent to the pointwise
condititon that

n∑
i,j=1

Lpi,pj (p, u, x)ξiξj ≥ 0 for all ξ = (ξ1, · · · , ξn) ∈ Rn .

This implies that, under this W 1,q weak convergence, we have the lower semi-continuity

I[u] ≤ lim inf
k′→∞

I[uk′ ] = inf
A

I .

We conclude that u is an I minimizer among W 1,q(U) functions having trace g on ∂U .
This completes Step I.


