Existence of a Minimizer with Dirichlet Boundary Data

Then initial goal in the course is to describe, for a given smooth function g on the boundary of a smoothly bounded domain $U \subset \mathbf{R}^n$, how to obtain in the admissible class

$$\mathcal{A} = \{ u \in \mathcal{C}^{\infty}(\bar{U}) : u | \partial U = g \}$$

a minimizer for a functional $I[u] = \int_U L(Du, u, x) dx$ for certain smooth integrands $L: \mathbf{R}^n \times \mathbf{R} \times U \to \mathbf{R}$. This is not true for all integrands, and we will need to impose further conditions (in (2) and (6) below) on L. Also this existence problem is usually solved in 3 steps:

Step I. Prove the existence of a minimizer u in a larger admissible class of $W^{1,q}(U)$ Sobolev functions (with q < n depending on L).

Step II. Showing that u satisfies (in a weak sense) the Euler-Lagrange Dirichlet problem

$$\sum_{i=1}^{n} \left(L_{p_i}(Du, u, x) \right)_{x_i} + L_z(Du, u, x) = 0 \text{ on } U,$$
$$u = g \text{ on } \partial U.$$

The weak sense of the PDE here means that, for any $v \in \mathcal{C}_0^{\infty}(U)$

$$\int_{U} \sum_{i=1}^{n} L_{p_i}(Du, u, x) v_{x_i} + L_z(Du, u, x) v \, dx = 0 ,$$

and we already derived this formula in our computation of the first variation of I[u] with respect to the variation v.

Step III. Prove the *Regularity Theorem* that any $W^{1,q}$ weak solution of this Dirichlet problem is actually smooth and lies in the original class \mathcal{A} . This final step is the heart of *elliptic regularity theory* which is a big subject. Later we will prove some results under additional restrictions on the form of L.

We now outline Step I while mentioning the key properties of Sobolev spaces that we need.

(1). Show there exists at least one $w \in \mathcal{A}$. This is not a difficult construction using the function $x \mapsto \text{dist}(x, \partial U)$.

(2). Assume L satisfies a coercivity condition: $L(p, z, x) \ge \alpha |p|^q - \beta$ which will imply that

$$\inf_{u \in W^{1,q}(U)} I[u] > -\infty ,$$

and that any sequence $u_k \in W^{1,q}(U)$ with $u_k | \partial U = g$ and $I[u_k] \to \inf_{\mathcal{A}} I$ automatically has

$$\sup_k \int_U |Du_k|^q \, dx \, < \, \infty$$

- (3). The functions $v_k = u_k w$ then belong to $W_0^{1,q}(U)$. (4). The Sobolev Inequality for $v \in W_0^{1,q}(U)$ states that

$$\left(\int_{U} |v|^{q^{*}} dx\right)^{1/q^{*}} \leq C \left(\int_{U} |v|^{q} dx\right)^{1/q}$$

where $q^* = \frac{nq}{n-q}$. This, along with Hölder's inequality,

$$\left(\int_{U} |v|^{q} dx\right)^{1/q} \leq C(U,q) \left(\int_{U} |v|^{q^{*}} dx\right)^{1/q^{*}},$$

(since $q < q^*$) implies that $\sup_k \int_U |v_k|^q dx < \infty$.

(5). With the bounds from (2) and (4), we can use the Sobolev Weak Compactness Theorem to guarantee that a subsequence $v_{k'}$ converges weakly in $W^{1,q}$ to some function $v \in W^{1,q}(U)$. Also v belongs to $W_0^{1,q}(U)$ by Sobolev Trace Theory. It follows that u_k converges weakly in $W^{1,q}$ to $u \equiv v + w \in W^{1,q}(U)$ and that u = g on ∂U in the trace sense.

(6). Suppose now that $p \mapsto L(p, z, x)$ is *convex*, which is equivalent to the pointwise condititon that

$$\sum_{i,j=1}^{n} L_{p_i,p_j}(p,u,x)\xi_i\xi_j \ge 0 \text{ for all } \xi = (\xi_1, \cdots, \xi_n) \in \mathbf{R}^n .$$

This implies that, under this $W^{1,q}$ weak convergence, we have the *lower semi-continuity*

$$I[u] \leq \liminf_{k' \to \infty} I[u_{k'}] = \inf_{\mathcal{A}} I.$$

We conclude that u is an I minimizer among $W^{1,q}(U)$ functions having trace g on ∂U . This completes Step I.