Homework due Wed., Feb.7:

- **1.** P. 487, #1,
- **2.** P. 487, #3

3. Find an example of a sequence $u_k \in W^{1,2}((0,1))$ such that $u_k \rightarrow 0$ weakly in $W^{1,2}$ but not strongly in $W^{1,2}$. Hint: There is an example with $|u'_k| = 1$ almost everywhere.

4. Find an example of a sequence $v_k \in W^{1,1}((0,1))$ with $\sup_k ||v_k||_{W^{1,1}} < \infty$ such that no subsequence of v_k converges weakly in $W^{1,1}$. (This does not contradict the compactness theorem stated in class which referred to $W^{1,p}$ with p > 1.) Hint: Here it suffices to find a sequence $v_k \in W^{1,1}((0,1))$ with $\sup_k ||v_k||_{W^{1,1}} < \infty$ that converges in some larger space (e.g. $L^1(U)$) to a function v which does not belong to $W^{1,1}$.

1