Suppose $L(p, z, u) = |p|^3$ and U is the unit all in \mathbb{R}^n .

- #1. Find the Euler-Lagrange equation satisfied by a minimizer of $\int_U |Du|^3\,dx$
- #2. Show that $p \mapsto L(p, z, x)$ is convex for each $z \in \mathbf{R}$ and $x \in U$.
- #3. Suppose that g is a smooth function on ∂U . Show that

$$\mathcal{A}_q = \{ w \in W^{1,3}(U) : w = g \text{ on } \partial U \} \neq \emptyset .$$

That is, construct one function w such that w = g on ∂U and $\int_U (|u|^3 + |Du|^3) dx < \infty$.

- #4. Prove that \mathcal{A}_g contains a minimizer $u \in W^{1,3}(U)$.
- #5. Is this minimizer unique? Why or why not?