Homework 7, due Wed. Feb.28

1. P.91, # 11

2. Suppose that U is a connected region in \mathbb{R}^n with smooth boundary and that f and u are smooth bounded functions on \overline{U} .

a) Show that u satisfies the two conditions:

$$-\Delta u = f$$
 on U and $\frac{\partial u}{\partial \nu} = 0$ on ∂U

if and only if

$$\int_{U} Du \cdot Dv \, dx = \int_{U} fv \, dx \quad \text{for all } v \in \mathcal{C}^{\infty}_{c}(\mathbf{R}^{n}) \; . \tag{(*)}$$

b) Show that the existence of a solution u of (*) implies that $\int_U f \, dx = 0$.

c) Assuming $\int_U f \, dx = 0$, sketch a proof of how one would show the existence of a $W^{1,2}$ solution of (*). Hint: First find a functional to be minimized.