
Mid-Term Exam Solutions, Math 425, Fall, 2005

1. The family

A = {A ⊂ N : either A is finite orN \A is finite }

is countable. To see this, note that A = ∪∞k=0Ak ∪ Bk where

Ak = {A ⊂ {1, 2, · · · , k} }

has a finite number (2k) of elements and

Bk = {Rn \A : A ∈ Ak }

also has only a finite number of elements. A countable union of finite sets is countable.

2. There does exist a compact subset K of irrational numbers with positive 1-
dimensional Lebesgue measure. One can take K = [0, 4] \ ∪∞i=1(ri − 2−i, ri + 2−i) where
{r1, r2, · · ·} = Q, the rational numbers. Here λ(K) ≥ 4−

∑∞
i=1 2−i+1 = 2.

3. (a) For any subset A of Rn, λ∗(A) = λ(∩∞i=1Gi) for some open sets G1, G2, · · ·
containing A. In case λ∗(A) = ∞, simply take Gi = Rn. For λ∗(A) < ∞, choose open
Hj ⊃ A with λ(Hj) < λ∗(A) + 1/j. Letting Gi = ∩j

j=1Hj we see that G1 ⊃ G2 ⊃ · · ·,
λ(G1) < ∞, and

λ∗(A) ≤ λ(∩∞i=1Gi) = lim
i→∞

λ(Gi) ≤ lim
i→∞

λ(Hi) ≤ λ∗(A) .

(b) Suppose Z = ∩∞i=1Gi \ A. If λ∗(Z) = 0, then Z is measurable and hence the
difference A = (∩∞i=1Gi) \ Z is also measurable. Conversely, if A is measurable, then
λ(Z) = λ(∩∞i=1Gi)− λ(A) = 0 because λ(∩∞i=1Gi) = λ(A) < ∞.

4. If A ⊂ Rn, B ⊂ Rn, and δ = dist (A,B) > 0, then U = {x : dist (x, A) < δ/2}
and V = {x : dist (x,B) < δ/2} are disjoint open sets. Choosing, for ε > 0 and an open
set G so that λ(G) ≤ λ∗(A ∪B) + ε, we conclude that

λ∗(A) + λ∗(B) ≤ λ∗(A) + λ∗(B) ≤ λ(G ∩ U) + λ(G ∩ V ) ≤ λ(G) ≤ λ∗(A ∪B) + ε

and then let ε → 0.

5. If g : [0, 1] → R2 satisfies |g(s)−g(t)| ≤ |s− t| for all 0 ≤ s ≤ t ≤ 1, then the image

g([0, 1]) = {g(t) : t ∈ [0, 1]}

has 2-dimensional Lebesgue measure zero. In fact, the map f : [0, 1] × R → R2,
f(x, y) = g(x) has Lip f = Lip g = 1 so that

λ2

(
g([0, 1])

)
≤ λ2

(
f([0, 1]× {0})

)
≤ (Lip f)2λ2

(
[0, 1]× {0}

)
= 0 .

Or more directly, note that for each positive integer k

g([0, 1]) ⊂ ∪k
j=1g([

j − 1
k

,
j

k
]) ⊂

k⋃
j=1

B
(
g(

j

k
),

1
k

)
so that λ2

(
g([0, 1])

)
≤ k · π( 1

k )2 → 0 as k →∞.
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6. Suppose f : R → R and g : R → R are Lebesgue measurable and F : R2 → R is
continuous. The composition h : R → R, h(x) = F

(
f(x), g(x)

)
is measurable. In fact, for

any t ∈ R, G = F−1
(
(t,∞)

)
is open in R2. By Problem 3, G = ∪∞i=1[ai, bi] × [ci, di] for

some real numbers ai, bi, ci, di. It follows that the set

h−1
(
(t,∞)

)
= (f, g)−1(G) = ∪∞i=1(f, g)−1([ai, bi]×[ci, di]) = ∪∞i=1

(
f−1[ai, bi]∩g−1[ci, di]

)
is measurable.

7. To find the Lebesgue measure of g(B) where B is the open unit ball in R2

and g(x, y) = (x + 2y + 3, x − y − 4), we first note, by the translation invariance of
Lebesgue measure, that g(b) = h(B) where h(x, y) = (x + 2y, x − y). Next we note that
h([0, 1]× [0, 1]) is the parallelogram with vertices (0, 0), (1, 1), (3, 0), (2,−1), and the area of
this parallelogram is 3. (The area formula A = bh for a parallelogram is easily checked using
the translation and orthogonal invariance of 2 dimensional Lebesgue measure.) It follows,
by linearity and translation invariance, that λ

(
h(Q)

)
= 3λ(Q) for any cube Q ⊂ R2. Of

course, both the boundary of Q and the boundary of h(Q), being contained in 4 lines, has
2 dimensional Lebesgue measure zero. Using Problem 3 and the fact that h is injective,
we conclude that λ

(
h(B)

)
= 3λ(B) = 3π.

8. Suppose 0 < α < ∞. A map f : Rn → Rn is called an α similarity if f(x)− f(0)
is linear and |f(x)− f(y)| = α|x− y| for all x, y ∈ Rn.

(a) Show that λ
(
f(A)

)
= αnλ(A) for any α similarity f and any Lebesgue measurable

subset A of Rn. Since Lip f ≤ α

λ
(
f(A)

)
= αnλ(A) .

The α similarity definition also implies that f is injective with Lip f−1 ≤ 1/α so we obtain
the opposite inequality

λ(A) ≤ Lip f−1λ
(
f(A)

)
≤ (

1
α

)nλ
(
f(A)

)
.

(b) Suppose that E is a bounded measurable set and that

E = f1(E) ∪ f2(E) ∪ · · · ∪ fm(E)

for some α similarities f1, f2, · · · , fm of Rn such that fi(E)∩fj(E) = ∅ for 1 ≤ i < j ≤ m.
From (a) and the measurability of E and of each fi(E), we get the equation

λ(E) = λ
(
f1(E)

)
+ · · ·+ λ

(
fm(E)

)
= mαnλ(E) . (∗)

Here λ(E) < ∞ because E is bounded. If λ(E) > 0, then we can cancel it to get the
desired equation α = (1/m)1/n.
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(c) An example with λ(E) = 0, m = 2 and α = 1/2 is the “interval” E = [0, 2)× {0}
with the 2 similarities

f1(x, y) =
1
2
(x, y), f2(x, y) =

1
2
(x + 2, y) .

An example with λ(E) > 0, m = 4, and α = (1/4)1/2 = 1/2 is the “square”
E = [0, 2)× [0, 2) with the 4 similarities

f1(x, y) =
1
2
(x, y), f2(x, y) =

1
2
(x+2, y), f3(x, y) =

1
2
(x, y+2), f4(x, y) =

1
2
(x+2, y+2) .

A more interesting example with λ(E) = 0, m = 4, and α = 1
3 is E = C ×C where C

is the standard terniary Cantor set and

f1(x, y) =
1
3
(x, y), f2(x, y) =

1
3
(x+2, y), f3(x, y) =

1
3
(x, y+2), f4(x, y) =

1
3
(x+2, y+2) .

[Here equation (*) just becomes 0 = 0, but a more useful equation here occurs with m = 4,
α = 1

3 , n replaced by β = log 4/ log 3, and n dimensional Lebesgue measure λ replaced by
β dimensional “Hausdorff” measure.]

9. Suppose that A and B are Lebesgue measurable subsets of R. To see that A×B

is Lebesgue measurable in R2 with λ2(A× B) = λ1(A)λ1(B), we will treat several cases.
This is clear in case both A and B are closed intervals. A finite union of closed intervals is
a finite disjoint union of closed intervals. It both A and B are such finite disjoint unions,
say A = ∪m

i=1[ai, bi] and B = ∪n
j=1[cj , dj ], then A×B is the disjoint union of the rectangles

[ai, bi]×[cj , dj ] and one obtains the measurability. The product formula follows by linearity.
If both A and B are open sets, then taking sup’s over enclosed special polygon’s readily
gives λ1(A)λ1(B) ≤ λ2(A×B). To verify equality, we observe that I is a special polygon
in A × B, then the projection IX of I onto the X-axis is contained in A and similarly
IY ⊂ B. So I ⊂ IX × IY ⊂ A× B, and this allows us to get the opposite inequality. For
compact sets A,B. where the measure is given by the infema over enclosing open sets, we
now get immediately the inequality λ1(A)λ1(B) ≥ λ2(A×B). For the opposite inequality,
we observe that for any open set G containing the compact set A×B, there are open sets
GX and GY with A×B ⊂ GX ×GY ⊂ G. Here we can get GX and GY by taking δ open
neighborhoods of A and B where

√
2δ = dist (A×B,Gc). The general case of measurable

A and B now follows by approximation.
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