Homework 1 due Wednesday, August 31.

Chapter 1: #2(b)(c)(e), #3, #9, #11, #18, #24, #32(e) (In each chapter of the textbook, the problems are numbered, and scattered throughout the text. For example, #2(b)(c)(e) refers to parts (b)(c), and (e) of Problem 2 on page 3.)

Homework 2 due Wednesday, Sept.7.

Chapter 1: #47, #53, #59, #60, Chapter 2: #2, #3, #4(a)(b),

Extra Problem: Prove that the interval [0, 1] is not homeomorphic to the solid square [0, 1]x[0, 1]. (See page 18. Hint: You may use Problem 45. What happens when we remove 1 point? A warning: there actually is a continuous function mapping the interval onto the whole square, but it is not injective.)

Homework 3 due Wednesday, Sept.14.

Chapter 2: #23, #25.

The purpose of the rest of this week's homework is to show how to get decompositions involving disjoint closed balls (compare Problem #36, Chapter2). This will give us an alternate proof of the rotation invariance of Lebesgue measure.

Problem 3. Show that in \mathbf{R}^n , $(2/\sqrt{n})^n \leq \lambda (\mathbf{B}(0,1)) \leq 2^n$. (The exact value will be found in Chapter 9.)

Problem 4. Suppose r > 0, G is an open subset of \mathbb{R}^n , and $rG = \{rx : x \in G\}$. Show that $\lambda(rG) = r^n \lambda(G)$.

Problem 5. Show that the unit sphere $\partial \mathbf{B}(0,1) = \{x : |x| = 1\}$ has *n* dimensional Lebesgue measure zero. Hint: Use #4 with $G = \mathbf{B}(0,1)$.

Problem 6. Show that any open set G equals a countable union of nonoverlapping closed dyadic cubes. Here a closed dyadic cube is a set of the form $2^j Q_k$ where $j \in \mathbf{Z}$, $k = (k_1, \ldots, k_n) \in \mathbf{Z}^n$, and $Q_k = [k_1, k_1 + 1] \times \ldots \times [k_n, k_n + 1]$.

Problem 7. Show that any open set $G = Z \cup \bigcup_{j=1}^{\infty} B_j$ where $\lambda(Z) = 0$ and the sets B_j are disjoint closed balls. Hint: Fix a number ρ with $1 - (n)^{-n/2} < \rho < 1$, and use #1, #2, and #4 to show there are finitely many disjoint closed balls B_1, \ldots, B_{N_1} in G so that $G_1 = G \setminus \bigcup_{j=1}^{N_1} B_j$ has $\lambda(G_1) \leq \rho \lambda(G)$. Then repeat the argument to get disjoint closed balls $B_{N_1+1}, \ldots, B_{N_2}$ in G_1 so that $G_2 = G_1 \setminus \bigcup_{j=N_1+1}^{N_2} B_j$ has $\lambda(G_2) \leq \rho \lambda(G_1)$, etc.

Homework 4 due Wednesday, Sept.21.

[Changes: added "linear" assumption to #7,#8 and changed the hints in #3,#6.]

Chapter 2: #28, #34.

One purpose of the rest of this week's homework is to show the rotation invariance of Lebesgue measure.

Problem 3. Show that $\lambda(Z) = 0 \iff$ For every $\varepsilon > 0$ there are open balls B_i with $Z \subset \bigcup_{i=1}^{\infty} B_i$ and $\sum_{i=1}^{\infty} \lambda(B_i) < \varepsilon$. [Hint: For the implication one can first choose an open

1

U containing Z with $\lambda(U) < \varepsilon/(2\sqrt{n})^n$, then use Problem 6 from last week and note that any closed cube Q is contained in an open ball B with $\lambda(B) < (2\sqrt{n})^n \lambda(Q)$.] Problem 4. A function $f: \mathbf{R}^n \to \mathbf{R}^n$ is Lipschitz if the number

$$\operatorname{Lip} f \equiv \sup_{x \neq y} \frac{d(f(x), f(y))}{d(x, y)}$$

is finite. Show that for any open ball B, $\lambda(f(B)) \leq (\text{Lip } f)^n \lambda(B)$. [Hint: Recall Problem 4 from last week.]

Problem 5. Show that $\lambda(f(Z)) = 0$ for any Lipschitz $f : \mathbf{R}^n \to \mathbf{R}^n$ and any set $Z \subset \mathbf{R}^n$ with $\lambda(Z) = 0$.

Problem 6. Show that $\lambda(f(G)) \leq (\text{Lip } f)^n \lambda(G)$ for any open subset G of \mathbb{R}^n . [Hint: Use Problem 7 from last week.]

Problem 7. A linear map $g: \mathbf{R}^n \to \mathbf{R}^n$ is orthogonal if $g(x) \cdot g(y) = x \cdot y$ for all $x, y \in \mathbf{R}^n$. Show that such a map is injective and surjective with $\operatorname{Lip} g = 1$ and $\operatorname{Lip} g^{-1} = 1$. [Hint: $d(x,y)^2 = |x-y|^2 = x \cdot x - 2x \cdot y + y \cdot y$.

Problem 8.(Rotation Invariance) Show that $\lambda(g(A)) = \lambda(A)$ for any orthogonal linear map $g: \mathbf{R}^n \to \mathbf{R}^n$ and any Lebesgue measurable $A \subset \mathbf{R}^n$.

Homework 5 due Monday, Oct.3 NOTE THIS NEW DATE BECAUSE OF RITA.

Chapter 2: #32, #35, #42, #45, #46, #47 [Hint: use#46]. Chapter 4: #2. Problem 8.(outer measure) Suppose $\mu(E) \in [0, \infty]$ for all $E \subset \mathbf{R}^n$, $\mu(\emptyset) = 0$, and $\mu(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \mu(E_i)$ whenever $E_i \subset \mathbf{R}^n$. One says that a subset A of \mathbf{R}^n is μ measurable if

$$\mu(E) = \mu(E \cap A) + \mu(E \setminus A)$$
 for all $E \subset \mathbf{R}^n$

Show that $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ whenever A_i are disjoint μ measurable subsets of \mathbb{R}^n . [Hint: Prove the superadditivity first for 2 disjoint μ measurable sets, then inductively for finitely many, then take a limit.]

Homework 6 due Wed., Oct.12 (after break)

Chapter 4: #7, Chapter 5: #2, #8, #10, #11, #13, #14.

Homework 7 due Wed., Oct.19

Chapter 5: #16, #18, #20, #23.

Chapter 6: #1, #5, #8.

Problem 8. Prove that for every measurable simple function s on \mathbb{R}^n there exists a sequence of continuous functions $f_i : \mathbb{R}^n \to \mathbb{R}$ so that

$$\lim_{i \to \infty} f_i(x) = s(x) \text{ for almost every } x \in \mathbf{R}^n .$$

[Hint: See the Theorem in Chapter 1, Section F.]

Homework 8 due Mon., Oct.31

Chapter 6: #12, #19, #21, #22, #24, #36,

Problem 7. Suppose that $f \in L^1(E)$ where E is a measurable set of finite positive measure. Show that there is a point $x \in E$ with $|f(x)| \leq (\lambda(E)^{-1} \int_E |f| d\lambda$.

Problem 8. (Corrected!) Suppose f, f_1, f_2, f_3, \cdots are all L^1 functions on \mathbb{R}^n and that $\int |f_k - f| d\lambda \to 0$ as $k \to \infty$. Prove that for every $\varepsilon > 0$ there exists an integer k_{ε} so that

$$\lambda\{x : |f_k(x) - f(x)| > \varepsilon\} < \varepsilon$$

whenever $k \geq k_{\varepsilon}$.

Homework 9 due Mon., Nov.7

Chapter 6: #28, #30, #35, #40, #44, #45, Problem 7. Suppose that (X, \mathcal{M}, μ) is a measure space. For $E \subset X$, we define

$$\nu(E) = \inf\{\mu(A) : E \subset A \in \mathcal{M}\}.$$

Prove that ν is an outer measure on X (i.e. countably subadditive) and that one has the equality

$$\nu(E) = \nu(E \cap A) + \nu(E \setminus A)$$
 for all $A \in \mathcal{M}$.

(Thus every measurable set for μ is also measurable for ν .) [Hint you may use some results from the book for Lebesgue measure if you just check that the proofs carry over to the general measure μ .)

Homework 10 due Mon., Nov.14

Chapter 6: #32, #36, #39, #42, Chapter 7: #22

Problem 6. (Corrected version: I changed a 2 to $\frac{1}{2}$ in the definition of f_j) For each positive integer j, let

$$f_j = \frac{1}{2}j \cdot \chi_{[} - 1/j, 1/j]$$
 and $\nu_j(E) = \int_E f_j d\lambda$ for Lebesgue measurable $E \subset \mathbf{R}$.

(1) Show that the measures ν_j approach δ_0 as $j \to \infty$ in the sense that

$$\int g \, d\nu_j \ o \ \int g \, d\delta_0$$
 for every continuous $g: \mathbf{R} \to \mathbf{R}$.

(2) Is it true that $\nu_j(E) \to \delta_0(E)$ for all Borel subsets E of \mathbf{R} ? Prove this or find an example of a Borel E where this isn't true.

Homework 10 due Mon., Nov.21 (with 2 corrections. $B \to A$ in Problem 2(2) and $|b_i - a_i| \leq \delta$ added in the definition in Problem 3.) Chapter 7: #20.

Problem 2. For any 2 Lebesgue measurable subsets $A, B \subset \mathbf{R}^n$, define

dist_{$$\lambda$$}(A, B) = $\lambda(A \setminus B) + \lambda(B \setminus A)$.

(1) Show that the dist $_{\lambda}(A, C) \leq \text{dist}_{\lambda}(A, B) + \text{dist}_{\lambda}(B, C).$

(2) Prove that $\lim_{c\to 0} \text{dist}_{\lambda}(A+c,A) = 0$ where $A+c = \{a+c : a \in A\}$.

Problem 3. For $0 \leq r < \infty$ and $A \subset \mathbf{R}$, we define the Hausdorff outer measure

$$\mathcal{H}^{r}(A) = \lim_{\delta \to 0} \inf \{ \sum_{i=1}^{\infty} (b_{i} - a_{i})^{r} : A \subset \bigcup_{i=1}^{\infty} [a_{i}, b_{i}], |b_{i} - a_{i}| \leq \delta \}.$$

(1) Prove that if $\mathcal{H}^r(A) < \infty$, then $\mathcal{H}^s(A) = 0$ for all s > r.

(2) Prove that if C is the standard tertiary Cantor set, then $\mathcal{H}^t(C) < \infty$ where $t = \log 2/\log 3$.

4

Homework 11 due Wed., Nov.30

Chapter 8: #1, #2, #7, #14, #16, #19Chapter 10: #1, #21 [Hint: Use Hölder's inequality.]