Algebraic Riemann surfaces

General Problem from Algebraic Geometry

Describe V' = {(z,w) € C x C : P(z,w) = 0} where P is a (not identically
zero) polynomial in 2 variables.

We will show how V' is a finite union of Riemann surfaces.

First we may (after swapping z and w if necessary) write

P(z,w) = bo(2)w™ +by(2)w" ™ 4+ ...+ b,(2) = bo(2)®(z,w)
where by(z) #Z 0 and

B(z,w) = w" +ar(2)w" "t + ... 4 a,(2)

where a;(2) = ;;Lé)) are rational functions. If b5'{0} = {ay, ...y}, then

V = (Ui {a} xC)ue~Ho) .

To describe @1{0), we let Z = by '{0} and p;(z) for 2 € C\Z and i = 1,...,n,
denote the roots, with possible repetitions, of ®(z,w) = 0. The discriminant (with
respect to the w variable) of ®(z,w) is given by

2
D) = [0 - ps2)*
i#]
The relevant algebraic fact we wish to use is (see Lang, Algebra, V,§9-10):

D =0 iff ® has a repeated root iff & has a repeated factor .

For example, w?—z has D~1{0} equalling the single point {0} while w*—2w?z+2* =

2 — 2)?, which has the same zero set, has discriminant identically 0.

(w
Without changing V' = ®~1{0}, we may now assume ® has no repeated factors
and decompose ¢ = H}-Izltbj where the ®; are irreducible and distinct. Since

-0} = U}I:lfbj_l{O}, we may, by replacing ® by each ®; now assume
® itself is irreducible and hence D # 0 .

To show how V is a Riemann surface we will show that II : V" — C\ Z,
[(z,w) = z, is a holomorphic branched covering map with branch image set D=1{0}.
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A key tool is the construction of a product neighborhood Bs(a) x B (b) about
any point (a,b) € C2. First, since ®(a, -) has only finitely many zeroes, we find that,
for all sufficiently small positive €, ®(a,w) # 0 whenever |w — b| = €. Then, for
all sufficiently small positive § depending on €, one still has ®(z,w) # 0 whenever
|z —a|] < § and |w — b| = €. Thus ® does not vanish on the set Bs(a) x 0B(b).
Now we can use a formula from complex analysis (Ahlfors, Complex Analysis, 3.3,
Th.10) to see that the number of solutions of ®(z,w) = 0 with |z — a| < ¢ and

|lw—b| < €is
_ 1 o (%:¢)
N(z) = 2m1 /6B€(b) ®(z, () “

which is continuous, integer-valued, and hence the constant N(a). For D(a) # 0
and (a,b) € V, N(a) = 1 and the arbitrariness of e shows that the corresponding
root w = p(z) of ®(z,w) = 0 in B.(b) is continuous on Bs(a). Moreover, the
formula (see Ahlfors, §5.3 eqn(44))

1 22(2,¢)

- d¢
2me B, (b) ®(z,()

pz) =
shows that p is also holomorphic on Bs(a). Thus II|®~1{0} \ (D o II)~*{0}is an n
sheeted holomorphic covering map.
For each positive integer k£ we may also apply the formula (Ahlfors, §5.3
eqn(44)) to the function w* to conclude that the power sum

n 0%

Saek = = [ By

] mi JoB, ) ®(2:¢)
is a holomorphic function on C\ Z. Any symmetric polynomial in the p;(z)’s
is a polynomial in the power sums for various k, and hence is also holomorphic.
Moreover, since it is easy to estimate the root of a monic polynomial in terms of
its coefficients, we see that this holomorphic function has polynomial growth in z
as |z| — oo or in ﬁ as z — a € Z, hence is a rational function. In particular,
the discriminant D(z) is a rational function of z, and D=1{0} is a finite set.

Next consider a point a € C\ Z with D(a) = 0. Lifting a small circle 0B;(a)
gives a finite number of circles C',...,C; which II maps down with some positive
integer multiplicities ki, ko, ..., k; where ky + ko + ...+ k; = n. Our formula for
N(z) shows that each such C; shrinks to the point (a,b) as 6 | 0. It determines a
component V; of VNII~! (Bs(a)\{a}), which is a punctured disk. Then [II(-)—a] ks
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defines a holomorphic coordinate for V; U {(a,b)}. We now conclude that ®~1{0}
is a finite union of Riemann surfaces.

Finally we can lift a small circle 9Bs(a) for a € Z or a large circle 0Bg(0), large
enough to contain D~1{0} in its interior, to see similar local topological behavior
in a neighborhood of a € Z or of co. Because of the polynomial growth described
above, we similarly obtain, after adding a finite set of points to V', holomorphic
coordinates near these points at infinity. We finally obtain a finite union of compact
Riemann surfaces.

Remark. A concrete way of obtaining these extra points is to take the closure of V'
in the complex projective space CP? under a usual embedding C? in CP2.

Now we turn to a converse fact:

Riemann’s Theorem. Fvery compact connected Riemann surface M is biholo-

morphic to an algebraic Riemann surface as above.

Proof : We will construct an irreducible ®(v,w) and biholomorphic map from
M \ {finite set } onto {0} c C x C.

First we choose a nonconstant meromorphic function z = f(P) on M. Then
f gives a holomorphic branched covering map onto C with a finite number n of
sheets. Let B be the image of the branch points and fix a point zp € C\ B so that
f~Hz0} equals n points P, ..., PY.

Second, we find a meromorphic function g on M so that g(PY),...,g(P?) are
distinct complex numbers. To do this we may, for example, let w; be a meromorphic

1 form on M with a single order 2 pole at P]Q and principal part _(z—dijo)z in terms
of a local parameter z = f(P). Let ¢y, ..., ¢, be distinct complex numbers and
(e )2 (o L “n
g = (z—2p) (Cldz + ...+ cndz)

2,
Then g works because % equals 1 at P and vanishes at P} for j # i.

Now we can construct ®(z,w). Letting f~1{z} = {Pi(2),..., P,(2)}, we use
the elementary symmetric functions
ar = a1(2) = —g(P1) —g(P2) —...—g(Py)
ay = ax(2) = g(P)g(P2) +g(P)g(Ps) +... = > g(P)g(P))



Arguing as before, we find that these functions are by symmetry and growth
considerations rational on C. Moreover,

D(z,w) = H (w—9g(P(2)) = w"+a1(2)w" "+ ...+ a,(2) ,

and @ is irreducible because the complex numbers g(P), ..., g(P?) are distinct.
The map F = (f, g) clearly maps holomorphically onto ®~1{0}. To see that F
is one-one, note that for any P € M with F(P) = (29, w), f(P) = 29, P = P for
some i and w = g(P?), hence F~1{(z9,w)} has only one point. Thus F' has degree
1 and, being holomorphic between Riemann surfaces, must be one-one. [ |



