Algebraic Riemann surfaces

General Problem from Algebraic Geometry

Describe $V=\{(z, w) \in \mathbf{C} \times \mathbf{C}: P(z, w)=0\}$ where P is a (not identically zero) polynomial in 2 variables.

We will show how V is a finite union of Riemann surfaces.
First we may (after swapping z and w if necessary) write

$$
P(z, w)=b_{0}(z) w^{n}+b_{1}(z) w^{n-1}+\ldots+b_{n}(z)=b_{0}(z) \Phi(z, w)
$$

where $b_{0}(z) \not \equiv 0$ and

$$
\Phi(z, w)=w^{n}+a_{1}(z) w^{n-1}+\ldots+a_{n}(z)
$$

where $a_{i}(z)=\frac{b_{i}(z)}{b_{0}(z)}$ are rational functions. If $b_{0}^{-1}\{0\}=\left\{\alpha_{1}, \ldots \alpha_{k}\right\}$, then

$$
V=\left(\cup_{i=1}^{k}\left\{a_{i}\right\} \times \mathbf{C}\right) \cup \Phi^{-1}\{0) .
$$

To describe $\Phi^{-1}\{0)$, we let $Z=b_{0}^{-1}\{0\}$ and $\rho_{i}(z)$ for $z \in \mathbf{C} \backslash Z$ and $i=1, \ldots, n$, denote the roots, with possible repetitions, of $\Phi(z, w)=0$. The discriminant (with respect to the w variable) of $\Phi(z, w)$ is given by

$$
D(z)=\prod_{i \neq j}\left(\rho_{i}(z)-\rho_{j}(z)\right)^{2}
$$

The relevant algebraic fact we wish to use is (see Lang, Algebra, V, $\S 9-10$):

$$
D \equiv 0 \text { iff } \Phi \text { has a repeated root iff } \Phi \text { has a repeated factor . }
$$

For example, $w^{2}-z$ has $D^{-1}\{0\}$ equalling the single point $\{0\}$ while $w^{4}-2 w^{2} z+z^{4}=$ $\left(w^{2}-z\right)^{2}$, which has the same zero set, has discriminant identically 0.

Without changing $V=\Phi^{-1}\{0\}$, we may now assume Φ has no repeated factors and decompose $\Phi=\Pi_{j=1}^{J} \Phi_{j}$ where the Φ_{j} are irreducible and distinct. Since $\Phi^{-1}\{0\}=\cup_{j=1}^{J} \Phi_{j}^{-1}\{0\}$, we may, by replacing Φ by each Φ_{j} now assume
Φ itself is irreducible and hence $D \not \equiv 0$.
To show how V is a Riemann surface we will show that $\Pi: V \rightarrow \mathbf{C} \backslash Z$, $\Pi(z, w)=z$, is a holomorphic branched covering map with branch image set $D^{-1}\{0\}$.

A key tool is the construction of a product neighborhood $\mathbf{B}_{\delta}(a) \times \mathbf{B}_{\epsilon}(b)$ about any point $(a, b) \in \mathbf{C}^{2}$. First, since $\Phi(a, \cdot)$ has only finitely many zeroes, we find that, for all sufficiently small positive $\epsilon, \Phi(a, w) \neq 0$ whenever $|w-b|=\epsilon$. Then, for all sufficiently small positive δ depending on ϵ, one still has $\Phi(z, w) \neq 0$ whenever $|z-a|<\delta$ and $|w-b|=\epsilon$. Thus Φ does not vanish on the set $\mathbf{B}_{\delta}(a) \times \partial \mathbf{B}_{\epsilon}(b)$. Now we can use a formula from complex analysis (Ahlfors, Complex Analysis, 3.3, Th.10) to see that the number of solutions of $\Phi(z, w)=0$ with $|z-a|<\delta$ and $|w-b|<\epsilon$ is

$$
N(z)=\frac{1}{2 \pi i} \int_{\partial \mathbf{B}_{\epsilon}(b)} \frac{\frac{\partial \Phi}{\partial w}(z, \zeta)}{\Phi(z, \zeta)} d \zeta,
$$

which is continuous, integer-valued, and hence the constant $N(a)$. For $D(a) \neq 0$ and $(a, b) \in V, N(a)=1$ and the arbitrariness of ϵ shows that the corresponding root $w=\rho(z)$ of $\Phi(z, w)=0$ in $\mathbf{B}_{\epsilon}(b)$ is continuous on $\mathbf{B}_{\delta}(a)$. Moreover, the formula (see Ahlfors, $\S 5.3$ eqn(44))

$$
\rho(z)=\frac{1}{2 \pi i} \int_{\partial \mathbf{B}_{\epsilon}(b)} \zeta \frac{\frac{\partial \Phi}{\partial w}(z, \zeta)}{\Phi(z, \zeta)} d \zeta
$$

shows that ρ is also holomorphic on $\mathbf{B}_{\delta}(a)$. Thus $\Pi \mid \Phi^{-1}\{0\} \backslash(D \circ \Pi)^{-1}\{0\}$ is an n sheeted holomorphic covering map.

For each positive integer k we may also apply the formula (Ahlfors, §5.3 eqn(44)) to the function w^{k} to conclude that the power sum

$$
\sum_{j=1}^{n} \rho_{i}(z)^{k}=\frac{1}{2 \pi i} \int_{\partial \mathbf{B}_{\epsilon}(b)} \zeta^{k} \frac{\frac{\partial \Phi}{\partial w}(z, \zeta)}{\Phi(z, \zeta)} d \zeta
$$

is a holomorphic function on $\mathbf{C} \backslash Z$. Any symmetric polynomial in the $\rho_{i}(z)$'s is a polynomial in the power sums for various k, and hence is also holomorphic. Moreover, since it is easy to estimate the root of a monic polynomial in terms of its coefficients, we see that this holomorphic function has polynomial growth in z as $|z| \rightarrow \infty$ or in $\frac{1}{|z-a|}$ as $z \rightarrow a \in Z$, hence is a rational function. In particular, the discriminant $D(z)$ is a rational function of z, and $D^{-1}\{0\}$ is a finite set.

Next consider a point $a \in \mathbf{C} \backslash Z$ with $D(a)=0$. Lifting a small circle $\partial \mathbf{B}_{\delta}(a)$ gives a finite number of circles C_{1}, \ldots, C_{j} which Π maps down with some positive integer multiplicities $k_{1}, k_{2}, \ldots, k_{j}$ where $k_{1}+k_{2}+\ldots+k_{j}=n$. Our formula for $N(z)$ shows that each such C_{i} shrinks to the point (a, b) as $\delta \downarrow 0$. It determines a component V_{i} of $V \cap \Pi^{-1}\left(\mathbf{B}_{\delta}(a) \backslash\{a\}\right)$, which is a punctured disk. Then $[\Pi(\cdot)-a]^{1 / k_{i}}$
defines a holomorphic coordinate for $V_{i} \cup\{(a, b)\}$. We now conclude that $\Phi^{-1}\{0\}$ is a finite union of Riemann surfaces.

Finally we can lift a small circle $\partial \mathbf{B}_{\delta}(a)$ for $a \in Z$ or a large circle $\partial \mathbf{B}_{R}(0)$, large enough to contain $D^{-1}\{0\}$ in its interior, to see similar local topological behavior in a neighborhood of $a \in Z$ or of ∞. Because of the polynomial growth described above, we similarly obtain, after adding a finite set of points to V, holomorphic coordinates near these points at infinity. We finally obtain a finite union of compact Riemann surfaces.
Remark. A concrete way of obtaining these extra points is to take the closure of V in the complex projective space $\mathbf{C} P^{2}$ under a usual embedding \mathbf{C}^{2} in $\mathbf{C} P^{2}$.

Now we turn to a converse fact:
Riemann's Theorem. Every compact connected Riemann surface M is biholomorphic to an algebraic Riemann surface as above.

Proof : We will construct an irreducible $\Phi(v, w)$ and biholomorphic map from $M \backslash\{$ finite set $\}$ onto $\Phi^{-1}\{0\} \subset \mathbf{C} \times \mathbf{C}$.

First we choose a nonconstant meromorphic function $z=f(P)$ on M. Then f gives a holomorphic branched covering map onto $\hat{\mathbf{C}}$ with a finite number n of sheets. Let B be the image of the branch points and fix a point $z_{0} \in \mathbf{C} \backslash B$ so that $f^{-1}\left\{z_{0}\right\}$ equals n points $P_{1}^{0}, \ldots, P_{n}^{0}$.

Second, we find a meromorphic function g on M so that $g\left(P_{1}^{0}\right), \ldots, g\left(P_{n}^{0}\right)$ are distinct complex numbers. To do this we may, for example, let ω_{j} be a meromorphic 1 form on M with a single order 2 pole at P_{j}^{0} and principal part $-\frac{d z}{\left(z-z_{0}\right)^{2}}$ in terms of a local parameter $z=f(P)$. Let c_{1}, \ldots, c_{n} be distinct complex numbers and

$$
g=\left(z-z_{0}\right)^{2}\left(c_{1} \frac{\omega_{1}}{d z}+\ldots+c_{n} \frac{\omega_{n}}{d z}\right) .
$$

Then g works because $\frac{\left(z-z_{0}\right)^{2} \omega_{i}}{d z}$ equals 1 at P_{i}^{0} and vanishes at P_{j}^{0} for $j \neq i$.
Now we can construct $\Phi(z, w)$. Letting $f^{-1}\{z\}=\left\{P_{1}(z), \ldots, P_{n}(z)\right\}$, we use the elementary symmetric functions

$$
\begin{aligned}
a_{1} & =a_{1}(z)=-g\left(P_{1}\right)-g\left(P_{2}\right)-\ldots-g\left(P_{n}\right) \\
a_{2} & =a_{2}(z)=g\left(P_{1}\right) g\left(P_{2}\right)+g\left(P_{1}\right) g\left(P_{3}\right)+\ldots=\sum_{i<j} g\left(P_{i}\right) g\left(P_{j}\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
a_{n} & =a_{n}(z)=(-1)^{n} g\left(P_{1}\right) \ldots g\left(P_{n}\right) .
\end{aligned}
$$

Arguing as before, we find that these functions are by symmetry and growth considerations rational on C. Moreover,

$$
\Phi(z, w)=\prod_{i=1}^{n}\left(w-g\left(P_{i}(z)\right)\right)=w^{n}+a_{1}(z) w^{n-1}+\ldots+a_{n}(z)
$$

and Φ is irreducible because the complex numbers $g\left(P_{1}^{0}\right), \ldots, g\left(P_{n}^{0}\right)$ are distinct.
The map $F=(f, g)$ clearly maps holomorphically onto $\Phi^{-1}\{0\}$. To see that F is one-one, note that for any $P \in M$ with $F(P)=\left(z_{0}, w\right), f(P)=z_{0}, P=P_{i}^{0}$ for some i and $w=g\left(P_{i}^{0}\right)$, hence $F^{-1}\left\{\left(z_{0}, w\right)\right\}$ has only one point. Thus F has degree 1 and, being holomorphic between Riemann surfaces, must be one-one.

