Algebraic Riemann surfaces

General Problem from Algebraic Geometry

Describe $V = \{(z, w) \in \mathbf{C} \times \mathbf{C} : P(z, w) = 0\}$ where P is a (not identically zero) polynomial in 2 variables.

We will show how V is a finite union of Riemann surfaces.

First we may (after swapping z and w if necessary) write

$$P(z,w) = b_0(z)w^n + b_1(z)w^{n-1} + \ldots + b_n(z) = b_0(z)\Phi(z,w)$$

where $b_0(z) \not\equiv 0$ and

$$\Phi(z,w) = w^{n} + a_{1}(z)w^{n-1} + \ldots + a_{n}(z)$$

where $a_i(z) = \frac{b_i(z)}{b_0(z)}$ are rational functions. If $b_0^{-1}\{0\} = \{\alpha_1, \dots, \alpha_k\}$, then

$$V = \left(\cup_{i=1}^{k} \{a_i\} \times \mathbf{C} \right) \cup \Phi^{-1}\{0\} .$$

To describe $\Phi^{-1}\{0\}$, we let $Z = b_0^{-1}\{0\}$ and $\rho_i(z)$ for $z \in \mathbb{C} \setminus Z$ and i = 1, ..., n, denote the roots, with possible repetitions, of $\Phi(z, w) = 0$. The discriminant (with respect to the *w* variable) of $\Phi(z, w)$ is given by

$$D(z) = \prod_{i \neq j} \left(\rho_i(z) - \rho_j(z) \right)^2 \,.$$

The relevant algebraic fact we wish to use is (see Lang, Algebra, V,§9-10):

 $D \equiv 0$ iff Φ has a repeated root iff Φ has a repeated factor.

For example, $w^2 - z$ has $D^{-1}\{0\}$ equalling the single point $\{0\}$ while $w^4 - 2w^2z + z^4 = (w^2 - z)^2$, which has the same zero set, has discriminant identically 0.

Without changing $V = \Phi^{-1}\{0\}$, we may now assume Φ has no repeated factors and decompose $\Phi = \prod_{j=1}^{J} \Phi_j$ where the Φ_j are irreducible and distinct. Since $\Phi^{-1}\{0\} = \bigcup_{j=1}^{J} \Phi_j^{-1}\{0\}$, we may, by replacing Φ by each Φ_j now assume

 Φ itself is irreducible and hence $\, D \not\equiv 0$.

To show how V is a Riemann surface we will show that $\Pi : V \to \mathbb{C} \setminus Z$, $\Pi(z, w) = z$, is a holomorphic branched covering map with branch image set $D^{-1}\{0\}$. A key tool is the construction of a product neighborhood $\mathbf{B}_{\delta}(a) \times \mathbf{B}_{\epsilon}(b)$ about any point $(a, b) \in \mathbf{C}^2$. First, since $\Phi(a, \cdot)$ has only finitely many zeroes, we find that, for all sufficiently small positive ϵ , $\Phi(a, w) \neq 0$ whenever $|w - b| = \epsilon$. Then, for all sufficiently small positive δ depending on ϵ , one still has $\Phi(z, w) \neq 0$ whenever $|z - a| < \delta$ and $|w - b| = \epsilon$. Thus Φ does not vanish on the set $\mathbf{B}_{\delta}(a) \times \partial \mathbf{B}_{\epsilon}(b)$. Now we can use a formula from complex analysis (Ahlfors, *Complex Analysis*, 3.3, Th.10) to see that the number of solutions of $\Phi(z, w) = 0$ with $|z - a| < \delta$ and $|w - b| < \epsilon$ is

$$N(z) = \frac{1}{2\pi i} \int_{\partial \mathbf{B}_{\epsilon}(b)} \frac{\frac{\partial \Phi}{\partial w}(z,\zeta)}{\Phi(z,\zeta)} d\zeta ,$$

which is continuous, integer-valued, and hence the constant N(a). For $D(a) \neq 0$ and $(a,b) \in V$, N(a) = 1 and the arbitrariness of ϵ shows that the corresponding root $w = \rho(z)$ of $\Phi(z,w) = 0$ in $\mathbf{B}_{\epsilon}(b)$ is continuous on $\mathbf{B}_{\delta}(a)$. Moreover, the formula (see Ahlfors, §5.3 eqn(44))

$$\rho(z) = \frac{1}{2\pi i} \int_{\partial \mathbf{B}_{\epsilon}(b)} \zeta \frac{\frac{\partial \Phi}{\partial w}(z,\zeta)}{\Phi(z,\zeta)} d\zeta$$

shows that ρ is also holomorphic on $\mathbf{B}_{\delta}(a)$. Thus $\Pi | \Phi^{-1}\{0\} \setminus (D \circ \Pi)^{-1}\{0\}$ is an *n* sheeted holomorphic covering map.

For each positive integer k we may also apply the formula (Ahlfors, §5.3 eqn(44)) to the function w^k to conclude that the power sum

$$\sum_{j=1}^{n} \rho_{i}(z)^{k} = \frac{1}{2\pi i} \int_{\partial \mathbf{B}_{\epsilon}(b)} \zeta^{k} \frac{\frac{\partial \Phi}{\partial w}(z,\zeta)}{\Phi(z,\zeta)} d\zeta$$

is a holomorphic function on $\mathbb{C} \setminus Z$. Any symmetric polynomial in the $\rho_i(z)$'s is a polynomial in the power sums for various k, and hence is also holomorphic. Moreover, since it is easy to estimate the root of a monic polynomial in terms of its coefficients, we see that this holomorphic function has polynomial growth in zas $|z| \to \infty$ or in $\frac{1}{|z-a|}$ as $z \to a \in Z$, hence is a rational function. In particular, the discriminant D(z) is a rational function of z, and $D^{-1}\{0\}$ is a finite set.

Next consider a point $a \in \mathbb{C} \setminus Z$ with D(a) = 0. Lifting a small circle $\partial \mathbf{B}_{\delta}(a)$ gives a finite number of circles C_1, \ldots, C_j which Π maps down with some positive integer multiplicities k_1, k_2, \ldots, k_j where $k_1 + k_2 + \ldots + k_j = n$. Our formula for N(z) shows that each such C_i shrinks to the point (a, b) as $\delta \downarrow 0$. It determines a component V_i of $V \cap \Pi^{-1}(\mathbf{B}_{\delta}(a) \setminus \{a\})$, which is a punctured disk. Then $[\Pi(\cdot)-a]^{1/k_i}$ defines a holomorphic coordinate for $V_i \cup \{(a, b)\}$. We now conclude that $\Phi^{-1}\{0\}$ is a finite union of Riemann surfaces.

Finally we can lift a small circle $\partial \mathbf{B}_{\delta}(a)$ for $a \in Z$ or a large circle $\partial \mathbf{B}_{R}(0)$, large enough to contain $D^{-1}\{0\}$ in its interior, to see similar local topological behavior in a neighborhood of $a \in Z$ or of ∞ . Because of the polynomial growth described above, we similarly obtain, after adding a finite set of points to V, holomorphic coordinates near these points at infinity. We finally obtain a finite union of compact Riemann surfaces.

Remark. A concrete way of obtaining these extra points is to take the closure of Vin the complex projective space $\mathbb{C}P^2$ under a usual embedding \mathbb{C}^2 in $\mathbb{C}P^2$.

Now we turn to a converse fact:

Riemann's Theorem. Every compact connected Riemann surface M is biholomorphic to an algebraic Riemann surface as above.

Proof : We will construct an irreducible $\Phi(v, w)$ and biholomorphic map from $M \setminus \{\text{finite set}\} \text{ onto } \Phi^{-1}\{0\} \subset \mathbf{C} \times \mathbf{C}.$

First we choose a nonconstant meromorphic function z = f(P) on M. Then f gives a holomorphic branched covering map onto $\hat{\mathbf{C}}$ with a finite number n of sheets. Let B be the image of the branch points and fix a point $z_0 \in \mathbf{C} \setminus B$ so that $f^{-1}\{z_0\}$ equals *n* points P_1^0, \ldots, P_n^0 .

Second, we find a meromorphic function g on M so that $g(P_1^0), \ldots, g(P_n^0)$ are distinct complex numbers. To do this we may, for example, let ω_i be a meromorphic 1 form on M with a single order 2 pole at P_j^0 and principal part $-\frac{dz}{(z-z_0)^2}$ in terms of a local parameter z = f(P). Let c_1, \ldots, c_n be distinct complex numbers and

$$g = (z-z_0)^2 \left(c_1 \frac{\omega_1}{dz} + \ldots + c_n \frac{\omega_n}{dz} \right) \,.$$

Then g works because $\frac{(z-z_0)^2 \omega_i}{dz}$ equals 1 at P_i^0 and vanishes at P_j^0 for $j \neq i$.

Now we can construct $\Phi(z, w)$. Letting $f^{-1}\{z\} = \{P_1(z), \ldots, P_n(z)\}$, we use the elementary symmetric functions

$$a_1 = a_1(z) = -g(P_1) - g(P_2) - \dots - g(P_n)$$

$$a_2 = a_2(z) = g(P_1)g(P_2) + g(P_1)g(P_3) + \dots = \sum_{i < j} g(P_i)g(P_j)$$

 $a_n = a_n(z) = (-1)^n g(P_1) \dots g(P_n)$.

/ ___ \

Arguing as before, we find that these functions are by symmetry and growth considerations rational on \mathbf{C} . Moreover,

$$\Phi(z,w) = \prod_{i=1}^{n} \left(w - g(P_i(z)) \right) = w^n + a_1(z)w^{n-1} + \ldots + a_n(z) ,$$

and Φ is irreducible because the complex numbers $g(P_1^0), \ldots, g(P_n^0)$ are distinct.

The map F = (f, g) clearly maps holomorphically onto $\Phi^{-1}\{0\}$. To see that F is one-one, note that for any $P \in M$ with $F(P) = (z_0, w)$, $f(P) = z_0$, $P = P_i^0$ for some i and $w = g(P_i^0)$, hence $F^{-1}\{(z_0, w)\}$ has only one point. Thus F has degree 1 and, being holomorphic between Riemann surfaces, must be one-one.