Assignment 6, due 10/29

Let $\mathcal{C}_0^{\infty}(\mathbf{R}) = \{\text{infinitely differentiable } f : \mathbf{R} \to \mathbf{R} \text{ of compact support } \}.$

The weak derivative of a locally integrable function $f : \mathbf{R} \to \mathbf{R}$ is the linear function $D_f : \mathcal{C}_0^{\infty}(\mathbf{R}) \to \mathbf{R}$ defined by

$$D_f(g) = -\int fg' dx$$
 for all $g \in \mathcal{C}_0^\infty(\mathbf{R})$.

Ex. 1 Find another formula for $D_f(g)$ in case f is continuously differentiable.

Ex. 2 Find another formula for $D_A(g)$ where A(x) = |x|.

Ex. 3 Find another formula for $D_H(g)$ where H(x) = 0 for $x \le 0$ and H(x) = 1 for x > 0.

Ex. 4 Let $\gamma(x, y) = \lambda(|x - y|)H(y - x)$ where $\lambda(r)$ is a cutoff function as on P.297 of Royden's paper. Let

$$(T\phi)(y) = \int \phi(x)\gamma(x,y) \, dx \text{ for } \phi \in \mathcal{C}_0^\infty(\mathbf{R})$$

Arguing now as in proof of Lemma 1 in Royden's paper, show that $T\phi$ is differentiable and (using Ex.3) that

$$(T\phi)'(y) = \phi(y) + \int_{-\infty}^{y} \phi(x)\lambda'(y-x) \, dx = \phi(y) - \int \phi(x)\gamma_x(x,y) \, dx \, .$$

Hint: You may use the fact that $G(y) = \int_a^y F(x, y) dx$ is smooth whenever F is smooth and that $G'(y) = F(y, y) + \int_a^y F_y(x, y) dx$. This fact follows by applying the Fundamental Theorem of Calculus and the chain rule to differentiate G(y) = H(y, y) where $H(y, z) = \int_a^y F(x, z) dx$.

Ex. 5 Using Ex.4 and arguing as in the proof of Lemma 1, show:

If
$$D_f \in \mathcal{C}^\infty(\mathbf{R})$$

(that is, for some $h \in \mathcal{C}^{\infty}(\mathbf{R})$, $D_f(g) = \int g \cdot h \, dx$ for all $g \in \mathcal{C}_0^{\infty}(\mathbf{R})$, then $f \in \mathcal{C}^{\infty}(\mathbf{R})$.

Hint: Take $g = T\phi$, change variables to obtain the common factor $\phi(x) dx$ in all integrals, and use Fubini's Theorem to find the equation

$$-\int_x^\infty \lambda(y-x)h(y)\,dy = f(x) + \int_x^\infty f(y)\lambda'(y-x)\,dy \;,$$

which shows the smoothness of f.