Riemann Roch Theorem

Suppose M is a compact connected Riemann surface of genus g.

A divisor on M is an element of the free abelian group of points of M. The usual representation is multiplicative:

$$\mathcal{D} \;=\; q_1^{m_1} q_2^{m_2} \dots q_j^{m_j}$$

The degree of \mathcal{D} is $m_1 + \ldots + m_j$. We may write $\mathcal{D} = \mathcal{E}^{-1}\mathcal{F}$ where \mathcal{E} and \mathcal{F} are integral divisors, that is, ones with only nonnegative multiplicities. Let

 $A(\mathcal{D}) = \dim\{\text{meromophic functions that are multiples of } \mathcal{D}\}$

 $B(\mathcal{D}^{-1}) = \dim\{\text{meromophic 1 forms that are multiples of } \mathcal{D}^{-1}\}$.

Riemann-Roch Theorem.

$$A(\mathcal{D}) = B(\mathcal{D}^{-1}) - \deg \mathcal{D} - g + 1$$

Proof : We first consider the most important case:

Case 1. deg $\mathcal{F} = 0$. Here $\mathcal{D} = \mathcal{E}^{-1}$, and we need to show that

$$A(\mathcal{E}^{-1}) = B(\mathcal{E}) + \deg \mathcal{E} - g + 1.$$

Suppose $\mathcal{E} = p_1^{n_1} \dots p_k^{n_k}$. We will use the notion of principal parts. For *locally* defined meromorphic functions, these are easy to count. One sees that the vector space

 $P(\mathcal{E}^{-1}) = \{ \text{principal parts of functions mero. } near \text{ spt } \mathcal{E} \text{ that are multiples of } \mathcal{E} \}$ has

$$\dim P(\mathcal{E}^{-1}) = \deg \mathcal{E} ,$$

in fact, in suitable local coordinates,

$$\{(z-p_i)^{-j} : i=1,\ldots,k, j=1,\ldots,n_k\}$$
 spans $P(\mathcal{E}^{-1})$.

We are interested in the subspace

 $P_0 = \{ \text{principal parts of } global \text{ mero. functions that are multiples of } \mathcal{E}^{-1} \}$, Here

$$A(\mathcal{E}^{-1}) = \dim P_0 + 1$$
 (*)

because the difference of 2 meromorphic functions with the same principal part is holomorphic, hence, constant, and the constant can be arbitrary.

To compute dim P_0 , recall that the space $\mathcal{H} = \{\text{global holomorphic 1 forms}\}$ has complex dimension g. Rephrasing our theorem (Royden, p.315) on prescribing principal parts, we have

Theorem. $F \in P(\mathcal{E}^{-1})$ belongs to P_0 if and only if

$$\int_{\Gamma} F\omega = 0 \text{ for all } \omega \in \mathcal{H} ,$$

where , $=\sum_{i=1}^{k} \partial \mathbf{B}_{\delta}(p_i)$ for δ small.

A key question is "How many such ω do we need to test F?" While g such ω , given by a basis for \mathcal{H} , would do, we can actually use fewer. Let

 $\mathcal{H}(\mathcal{E}) = \{ \text{holomorphic 1 forms that are multiples of } \mathcal{E} \}$

hence, dim $\mathcal{H}(\mathcal{E}) = B = B(\mathcal{E})$. For $\omega \in \mathcal{H}(\mathcal{E})$ and any $F \in P(\mathcal{E}^{-1})$, $F\omega$ is holomorphic, hence $\int_{\Gamma} F\omega = 0$ automatically. Thus the ω in $\mathcal{H}(\mathcal{E})$ are not useful for testing membership in P_0 .

On the other hand, if $\omega \in \mathcal{H} \setminus \mathcal{H}(\mathcal{E})$, then, at some p_i , ω vanishes to an order $n < n_i$ and $(z - p_i)^{-n-1}$ defines a principal part $\tilde{F} \in P(\mathcal{E}^{-1})$ so that $\tilde{F}\omega$ has a single simple pole at p_i and $\int_{\Gamma} \tilde{F}\omega \neq 0$. Choosing now a basis $\alpha_1, \ldots, \alpha_{g-B}$ for a space complementary to $\mathcal{H}(\mathcal{E})$ in \mathcal{H} , we conclude that the mapping

$$\Phi : P(\mathcal{E}^{-1}) \to \mathbf{C}^{g-B}, \quad \Phi(F) = \left(\int_{\Gamma} F\alpha_1, \dots, \int_{\Gamma} F\alpha_{g-B}\right),$$

is surjective with ker $\Phi = P_0$, hence

$$\dim P_0 = \left(\deg \mathcal{E} \right) - \left(g - B(\mathcal{E}) \right) \,.$$

Combining this with (*) completes the proof of Case 1.

Case 2. deg $\mathcal{F} > 0$. Here we modify the argument of Case 1. First we take

 $P_0 = \{ \text{principal parts of } global \text{ mero. functions that are multiples of } \mathcal{D} = \mathcal{E}^{-1} \mathcal{F} \}$,

and note that now

$$A(\mathcal{D}) = \dim P_0 \tag{**}$$

because no nonzero constant function is a multiple of \mathcal{D} . Also the above theorem on prescribing principle parts now has the form

Theorem. $F \in P(\mathcal{E}^{-1})$ belongs to P_0 if and only if

$$\int_{\Gamma} F\omega = 0$$

for all meromorphic ω which are multiples of \mathcal{F}^{-1} .

This new version follows from the old version by using a Green's function representation (Royden, p.317). Now we are interested in the subspace $Q(\mathcal{F}^{-1})$ of meromorphic 1 forms ω which are multiples of \mathcal{F}^{-1} . Since there are g linearly independent holomorphic 1 forms and the principal parts, which are multiples of \mathcal{F}^{-1} , may be prescribed arbitrarily subject only to the one constraint that the sum of the residues is zero, we see that

$$\dim Q(\mathcal{F}^{-1}) = g + \deg \mathcal{F} - 1.$$

As in Case 1, the forms $\omega \in Q(\mathcal{F}^{-1})$ which automatically give $\int_{\Gamma} F\omega = 0$ for all $F \in P(\mathcal{E}^{-1})$ are in $Q(\mathcal{F}^{-1}\mathcal{E}) = Q(\mathcal{D}^{-1})$, which has dimension $B = B(\mathcal{D}^{-1})$. As in Case 1, we conclude that

$$\dim P_0 = \deg \mathcal{E} - \left[\dim Q(\mathcal{F}^{-1}) - B(\mathcal{D}^{-1})\right]$$
$$= \deg \mathcal{E} - \left[g + \deg \mathcal{F} - 1 - B(\mathcal{D}^{-1})\right]$$
$$= B(\mathcal{D}^{-1}) - \deg \mathcal{D} - g + 1.$$

Combining this with (**) completes the proof.

Some Consequences. Note that for \mathcal{E} being an integral divisor, one has that $0 \leq B(\mathcal{E}) \leq g$ (because all the forms are holomorphic) and $A(\mathcal{E}^{-1}) \geq 1$ because the lack of conditions on the zeroes allow for constant functions.

In case $g = 0, B(\mathcal{E}) = 0$ and

$$A(\mathcal{E}^{-1}) = 1 + \deg \mathcal{E} .$$

In case g = 1, $B(\mathcal{E}) = 0$ because any nonzero holomorphic 1 form does not vanish. (On the standard torus it has the form $\lambda(d\theta + id\phi)$ for some $0 \neq \lambda \in \mathbb{C}$.) So now

$$A(\mathcal{E}^{-1}) = \deg \mathcal{E} .$$

In particular, by choosing $\mathcal{E} = p$ (as in Assignment 11, #3) or $\mathcal{E} = p^2$, we find that, for any two points p, q on a torus T, there is a unique meromorphic function f on T having an order 2 pole at p and having f(q) = 1.