Riemann Roch Theorem

Suppose M is a compact connected Riemann surface of genus g.
A divisor on M is an element of the free abelian group of points of M. The usual representation is multiplicative:

$$
\mathcal{D}=q_{1}^{m_{1}} q_{2}^{m_{2}} \ldots q_{j}^{m_{j}}
$$

The degree of \mathcal{D} is $m_{1}+\ldots+m_{j}$. We may write $\mathcal{D}=\mathcal{E}^{-1} \mathcal{F}$ where \mathcal{E} and \mathcal{F} are integral divisors, that is, ones with only nonnegative multiplicities. Let

$$
\begin{aligned}
A(\mathcal{D}) & =\operatorname{dim}\{\text { meromophic functions that are multiples of } \mathcal{D}\} \\
B\left(\mathcal{D}^{-1}\right) & =\operatorname{dim}\left\{\text { meromophic } 1 \text { forms that are multiples of } \mathcal{D}^{-1}\right\} .
\end{aligned}
$$

Riemann-Roch Theorem.

$$
A(\mathcal{D})=B\left(\mathcal{D}^{-1}\right)-\operatorname{deg} \mathcal{D}-g+1
$$

Proof: We first consider the most important case:
Case 1. $\operatorname{deg} \mathcal{F}=0$. Here $\mathcal{D}=\mathcal{E}^{-1}$, and we need to show that

$$
A\left(\mathcal{E}^{-1}\right)=B(\mathcal{E})+\operatorname{deg} \mathcal{E}-g+1
$$

Suppose $\mathcal{E}=p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}$. We will use the notion of principal parts. For locally defined meromorphic functions, these are easy to count. One sees that the vector space
$P\left(\mathcal{E}^{-1}\right)=\{$ principal parts of functions mero. near $\operatorname{spt} \mathcal{E}$ that are multiples of $\mathcal{E}\}$ has

$$
\operatorname{dim} P\left(\mathcal{E}^{-1}\right)=\operatorname{deg} \mathcal{E}
$$

in fact, in suitable local coordinates,

$$
\left\{\left(z-p_{i}\right)^{-j}: i=1, \ldots, k, j=1, \ldots, n_{k}\right\} \text { spans } P\left(\mathcal{E}^{-1}\right) .
$$

We are interested in the subspace

$$
P_{0}=\left\{\text { principal parts of global mero. functions that are multiples of } \mathcal{E}^{-1}\right\}
$$

Here

$$
\begin{equation*}
A\left(\mathcal{E}^{-1}\right)=\operatorname{dim} P_{0}+1 \tag{*}
\end{equation*}
$$

because the difference of 2 meromorphic functions with the same principal part is holomorphic, hence, constant, and the constant can be arbitrary.

To compute $\operatorname{dim} P_{0}$, recall that the space $\mathcal{H}=\{$ global holomorphic 1 forms $\}$ has complex dimension g. Rephrasing our theorem (Royden, p.315) on prescribing principal parts, we have

Theorem. $F \in P\left(\mathcal{E}^{-1}\right)$ belongs to P_{0} if and only if

$$
\int_{\Gamma} F \omega=0 \text { for all } \omega \in \mathcal{H}
$$

where,$=\sum_{i=1}^{k} \partial \mathbf{B}_{\delta}\left(p_{i}\right)$ for δ small.
A key question is "How many such ω do we need to test F ?" While g such ω, given by a basis for \mathcal{H}, would do, we can actually use fewer. Let

$$
\mathcal{H}(\mathcal{E})=\{\text { holomorphic } 1 \text { forms that are multiples of } \mathcal{E}\}
$$

hence, $\operatorname{dim} \mathcal{H}(\mathcal{E})=B=B(\mathcal{E})$. For $\omega \in \mathcal{H}(\mathcal{E})$ and any $F \in P\left(\mathcal{E}^{-1}\right)$, $F \omega$ is holomorphic, hence $\int_{\Gamma} F \omega=0$ automatically. Thus the ω in $\mathcal{H}(\mathcal{E})$ are not useful for testing membership in P_{0}.

On the other hand, if $\omega \in \mathcal{H} \backslash \mathcal{H}(\mathcal{E})$, then, at some p_{i}, ω vanishes to an order $n<n_{i}$ and $\left(z-p_{i}\right)^{-n-1}$ defines a principal part $\tilde{F} \in P\left(\mathcal{E}^{-1}\right)$ so that $\tilde{F} \omega$ has a single simple pole at p_{i} and $\int_{\Gamma} \tilde{F} \omega \neq 0$. Choosing now a basis $\alpha_{1}, \ldots, \alpha_{g-B}$ for a space complementary to $\mathcal{H}(\mathcal{E})$ in \mathcal{H}, we conclude that the mapping

$$
\Phi: P\left(\mathcal{E}^{-1}\right) \rightarrow \mathbf{C}^{g-B}, \quad \Phi(F)=\left(\int_{\Gamma} F \alpha_{1}, \ldots, \int_{\Gamma} F \alpha_{g-B}\right)
$$

is surjective with $\operatorname{ker} \Phi=P_{0}$, hence

$$
\operatorname{dim} P_{0}=(\operatorname{deg} \mathcal{E})-(g-B(\mathcal{E}))
$$

Combining this with $\left({ }^{*}\right)$ completes the proof of Case 1.
Case 2. $\operatorname{deg} \mathcal{F}>0$. Here we modify the argument of Case 1. First we take $P_{0}=\left\{\right.$ principal parts of global mero. functions that are multiples of $\left.\mathcal{D}=\mathcal{E}^{-1} \mathcal{F}\right\}$, and note that now

$$
\begin{equation*}
A(\mathcal{D})=\operatorname{dim} P_{0} \tag{**}
\end{equation*}
$$

because no nonzero constant function is a multiple of \mathcal{D}. Also the above theorem on prescribing principle parts now has the form

Theorem. $F \in P\left(\mathcal{E}^{-1}\right)$ belongs to P_{0} if and only if

$$
\int_{\Gamma} F \omega=0
$$

for all meromorphic ω which are multiples of \mathcal{F}^{-1}.

This new version follows from the old version by using a Green's function representation (Royden, p.317). Now we are interested in the subspace $Q\left(\mathcal{F}^{-1}\right)$ of meromorphic 1 forms ω which are multiples of \mathcal{F}^{-1}. Since there are g linearly independent holomorphic 1 forms and the principal parts, which are multiples of \mathcal{F}^{-1}, may be prescribed arbitrarily subject only to the one constraint that the sum of the residues is zero, we see that

$$
\operatorname{dim} Q\left(\mathcal{F}^{-1}\right)=g+\operatorname{deg} \mathcal{F}-1
$$

As in Case 1, the forms $\omega \in Q\left(\mathcal{F}^{-1}\right)$ which automatically give $\int_{\Gamma} F \omega=0$ for all $F \in P\left(\mathcal{E}^{-1}\right)$ are in $Q\left(\mathcal{F}^{-1} \mathcal{E}\right)=Q\left(\mathcal{D}^{-1}\right)$, which has dimension $B=B\left(\mathcal{D}^{-1}\right)$. As in Case 1, we conclude that

$$
\begin{aligned}
\operatorname{dim} P_{0} & =\operatorname{deg} \mathcal{E}-\left[\operatorname{dim} Q\left(\mathcal{F}^{-1}\right)-B\left(\mathcal{D}^{-1}\right)\right] \\
& =\operatorname{deg} \mathcal{E}-\left[g+\operatorname{deg} \mathcal{F}-1-B\left(\mathcal{D}^{-1}\right)\right] \\
& =B\left(\mathcal{D}^{-1}\right)-\operatorname{deg} \mathcal{D}-g+1
\end{aligned}
$$

Combining this with $\left({ }^{* *}\right)$ completes the proof.
Some Consequences. Note that for \mathcal{E} being an integral divisor, one has that $0 \leq B(\mathcal{E}) \leq g$ (because all the forms are holomorphic) and $A\left(\mathcal{E}^{-1}\right) \geq 1$ because the lack of conditions on the zeroes allow for constant functions.

In case $g=0, B(\mathcal{E})=0$ and

$$
A\left(\mathcal{E}^{-1}\right)=1+\operatorname{deg} \mathcal{E}
$$

In case $g=1, B(\mathcal{E})=0$ because any nonzero holomorphic 1 form does not vanish. (On the standard torus it has the form $\lambda(d \theta+i d \phi)$ for some $0 \neq \lambda \in \mathbf{C}$.) So now

$$
A\left(\mathcal{E}^{-1}\right)=\operatorname{deg} \mathcal{E}
$$

In particular, by choosing $\mathcal{E}=p$ (as in Assignment 11, \#3) or $\mathcal{E}=p^{2}$, we find that, for any two points p, q on a torus T, there is a unique meromorphic function f on T having an order 2 pole at p and having $f(q)=1$.

