
Riemann Roch Theorem

Suppose M is a compact connected Riemann surface of genus g.

A divisor on M is an element of the free abelian group of points of M . The

usual representation is multiplicative:

D = qm1

1
qm2

2
: : : q

mj

j :

The degree of D is m1 + : : : +mj . We may write D = E�1F where E and F are

integral divisors, that is, ones with only nonnegative multiplicities. Let

A(D) = dimfmeromophic functions that are multiples of Dg

B(D�1) = dimfmeromophic 1 forms that are multiples of D�1g :

Riemann-Roch Theorem.

A(D) = B(D�1) � degD � g + 1 :

Proof : We �rst consider the most important case:

Case 1. degF = 0. Here D = E�1, and we need to show that

A(E�1) = B(E) + deg E � g + 1 :

Suppose E = pn1
1
: : : pnkk . We will use the notion of principal parts. For locally

de�ned meromorphic functions, these are easy to count. One sees that the vector

space

P (E�1) = fprincipal parts of functions mero: near spt E that are multiples of Eg

has

dimP (E�1) = deg E ;

in fact, in suitable local coordinates,

f(z � pi)
�j : i = 1; : : : ; k; j = 1; : : : ; nkg spans P (E�1) :

We are interested in the subspace

P0 = fprincipal parts of global mero: functions that are multiples of E�1g ;

Here

A(E�1) = dimP0 + 1 (�)

because the di�erence of 2 meromorphic functions with the same principal part is

holomorphic, hence, constant, and the constant can be arbitrary.

To compute dimP0, recall that the space H = fglobal holomorphic 1 forms g

has complex dimension g. Rephrasing our theorem (Royden, p.315) on prescribing

principal parts, we have
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Theorem. F 2 P (E�1) belongs to P0 if and only if

Z
�

F! = 0 for all ! 2 H ;

where � =
Pk

i=1 @B�(pi) for � small.

A key question is \How many such ! do we need to test F?" While g such !,

given by a basis for H, would do, we can actually use fewer. Let

H(E) = fholomorphic 1 forms that are multiples of Eg ;

hence, dimH(E) = B = B(E). For ! 2 H(E) and any F 2 P (E�1), F! is

holomorphic, hence
R
�
F! = 0 automatically. Thus the ! in H(E) are not useful

for testing membership in P0.

On the other hand, if ! 2 H n H(E), then, at some pi, ! vanishes to an order

n < ni and (z � pi)
�n�1 de�nes a principal part ~F 2 P (E�1) so that ~F! has a

single simple pole at pi and
R
�
~F! 6= 0. Choosing now a basis �1; : : : ; �g�B for a

space complementary to H(E) in H, we conclude that the mapping

� : P (E�1) ! Cg�B ; �(F ) =
� Z

�

F�1; : : : ;

Z
�

F�g�B
�
;

is surjective with ker� = P0, hence

dimP0 =
�
deg E

�
�

�
g � B(E)

�
:

Combining this with (*) completes the proof of Case 1.

Case 2. degF > 0. Here we modify the argument of Case 1. First we take

P0 = fprincipal parts of global mero: functions that are multiples of D = E�1Fg ;

and note that now

A(D) = dimP0 (��)

because no nonzero constant function is a multiple of D. Also the above theorem

on prescribing principle parts now has the form

Theorem. F 2 P (E�1) belongs to P0 if and only if

Z
�

F! = 0

for all meromorphic ! which are multiples of F�1.
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This new version follows from the old version by using a Green's function

representation (Royden, p.317). Now we are interested in the subspace Q(F�1)

of meromorphic 1 forms ! which are multiples of F�1. Since there are g linearly

independent holomorphic 1 forms and the principal parts, which are multiples of

F�1, may be prescribed arbitrarily subject only to the one constraint that the sum

of the residues is zero, we see that

dimQ(F�1) = g + degF � 1:

As in Case 1, the forms ! 2 Q(F�1) which automatically give
R
�
F! = 0 for all

F 2 P (E�1) are in Q(F�1E) = Q(D�1), which has dimension B = B(D�1). As in

Case 1, we conclude that

dimP0 = deg E �
�
dimQ(F�1) � B(D�1)

�
= deg E �

�
g + degF � 1 � B(D�1)

�
= B(D�1) � degD � g + 1 :

Combining this with (**) completes the proof.

Some Consequences. Note that for E being an integral divisor, one has that

0 � B(E) � g (because all the forms are holomorphic) and A(E�1) � 1 because the

lack of conditions on the zeroes allow for constant functions.

In case g = 0, B(E) = 0 and

A(E�1) = 1 + deg E :

In case g = 1, B(E) = 0 because any nonzero holomorphic 1 form does not

vanish. (On the standard torus it has the form �(d� + id�) for some 0 6= � 2 C.)

So now

A(E�1) = deg E :

In particular, by choosing E = p (as in Assignment 11, #3) or E = p2, we �nd that,

for any two points p; q on a torus T , there is a unique meromorphic function f on

T having an order 2 pole at p and having f(q) = 1.
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