BV Compactness for Maps to a Metric Space

Suppose $-\infty \le a < b \le \infty$, E is a metric space, e_0 is any fixed point of E, and $f:(a,b)\to E$ is Lebesgue measurable.

Def. We say f belongs to $L^1((a,b)^n, E)$ if $\int_{(a,b)^n} \operatorname{dist}_E(f(x), e_0) dx < \infty$.

Lemma 1. If f_j , $f:(a,b)^n \to E$ are \mathcal{L}^n measurable and

$$\Lambda_j \equiv \int_{(a,b)^n} \operatorname{dist}_E(f_j(x), f(x)) dx \to 0 \text{ as } j \to \infty,$$

then a subsequence $f_{j'}$ converges pointwise a.e. to f.

Proof: Choose a subsequence $f_{j'}$ so that $\sum_{j=1}^{\infty} \Lambda_j < \infty$. Then, since

$$\int_{(a,b)^n} \sum_{j=1}^{\infty} \operatorname{dist}_{E}(f_j(x), f(x)) dx < \infty ,$$

 $\sum_{j=1}^{\infty} \operatorname{dist}_{E}(f_{j}(x), f(x)) < \infty \text{ for a.e. } x \in (a, b)^{n} \text{ and } f_{j'}(x) \to 0 \text{ for all such } x.$

For a measurable map $f:(a,b)\to E$, we define the essential variation

$$\operatorname{ess} V_a^b(f) = \sup \{ \sum_{i=1}^m \operatorname{dist}_E(f(t_i), f(t_{i-1})) : a < t_0 < t_1 < \dots < t_m < b,$$

 t_i are Lebesgue pts of f}.

Suppose $f \in L^1((a,b), \mathbf{R})$ and $\operatorname{ess} V_a^b(f) < \infty$. Then f equals a.e. the difference of the two monotone functions $\operatorname{ess} V_a^x(f) - [\operatorname{ess} V_a^b(f) - f(x)]$. It follows that the limit $\tilde{f}(x) = \lim_{r \downarrow 0} \frac{1}{|\mathbf{B}_r(x)|} \int_{\mathbf{B}_r(x)} f(y) \, dy$ exists at all points in (a,b) and is continuous except for an atmost countable set where the left and right limits still exist but are different. By Lebesgue's differentiation theorem, $f = \tilde{f}$ a.e., and so $\operatorname{ess} V_a^b(f)$ coincides with the classical variation of \tilde{f} :

$$V_a^b(\tilde{f}) = \sup\{\sum_{i=1}^m \operatorname{dist}_E(\tilde{f}(t_i), \tilde{f}(t_{i-1})) : a < t_0 < t_1 < \ldots < t_m < b\}.$$

For an open set $U \subset \mathbf{R}^n$, recall also the distribution definition:

Def. $f \in BV(U) \Leftrightarrow f \in L^1(U)$ and

$$||Df||(U) \equiv \sup \{ \int f \operatorname{div} w : w \in \mathcal{C}_0^{\infty}(U, \mathbf{R}^n), |w| \le 1 \} < \infty .$$

For n = 1 we have:

Theorem 1. If $f \in L^1((a,b))$, then $||Df||((a,b)) = \cos V_a^b(f)$.

The proof given in class, used smoothing for both implications and followed Evans-Gariepy, $\S 5.10.1$.

Lemma 2. Suppose $0 < M < \infty$ and $f_j : [a,b] \to [-M,M]$ are monotone increasing. Then a subsequence $f_{j'}$ converges pointwise off a countable set. Moreover, $||f_{j'} - f||_{L^p} \to 0$ for any $p \in [1,\infty)$.

Proof: Suppose $\mathbf{Q} \cap [a,b] = \{a_1, a_2, \ldots\}$. A subsequence $f_{\alpha_1(1)}(a_1), f_{\alpha_1(2)}(a_1), \ldots$ of the bounded sequence of numbers $f_1(a_1), f_2(a_1), \ldots$ converges to a number $f(a_1)$. Inductively, choose a subsequence $f_{\alpha_j(1)}(a_j), f_{\alpha_j(2)}(a_j), \ldots$ of the sequence $f_{\alpha_{j-1}(1)}(a_j), f_{\alpha_{j-1}(2)}(a_j), \ldots$ convergent to a number $f(a_j)$.

Let $j' = \alpha_j(j)$ and $f(x) = \sup_{a_i < x} f(a_i) = \lim_{\epsilon \downarrow 0} \sup_{x - \epsilon < a_i < x} f(a_i)$. Then f is monotone increasing and the set Z of discontinuities of f is at most countable. To see that $\lim_{j \to \infty} f_{j'}(x) = f(x)$ for any $x \in (a,b) \setminus Z$, we choose, for $\epsilon > 0$, numbers $a_i < x < a_{\tilde{i}}$ so that $f(a_{\tilde{i}}) - \epsilon < f(x) < f(a_i) + \epsilon$, and then J so that

$$|f_{j'}(a_i) - f(a_i)| < \epsilon$$
 and $|f_{j'}(a_{\tilde{i}}) - f(a_{\tilde{i}})| < \epsilon$

for $j \geq J$. For such j it follows that

$$f(x) - 2\epsilon < f(a_i) - \epsilon < f_{i'}(a_i) < f_{i'}(x) < f_{i'}(a_i) < f(a_i) + \epsilon < f(x) + 2\epsilon$$
.

Thus $|f_{j'}(x) - f(x)| < 2\epsilon$.

To verify the second conclusion note that $|f_{j'} - f|^p \leq 2^p M^p$ and apply the Lebesgue dominated convergence theorem.

Corollary 1. Any sequence of functions $f_j \in L^1((a,b))$ with

$$M \equiv \sup_{j} \int_{a}^{b} |f_{j}| dx + \|Df_{j}\| ((a,b)) < \infty$$

contains a subsequence $f_{j'}$ convergent pointwise a.e. and in L^1 to a function f with $\int_a^b |f| dx + ||Df|| ((a,b)) \leq M$.

Proof: For the normalized functions \tilde{f}_j we have the sup bound

$$|\tilde{f}_{j}| \leq |b-a|V_{a}^{b}\tilde{f}_{j}| + \inf |\tilde{f}_{j}|$$

 $\leq |b-a|\|Df_{j}\|((a,b)) + \frac{1}{|b-a|}\int_{a}^{b}|f_{j}| \leq M(|b-a|+|b-a|^{-1}).$

We may as above then write \tilde{f}_j as the difference $g_j - h_j$ of two uniformly bounded monotone increasing functions. Applying Lemma 2 to g_j and h_j gives the Corollary.

Recall that a metric space E is weakly separable if there is a sequence of functions $\phi_i: E \to \mathbf{R}$ with $\text{Lip}(\phi_i) \leq 1$ so that

$$\operatorname{dist}_{E}(x,y) = \inf_{i} |\phi_{i}(x) - \phi_{i}(y)| \text{ for all } x, y \in E.$$

A separable metric space E is weakly separable as one sees by taking $\phi_i(x) = \text{dist } E(x, e_i)$ for some countable dense subset $\{e_i\}$ of E. Moreover, E is weakly separable if and only if there is a distance preserving embedding of E into

$$\ell^{\infty} = \{(a_1, a_2, \ldots) : \sup_{i} |a_i| < \infty\}.$$

With ϕ_i as above, one such embedding is

$$\iota(x) = (\phi_1(x) - \phi_1(e_0), \phi_2(x) - \phi_2(e_0), \dots)$$

where e_0 is any given point of E.

We also say E is boundedly compact if every closed ball $\overline{\mathbf{B}}_R(e_0) = \{x : \operatorname{dist}_E(x, e_0) \leq R\}$ is compact for $0 < R < \infty$. This implies that E is locally compact and complete.

Corollary 2. (BV compactness for n=1) Suppose E is a boundedly compact weakly separable metric space, $e_0 \in E$, and $0 < a < b < \infty$. Any sequence of functions $f_j \in L^1((a,b),E)$ with

$$M \equiv \sup_{i} \int_{a}^{b} \operatorname{dist}_{E}(f_{j}(x), e_{0}) dx + \operatorname{ess} V_{a}^{b}(f_{j}) < \infty$$

contains a subsequence $f_{j'}$ convergent pointwise a.e. and in L^1 to a function f with $\int_a^b \operatorname{dist}_E(f(x), e_0) dx + \operatorname{ess} V_a^b(f) \leq M$.

Proof: We may assume E is a boundedly compact subset of ℓ^{∞} and write $f_j = (f_j^1, f_j^2, \ldots)$. We apply Corollary 1 first to the sequence (f_1^1, f_2^1, \ldots) to obtain a subsequence $f_{\alpha_1(j)}^1$ that is L^1 and pointwise a.e. convergent to some f^1 , then inductively to the sequence $f_{\alpha_{k-1}(j)}^k$ to obtain a subsequence $f_{\alpha_k(j)}^k$ convergent to some f^k . We conclude that, for the diagonal sequence $f_{j'} = f_{\alpha_j(j)}$, each $f_{j'}^k$ is L^1 and pointwise a.e. convergent to f^k as $j \to \infty$. But, for the convergence of the functions $||f_{j'}(x) - f(x)||_{\ell^{\infty}}$, we still need to show that the rates of the convergences of $f_j^k(x)$ to $f^k(x)$ are uniform independent of k and that the limit $f(x) \in E$ for almost every $x \in (a,b)$. For this purpose we will show that, for a.e. $x \in (a,b)$, any subsequence j'' of j' contains a subsequence j''' so that $f_{j'''}(x) \to f(x)$. First Fatou's Lemma gives that, for a.e. $x \in (a,b)$, $\lim \inf_{j'' \to \infty} \operatorname{dist}_E(f_{j''}(x), e_0) < \infty$. So there is, by the bounded compactness assumption, a subsequence j''' of j'' (depending on x) and a limit point $e \in E$ so that $||f_{j'''}(x) - e||_{\ell^{\infty}} \to 0$ as $j \to \infty$. But the previous convergences of the components $f_{j'}^k$ show that $e = (e^1, e^2, \ldots) = (f^1(x), f^2(x), \ldots) = f(x)$.

Thus we obtain the desired pointwise a.e. convergence. The L^1 convergence then follows by Lebesgue dominated convergence as in the proof of Corollary 1, and one readily checks that

$$\int_a^b \|f(x)\|_{\ell^{\infty}} dx + \operatorname{ess} V_a^b(f) \le M.$$

Now we turn again to functions of n variables. For $x \in \mathbf{R}^n$, $k \in \{1, ..., n\}$, and $f: (a,b)^n \to E$, we define

$$\hat{x}_k = (x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n), \ f_{(k)}(\hat{x}_k, x_k) = f(x).$$

Then we have:

Lemma 3. For $f \in L^1((a,b)^n, E)$ with E weakly separable, the mapping

$$y \mapsto \operatorname{ess} V_a^b f_{(k)}(y,\cdot)$$

is \mathcal{L}^{n-1} measurable.

Theorem 2. Suppose $f \in L^1((a,b)^n)$. Then

$$||Df||((a,b)^n) \le \sum_{k=1}^n \int_{(a,b)^n} \operatorname{ess} V_a^b f_{(k)}(y,\cdot) dy \le n ||Df||((a,b)^n).$$

The proofs given in class followed Evans-Gariepy, §5.10.2.

Based on the above it is reasonable to say that a function $f \in L^1((a,b)^n, E)$ belongs to $BV((a,b)^n, E)$ if the variation on lines

$$VL(f) \equiv \sum_{k=1}^{n} \int_{(a,b)^n} \operatorname{ess} V_a^b f_{(k)}(y,\cdot) \, dy < \infty$$

and prove the following:

Theorem 3. (BV compactness) Suppose E is a boundedly compact weakly separable metric space, $e_0 \in E$, and $0 < a < b < \infty$. Any sequence of functions $f_j \in L^1((a,b)^n, E)$ with

$$M \equiv \sup_{j} \int_{(a,b)^n} \operatorname{dist}_{E}(f_j(x), e_0) \, dx + VL(f_j) < \infty$$

contains a subsequence $f_{i'}$ convergent pointwise a.e. and in L^1 to a function f with

$$\int_{(a,b)^n} \operatorname{dist}_E(f(x), e_0) \, dx + VL(f) \le M$$

Proof: We argue by induction on n. The case n=1 follows from Corollary 2. Assuming the theorem true for dimensions less than n, we will use the metric space

$$\tilde{E} \equiv \{ f \in L^1((a,b)^{n-1}, E) : \int_{(a,b)^{n-1}} \operatorname{dist}_E(f(x), e_0) \, dx + VL(f) \le M \} .$$

One easily checks that \tilde{E} is weakly separable by again viewing E as a boundedly compact subset of ℓ^{∞} . The inductive assumption guarantees that \tilde{E} is compact, hence boundedly compact.

For each $k \in \{1, ..., n\}$, Fubini's theorem implies that, for a.e. $t \in \mathbf{R}$, each function $f_{j(k)}(\cdot,t) \in \tilde{E}$ and that the map $t \mapsto f_{j(k)}(\cdot,t)$ belongs to $L^1((a,b),\tilde{E})$ with the L^1 norm uniformly bounded by M. Also for $a \leq s < t \leq b$,

$$\operatorname{dist}_{\tilde{E}}(f_{j(k)}(\cdot,s), f_{j(k)}(\cdot,t)) = \int_{(a,b)^{n-1}} \operatorname{dist}_{E}(f_{j(k)}(y,s), f_{j(k)}(y,t)) dy$$

so that

$$\operatorname{ess} V_a^b f_{j(k)}(\cdot, \cdot) = \int_{(a,b)^{n-1}} \operatorname{ess} V_a^b f_{j(k)}(y, \cdot) dy \leq M.$$

The case n=1 now gives L^1 convergence of a subsequence $f_{i'(k)}(\cdot,t)$ to a function $g_k \in BV((a,b),\tilde{E})$. We obtain g_1, g_2, \ldots, g_n by taking consecutive subsequences. The compatibility condition of the approximating functions

$$f_{j(k)}(x'_k, x_k) = f_{j(k)}(x_l, \dots, x_n) = f_{j(l)}(x'_l, x_l)$$

for $k, l \in \{1, ..., n\}$ along with Lemma 1 implies the compatibility of these limit functions

$$g_k(x_k', x_k) = g_l(x_l', x_l)$$

which implies, using Fubini's Theorem, the existence of a function well-defined by

$$f(x_1,\ldots,x_n)=g_k(x_k',x_k)$$

for all $k=1,\ldots,n$ and almost all $x\in(a,b)^n$. Also one has, by Fubini's theorem the L^1 convergence

$$\int_{(a,b)^n} \operatorname{dist}_{E}(f_{j'}, f) \, dx = \int_a^b \operatorname{dist}_{\tilde{E}}(f_{j'(k)}(\cdot, t), f_{(k)}(\cdot, t)) \, dt \to 0$$

as $j \to \infty$. By Lemma 1, a subsequence of the $f_{j'}$ also converges pointwise a.e. to f. Measurability is a consequence of the pointwise convergence. One readily verifies the estimate

 $\int_{(a,b)^n} \operatorname{dist}_E(f(x),e_0) \, dx + VL(f) \leq M$

5