BV Compactness for Maps to a Metric Space

Suppose —0 < a < b < oo, E is a metric space, ey is any fixed point of E, and
f : (a,b) — E is Lebesgue measurable.
Def. We say f belongs to L' ((a,b)", E) if f(a pyn dist e(f(x),ep)dr < oo.

Lemma 1. If f;, f : (a,b)" — E are L™ measurable and
Ajz/ dist g(f;(x), f(z))dx — 0 as j — oo,
(a,b)™

then a subsequence fj converges pointwise a.e. to f.

Proof : Choose a subsequence fj so that 2511 A; < 0o. Then, since

/(‘a,b)" ]:

Z;‘;l dist g(f;(x), f(x)) < oo for a.e. z € (a,b)™ and f;/(x) — 0 for all such z. |

o0

dist g(f;(x), f(z))dx < oo,

For a measurable map f : (a,b) — E, we define the essential variation

ess V2(f) = sup{idistE(f(ti),f(ti_l)) ra<ty<t; <...<ty,<b,
i=1

t; are Lebesgue pts of f} .

Suppose f € Ll((a, b),R) and ess V2(f) < oco. Then f equals a.e. the difference of
the two monotone functions ess VZ(f) — [essV2(f) — f(z)]. It follows that the limit
f(x) = lim,|o m fBT(I) f(y) dy exists at all points in (a,b) and is continuous except
for an atmost countable set where the left and right limits still exist but are different. By
Lebesgue’s differentiation theorem, f = f a.e., and so ess V?(f) coincides with the classical
variation of f :

V2(f) =sup{D _dist g (f(t:), f(ti-1)) sa<to<t1 <...<tm <Db}.
i=1
For an open set U C R", recall also the distribution definition:
Def. f e BV(U) & fe LYU) and
IDFII(U) = sup{/fdivw cweCEWURY, Jw| <1} < oo

For n = 1 we have:

Theorem 1. If f € L'((a,b)), then |Df|((a,b)) = essVE(f).
The proof given in class, used smoothing for both implications and followed Evans-
Gariepy, §5.10.1. [ |



Lemma 2. Suppose 0 < M < oo and f; : [a,b] — [-M,M] are monotone increasing.
Then a subsequence fj converges pointwise off a countable set. Moreover, || fj — f|lLr — 0

for any p € [1,00).

Proof : Suppose Q N [a,b] = {a1,az,...}. A subsequence f,, (1)(a1), fa,(2)(a1),... of the
bounded sequence of numbers fi(ay), fa(a1),. .. converges to a number f(ap). Inductively,

choose a subsequence faj(l)(aj), fa, (2)(a;), ... of the sequence faj_1(1)(aj), fa;_1(2) (aj),...
convergent to a number f(a;).

Let j' = a;(j) and f(x) = sup,, ., f(a;) = limcjosup, .4, <, f(ai). Then f is
monotone increasing and the set Z of discontinuities of f is at most countable. To see that
lim;_,o fjs(x) = f(x) for any x € (a,b) \ Z, we choose, for € > 0, numbers a; < z < a; so
that f(a;) —e < f(x) < f(a;) + €, and then J so that

[fj(ai) — flai)| < eand |fj(a;) — f(az)] <e
for j > J. For such j it follows that
f(x) = 2e < flai) — e < fy(ai) < fy (@) < fi(a;) < flaz) + €< fx)+ 2.
Thus | fj(z) — f(z)] < 2e.

To verify the second conclusion note that |f;; — f|P < 2PMP and apply the Lebesgue
dominated convergence theorem. [ |

Corollary 1. Any sequence of functions f; € L* ((a,b)) with

b
Mzsup/ | fildx + ||ij||<(aab)) < o0
] a

contains a subsequence fji convergent pointwise a.e. and in L' to a function f with
b
Jo 1fldz + [Df]|((a, b)) < M.

Proof : For the normalized functions fj we have the sup bound
fil < [b—alVyf; + inf|fj]
1 b _
< [b—allDfjll((a, b)) + m/ il < M(p—al+b—al™").

We may as above then write fj as the difference g; —h; of two uniformly bounded monotone
increasing functions. Applying Lemma 2 to g; and h; gives the Corollary. [ |
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Recall that a metric space E is weakly separable if there is a sequence of functions
¢; : E — R with Lip (¢;) < 1 so that

dist g(x,y) = inf|¢;(z) — ¢i(y)| for all x,y € E .

A separable metric space F is weakly separable as one sees by taking ¢;(z) = dist g(z, ;)
for some countable dense subset {e;} of E. Moreover, E is weakly separable if and only if
there is a distance preserving embedding of E into

> = {(a1,az,...) : supla;| < oo} .
7

With ¢; as above, one such embedding is

Wz) = (¢1(~’U) — ¢1(eo), p2(x) — Pa(ep), - - )

where e is any given point of F.
We also say E is boundedly compact if every closed ball Br(eg) = {x : dist g(x,eq) <
R} is compact for 0 < R < co. This implies that E is locally compact and complete.

Corollary 2. (BV compactness for n = 1) Suppose E is a boundedly compact weakly
separable metric space, eg € E, and 0 < a < b < oo. Any sequence of functions

fi € L*((a,b), E) with

b
M =sup [ distp(fy(o) co)de + ess V() < o0

J

contains a subsequence [ convergent pointwise a.e. and in L' to a function f with
ffdist e(f(z),e0)dz +essVL(f)) < M.

Proof : We may assume F is a boundedly compact subset of £>° and write f; = (f}, f%,...)

We apply Corollary 1 first to the sequence (fi, f3,...) to obtain a subsequence ]%1(;) that
is L' and pointwise a.e. convergent to some f!, then inductively to the sequence fjk_l(j)
to obtain a subsequence f sk( j) convergent to some f*. We conclude that, for the diagonal
sequence fjr = fq,(j), each ff, is L' and pointwise a.e. convergent to f* as j — oco. But,
for the convergence of the functions || fj/(z) — f()||¢, we still need to show that the
rates of the convergences of fj’-‘i(x) to f¥(x) are uniform independent of k and that the
limit f(z) € E for almost every x € (a,b). For this purpose we will show that, for a.e.
z € (a,b), any subsequence j” of j' contains a subsequence j"' so that f;(x) — f(z).
First Fatou’s Lemma gives that, for a.e. z € (a,b), liminf;/_, . dist g(f;~(x),e0) < oc.
So there is, by the bounded compactness assumption, a subsequence ;" of j” (depending
on x) and a limit point e € E so that || f;»(z) — ell;= — 0 as j — oco. But the previous
convergences of the components fj’.“, show that e = (el,e?,...) = (fi(z), f3(x),...) = f(2).
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Thus we obtain the desired pointwise a.e. convergence. The L' convergence then follows
by Lebesgue dominated convergence as in the proof of Corollary 1, and one readily checks
that

b
/ 1F(@) o~ i+ essVP(S) < M .

|
Now we turn again to functions of n variables. For x € R™ k € {1,...,n}, and
f:(a,b)" — E, we define
j:k = (xlu sy Th—1yTh+1,y - - - 7xn)7 f(k)(jkuxk) = f(x) .
Then we have:
Lemma 3. For f € Ll((a, b)", E) with E weakly separable, the mapping
Y €8S Vabf(k) (y7 )
is L1 measurable.
Theorem 2. Suppose f € L'((a,b)™). Then
IDSII((a,b)") < > /( o Vil W) dy < wlIDFI((0,0)")
k=1 (a:5)"
The proofs given in class followed Evans-Gariepy, §5.10.2. [ |

Based on the above it is reasonable to say that a function f € L' ((a,b)", E) belongs
to BV ((a,b)", E) if the variation on lines

Vi) = Y /( e VE ) dy < o
k=1"(a:0)"

and prove the following:

Theorem 3. (BV compactness) Suppose E is a boundedly compact weakly separable metric
space, eg € I/, and 0 < a < b < oco. Any sequence of functions f; € Ll((a, b)", E) with

MEsup/ dist p(f;(2), e0)dz + VL(f;) < oo
(a,b)™

J

contains a subsequence fj convergent pointwise a.e. and in L' to a function f with

/ dist g(f(z),e0)dx + VL(f) < M
(a,b)n



Proof : We argue by induction on n. The case n = 1 follows from Corollary 2. Assuming
the theorem true for dimensions less than n, we will use the metric space

E={f¢ Ll((a,b)"_l,E) : / dist g(f(z),e0)dz + VL(f) < M} .
(a,b)n—1

One easily checks that Eis weakly separable by again viewing F as a boundedly compact
subset of £>°. The inductive assumption guarantees that F is compact, hence boundedly
compact.

For each k € {1,...,n}, Fubini’s theorem implies that, for a.e. ¢ € R, each function
fitey (1) € FE and that the map ¢ — [y (-, 1) belongs to Ll((a, b),E) with the L' norm
uniformly bounded by M. Also for a < s <t < b,

dlStE(fj(k)(78),fj(l€)(7t)) = / dlStE(fJ(k)(y7 S)?fj(k)(yvt)) dy

(a,b)n—1
so that
essvabfj(k)('v') = /( ) 1essvaf)fj(k)(ya') dy < M.
a,b)n—
The case n = 1 now gives L' convergence of a subsequence firae)(-,t) to a function
gx € BV ((a, b),E). We obtain g1, g2, ... , g, by taking consecutive subsequences. The

compatibility condition of the approximating functions

iy (@zr) = fi(z, .., xn) = fio) (), )

for k,l € {1,...,n} along with Lemma 1 implies the compatibility of these limit functions

gr(zy, xK) = qi(x), )

which implies, using Fubini’s Theorem, the existence of a function well-defined by

f(x1,. .. mn) = gr(zh, 1)

for all K = 1,...,n and almost all = € (a,b)™. Also one has, by Fubini’s theorem the L'

convergence

b

/( - dist E(fj’,f) dr = / diStE(fj/(k)(-,t),f(k)(~,t)) dt — 0

a

as j — o00. By Lemma 1, a subsequence of the f;; also converges pointwise a.e. to
f. Measurability is a consequence of the pointwise convergence. One readily verifies the

estimate

/ dist g(f(z),e0)de +VL(f) < M
(a,b)"



