
BV Compactness for Maps to a Metric Space

Suppose −∞ ≤ a < b ≤ ∞, E is a metric space, e0 is any fixed point of E, and
f : (a, b) → E is Lebesgue measurable.
Def. We say f belongs to L1

(
(a, b)n, E

)
if

∫
(a,b)n dist E(f(x), e0) dx < ∞.

Lemma 1. If fj , f : (a, b)n → E are Ln measurable and

Λj ≡
∫

(a,b)n

dist E(fj(x), f(x)) dx → 0 as j →∞ ,

then a subsequence fj′ converges pointwise a.e. to f .

Proof : Choose a subsequence fj′ so that
∑∞

j=1 Λj < ∞. Then, since∫
(a,b)n

∞∑
j=1

dist E(fj(x), f(x)) dx < ∞ ,

∑∞
j=1 dist E(fj(x), f(x)) < ∞ for a.e. x ∈ (a, b)n and fj′(x) → 0 for all such x.

For a measurable map f : (a, b) → E, we define the essential variation

ess V b
a (f) = sup{

m∑
i=1

dist E

(
f(ti), f(ti−1)

)
: a < t0 < t1 < . . . < tm < b,

ti are Lebesgue pts of f} .

Suppose f ∈ L1
(
(a, b),R

)
and ess V b

a (f) < ∞. Then f equals a.e. the difference of
the two monotone functions ess V x

a (f) −
[
ess V b

a (f) − f(x)
]
. It follows that the limit

f̃(x) = limr↓0
1

|Br(x)|
∫
Br(x)

f(y) dy exists at all points in (a, b) and is continuous except
for an atmost countable set where the left and right limits still exist but are different. By
Lebesgue’s differentiation theorem, f = f̃ a.e., and so ess V b

a (f) coincides with the classical
variation of f̃ :

V b
a (f̃) = sup{

m∑
i=1

dist E

(
f̃(ti), f̃(ti−1)

)
: a < t0 < t1 < . . . < tm < b} .

For an open set U ⊂ Rn, recall also the distribution definition:

Def. f ∈ BV (U) ⇔ f ∈ L1(U) and

‖Df‖(U) ≡ sup{
∫

f div w : w ∈ C∞0 (U,Rn), |w| ≤ 1} < ∞ .

For n = 1 we have:

Theorem 1. If f ∈ L1
(
(a, b)

)
, then ‖Df‖

(
(a, b)

)
= ess V b

a (f).

The proof given in class, used smoothing for both implications and followed Evans-
Gariepy, §5.10.1.
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Lemma 2. Suppose 0 < M < ∞ and fj : [a, b] → [−M,M ] are monotone increasing.
Then a subsequence fj′ converges pointwise off a countable set. Moreover, ‖fj′−f‖Lp → 0
for any p ∈ [1,∞).

Proof : Suppose Q ∩
[
a, b] = {a1, a2, . . .}. A subsequence fα1(1)(a1), fα1(2)(a1), . . . of the

bounded sequence of numbers f1(a1), f2(a1), . . . converges to a number f(a1). Inductively,
choose a subsequence fαj(1)(aj), fαj(2)(aj), . . . of the sequence fαj−1(1)(aj), fαj−1(2)(aj), . . .
convergent to a number f(aj).

Let j′ = αj(j) and f(x) = supai<x f(ai) = limε↓0 supx−ε<ai<x f(ai). Then f is
monotone increasing and the set Z of discontinuities of f is at most countable. To see that
limj→∞ fj′(x) = f(x) for any x ∈ (a, b) \ Z, we choose, for ε > 0, numbers ai < x < aĩ so
that f(aĩ)− ε < f(x) < f(ai) + ε, and then J so that

|fj′(ai)− f(ai)| < ε and |fj′(aĩ)− f(aĩ)| < ε

for j ≥ J . For such j it follows that

f(x)− 2ε < f(ai)− ε < fj′(ai) < fj′(x) < fj′(aĩ) < f(aĩ) + ε < f(x) + 2ε .

Thus |fj′(x)− f(x)| < 2ε.
To verify the second conclusion note that |fj′ − f |p ≤ 2pMp and apply the Lebesgue

dominated convergence theorem.

Corollary 1. Any sequence of functions fj ∈ L1
(
(a, b)

)
with

M ≡ sup
j

∫ b

a

|fj | dx + ‖Dfj‖
(
(a, b)

)
< ∞

contains a subsequence fj′ convergent pointwise a.e. and in L1 to a function f with∫ b

a
|f | dx + ‖Df‖

(
(a, b)

)
≤ M .

Proof : For the normalized functions f̃j we have the sup bound

|f̃j | ≤ |b− a|V b
a f̃j + inf |f̃j |

≤ |b− a|‖Dfj‖
(
(a, b)

)
+

1
|b− a|

∫ b

a

|fj | ≤ M(|b− a|+ |b− a|−1) .

We may as above then write f̃j as the difference gj−hj of two uniformly bounded monotone
increasing functions. Applying Lemma 2 to gj and hj gives the Corollary.
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Recall that a metric space E is weakly separable if there is a sequence of functions
φi : E → R with Lip (φi) ≤ 1 so that

dist E(x, y) = inf
i
|φi(x)− φi(y)| for all x, y ∈ E .

A separable metric space E is weakly separable as one sees by taking φi(x) = dist E(x, ei)
for some countable dense subset {ei} of E. Moreover, E is weakly separable if and only if
there is a distance preserving embedding of E into

`∞ = {(a1, a2, . . .) : sup
i
|ai| < ∞} .

With φi as above, one such embedding is

ι(x) =
(
φ1(x)− φ1(e0), φ2(x)− φ2(e0), . . .

)
where e0 is any given point of E.

We also say E is boundedly compact if every closed ball BR(e0) = {x : dist E(x, e0) ≤
R} is compact for 0 < R < ∞. This implies that E is locally compact and complete.

Corollary 2. (BV compactness for n = 1) Suppose E is a boundedly compact weakly
separable metric space, e0 ∈ E, and 0 < a < b < ∞. Any sequence of functions
fj ∈ L1

(
(a, b), E

)
with

M ≡ sup
j

∫ b

a

dist E(fj(x), e0) dx + ess V b
a (fj) < ∞

contains a subsequence fj′ convergent pointwise a.e. and in L1 to a function f with∫ b

a
dist E(f(x), e0) dx + ess V b

a (f)
)
≤ M .

Proof : We may assume E is a boundedly compact subset of `∞ and write fj = (f1
j , f2

j , . . .).
We apply Corollary 1 first to the sequence (f1

1 , f1
2 , . . .) to obtain a subsequence f1

α1(j)
that

is L1 and pointwise a.e. convergent to some f1, then inductively to the sequence fk
αk−1(j)

to obtain a subsequence fk
αk(j) convergent to some fk. We conclude that, for the diagonal

sequence fj′ = fαj(j), each fk
j′ is L1 and pointwise a.e. convergent to fk as j → ∞. But,

for the convergence of the functions ‖fj′(x) − f(x)‖`∞ , we still need to show that the
rates of the convergences of fk

j′(x) to fk(x) are uniform independent of k and that the
limit f(x) ∈ E for almost every x ∈ (a, b). For this purpose we will show that, for a.e.
x ∈ (a, b), any subsequence j′′ of j′ contains a subsequence j′′′ so that fj′′′(x) → f(x).
First Fatou’s Lemma gives that, for a.e. x ∈ (a, b), lim infj′′→∞ dist E(fj′′(x), e0) < ∞.
So there is, by the bounded compactness assumption, a subsequence j′′′ of j′′ (depending
on x) and a limit point e ∈ E so that ‖fj′′′(x) − e‖`∞ → 0 as j → ∞. But the previous
convergences of the components fk

j′ show that e = (e1, e2, . . .) = (f1(x), f2(x), . . .) = f(x).
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Thus we obtain the desired pointwise a.e. convergence. The L1 convergence then follows
by Lebesgue dominated convergence as in the proof of Corollary 1, and one readily checks
that ∫ b

a

‖f(x)‖`∞ dx + ess V b
a (f) ≤ M .

Now we turn again to functions of n variables. For x ∈ Rn, k ∈ {1, . . . , n}, and
f : (a, b)n → E, we define

x̂k = (x1, . . . , xk−1, xk+1, . . . , xn), f(k)(x̂k, xk) = f(x) .

Then we have:
Lemma 3. For f ∈ L1

(
(a, b)n, E) with E weakly separable, the mapping

y 7→ ess V b
a f(k)(y, ·)

is Ln−1 measurable.

Theorem 2. Suppose f ∈ L1
(
(a, b)n

)
. Then

‖Df‖
(
(a, b)n

)
≤

n∑
k=1

∫
(a,b)n

ess V b
a f(k)(y, ·) dy ≤ n‖Df‖

(
(a, b)n

)
.

The proofs given in class followed Evans-Gariepy, §5.10.2.

Based on the above it is reasonable to say that a function f ∈ L1
(
(a, b)n, E) belongs

to BV
(
(a, b)n, E) if the variation on lines

V L(f) ≡
n∑

k=1

∫
(a,b)n

ess V b
a f(k)(y, ·) dy < ∞

and prove the following:

Theorem 3. (BV compactness) Suppose E is a boundedly compact weakly separable metric
space, e0 ∈ E, and 0 < a < b < ∞. Any sequence of functions fj ∈ L1

(
(a, b)n, E

)
with

M ≡ sup
j

∫
(a,b)n

dist E(fj(x), e0) dx + V L(fj) < ∞

contains a subsequence fj′ convergent pointwise a.e. and in L1 to a function f with∫
(a,b)n

dist E(f(x), e0) dx + V L(f) ≤ M

.
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Proof : We argue by induction on n. The case n = 1 follows from Corollary 2. Assuming
the theorem true for dimensions less than n, we will use the metric space

Ẽ ≡ {f ∈ L1
(
(a, b)n−1, E

)
:

∫
(a,b)n−1

dist E(f(x), e0) dx + V L(f) ≤ M} .

One easily checks that Ẽ is weakly separable by again viewing E as a boundedly compact
subset of `∞. The inductive assumption guarantees that Ẽ is compact, hence boundedly
compact.

For each k ∈ {1, . . . , n}, Fubini’s theorem implies that, for a.e. t ∈ R, each function
fj(k)(·, t) ∈ Ẽ and that the map t 7→ fj(k)(·, t) belongs to L1

(
(a, b), Ẽ

)
with the L1 norm

uniformly bounded by M . Also for a ≤ s < t ≤ b,

dist Ẽ

(
fj(k)(·, s), fj(k)(·, t)

)
=

∫
(a,b)n−1

dist E

(
fj(k)(y, s), fj(k)(y, t)

)
dy

so that
ess V b

a fj(k)(·, ·) =
∫

(a,b)n−1
ess V b

a fj(k)(y, ·) dy ≤ M .

The case n = 1 now gives L1 convergence of a subsequence fj′(k)(·, t) to a function
gk ∈ BV

(
(a, b), Ẽ

)
. We obtain g1, g2, . . . , gn by taking consecutive subsequences. The

compatibility condition of the approximating functions

fj(k)(x′k, xk) = fj(x1, . . . , xn) = fj(l)(x′l, xl)

for k, l ∈ {1, . . . , n} along with Lemma 1 implies the compatibility of these limit functions

gk(x′k, xk) = gl(x′l, xl)

which implies, using Fubini’s Theorem, the existence of a function well-defined by

f(x1, . . . , xn) = gk(x′k, xk)

for all k = 1, . . . , n and almost all x ∈ (a, b)n. Also one has, by Fubini’s theorem the L1

convergence ∫
(a,b)n

dist E(fj′ , f) dx =
∫ b

a

dist Ẽ

(
fj′(k)(·, t), f(k)(·, t)

)
dt → 0

as j → ∞. By Lemma 1, a subsequence of the fj′ also converges pointwise a.e. to
f . Measurability is a consequence of the pointwise convergence. One readily verifies the
estimate ∫

(a,b)n

dist E(f(x), e0) dx + V L(f) ≤ M

.
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