
Compactness of Rectifiable Currents in a Metric Space

Suppose u ∈ BV (Rk) we define the differential maximal function

MDu(x) = supr>0
1

ωkrk
‖Du‖

(
Br(x)

)
.

Lemma 1. Lk(Aj) ≤ c(k)
j ‖Du‖(Rk) where Aj = {x : MDu(x) > j}. and c(k) depends

only on k.

Proof : We may assume that u has compact support. For x ∈ Aj , there exists an r(x) > 0
so that ‖Du‖

(
Br(x)(x)

)
> jωkr(x)k. The Besicovitch covering gives disjointed subfamilies

of these balls B1, . . . ,Bc(n) whose unions altogether cover Aj . Thus

Lk(Aj) ≤
c(k)∑
i=1

∑
Brj

(xj)∈Bi

ωkrk
j

≤
c(k)∑
i=1

1
j

∑
Brj

(xj)∈Bi

‖Du‖Brj
(xj) ≤ c(k)

j
‖Du‖(Rk) .

Lemma 2. If x is a Lebesgue point of u, then

1
|Bρ|

∫
Bρ(x)

|u(z)− u(x)|
|z − x|

dz ≤ MDu(x) .

Proof : We may assume that ρ = 1, that x = 0, and , by smoothing, that u ∈ C1. Then
since u(z)− u(0) =

∫ 1

0
Du(tz) · z dt,∫

B1

|u(z)− u(0)|
|z|

dz ≤
∫
B1

∫ 1

0

|Du(tz)| dt dz =
∫ 1

0

∫
B1

|Du(tz)| dz dt

=
∫ 1

0

t−k

∫
Bt

|Du(z)| dz dt ≤ ωkMDu(0) .

Theorem 1. (BV→Lipschitz) If u ∈ BV (Rk, E) with E weakly separable, then there is
an Lk null set N so that for x, y ∈ N

dist E

(
u(x), u(y)

)
≤ C(k)

[
MDu(x) + MDu(y)

]
|x− y| .

Proof : We may assume that E ⊂ `∞. Let N be the union of all the non-Lebesgue
points of the components u1, u2, . . . of u. Thus Lk(N) = 0. Let ρ = |x − y|. For
z ∈ A ≡ Bρ(x) ∩Bρ(y), we can estimate

|ui(x)− ui(y)|
|x− y|

≤ |ui(x)− ui(z)|
|x− z|

+
|ui(z)− ui(y)|

|z − y|
.
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Thus, by Lemma 2,

1
|A|

∫
A

|ui(x)− ui(y)|
|x− y|

≤ C
( 1
|Bρ|

∫
Bρ(x)

|ui(x)− u(z)|
|x− z|

dz +
1

|Bρ|

∫
Bρ(y)

|ui(y)− ui(x)|
|y − x|

dy
)

≤ C
(
MDu(x) + MDu(y)

)
.

The Theorem follows by taking the supremum over i = 1, 2, . . ..
Corollary 1. For ε > 0 there exists a v ∈ Lip (Rk, `∞) so that Lk{x : v(x) 6= u(x)} < ε.

Recall Rk(E) denotes the set of all integer-multiplicity k rectifiable currents in E

equipped with the flat metric

dist F (T, T̃ ) = inf{M(R) + M(∂S) : T − T̃ = R + ∂S, R ∈ Rk(E), S ∈ Rk+1(E)} ,

and that R0 is simply the set of finite sums of integral multiples of point masses in E.

Theorem 2. If S ∈ BV (Rk,R0), then, for some Lk null set N in Rk, the set
∪y∈Rk\N sptS(y) is k rectifiable.

Proof : By the finiteness of sptS(y), the number

δ(y) = 4 min
x6=x̃∈sptS(y)

dist E(x, x̃)

is positive. Let

Yi,j = {y ∈ Rk : MDS(y) ≤ i, δ(y) >
1
j
}

so that N = Rk \ ∪∞i,j=1Yi,j = 0. If y, ỹ ∈ Yi,j and |y − ỹ| < 1
2Cij , then

dist
(
S(y),S(ỹ) <

1
2Cij

C(i + i) ≤ 1
j

.

For each x ∈ sptS(y), there exists a unique point B1/j(x)x̃ ∈ sptS(ỹ) and vice versa.
Moreover,

dist E(x, x̃) ≤ dist F

(
S(y),S(ỹ)

)
.

So locally ∪y∈Yi,j
sptS(y) is a finite union of Lipschitz graphs. This implies that

∪∞i,j=1 ∪y∈Yi,j
sptS(y)

is k rectifiable.
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Corollary 2. If T ∈ Nk(E) and, for any Lipschitz maps π : E → Rk, < T, π, y >∈ R0(E)
for a.e. y ∈ Rk, then T ∈ Rk(E).

Proof : Recall that S =< T, π, · >∈ BV
(
Rk,R0(E)

)
. Since ‖T dπ‖ =

∫
Rk ‖S(y)‖ dy,

each measure ‖T dπ‖ is carried by the k rectifiable set ∪y∈Rk\N sptS(y). Moreover,
‖T‖ is a supremum over the measures ‖T dπ‖ corresponding to π with Lip (πi) ≤ 1.
Since this supremum can be taken over a countable collection of such π, ‖T‖ is a k rectifiable
measure, which implies that T is a k rectifiable current.

The compactness of rectifiable currents will follow from the Closure Theorem 4 below
and
Theorem 3.(Normal Current Compactness) Suppose E is a compact metric space and T
is a family of k dimensional normal currents in E with

Λ = sup
T∈T

M(T ) + M(∂T ) < ∞ .

Then T contains a convergent sequence Ti → T , and M(T ) + M(∂T ) ≤ Λ.

Proof : As shown in class, we may use the diagonal trick to find a sequence Ti so that
Ti(fdπ) converges for all fdπ belonging to a countable dense subset of Dk(E). This defines
T (fdπ) for such fdπ. We then use an equicontinuity estimate

|S(fdπ)− S(f̃dπ̃)| ≤ C(Λ) sup
x
|f(x)− f̃(x)| + C(Λ,Lipπ,Lip π̃) sup

x
|π(x)− π̃(x)| ,

valid for all S ∈ T , to extend the convergence to all of Dk(E).

Lemma 3. If π : E → Rm is Lipschitz with m ≤ k, then, for almost every y ∈ Rm,

sup
i

M < Ti′ , π, y > +M∂ < Ti′ , π, y > < ∞

and < Ti′ , π, y >→< T, π, y > for some subsequence i′ (depending on y).

Proof : Fatou’s Lemma and the integral estimate∫ (
M < Ti′ , π, y > +M∂ < Ti′ , π, y >

)
dy ≤ C(π)

(
M(Ti′) + M(∂Ti′)

)
guarantees that we can, for almost any y pass to a subsequence to have

sup
i

M < Ti′ , π, y > +M∂ < Ti′ , π, y > < ∞ .

To prove convergence at almost all slices, we argue by induction on m. For m = 1 we have,
for all but countably many t, that(

‖Ti‖ + ‖T‖ + ‖∂Ti‖ + ‖∂T‖
)
(π−1{t}) = 0 .

So
< Ti, π, t > = (∂Ti) {π < t} − ∂(Ti {π < t})

→ (∂T ) {π < t} − ∂(T {π < t}) = < T, π, t > .

For m > 1 we repeat the argument.
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Theorem 4. (Rectifiability Closure Theorem) Suppose Ti and T are as in Theorem 3. If
Ti ∈ Rk(E), then T ∈ Rk(E).

Proof : The case k = 0 is elementary. Here Ti =
∑ki

j=1 ni,j [ai,j ] where ai,j are points in K

and ni,j are integers with
∑ki

j=1 |ni,j | = M(Ti) ≤ Λ. One sees that spt T is contained in the
Hausdorff limit of a subsequence of the sets {ai,1, ai,2, . . . , ai,ki} and so is a finite subset
of K of at most Λ points. The convergence of Ti to T guarantees that, for each a ∈ sptT ,
for

δ <
1
2

inf
a6=ã∈spt T

dist E(a, ã) ,

and for i sufficiently large, the integer na = Ti(χBδ(a)) is independent of i. Thus,
T =

∑
a∈spt T na[a] ∈ R0.

For k > 0 and any Lipschitz π : E → Rk, we apply Lemma 3 and the case k = 0 to
conclude that, for almost all y ∈ Rk,

< T, π, y > = lim
i→∞

< Ti′ , π, y > ∈ R0 .

By Corollary 2, T ∈ Rk(E).

Corollary 3. (A Plateau Problem in `2) Suppose B ∈ Rk−1(`2), ∂B = 0, and K = sptB

is compact. Then there exists a mass-minimizer in the family

TB = {T ∈ Rk(`∞) : ∂T = B} .

Proof : One easily checks that the cone h#

(
[0, 1] × B

)
∈ TB where h(t, x) = tx. Thus

TB 6= ∅. Also

K̂ = convex hull (K) = {(1− t)x + ty : 0 ≤ t ≤ 1, x, y ∈ K}

is compact. Let r : `∞ → K̂ be the nearest point retraction. One readily checks that
Lip r ≤ 1. Assuming Ti ∈ TB is a mass-minimizing sequence, we see that r#Ti ∈ Rk(`2)
and that

∂r#Ti = r#∂Ti = r#B = B ,

hence, r#Ti ∈ TB . Moreover, r#Ti is again a mass-minimizing sequence because
M(r#Ti) ≤ M(Ti). Applying Theorem 4 with Ti, E replaced by r#Ti, K̂ we find the
convergence of a subsequence r#Ti′ → T ∈ Rk(E). Since ∂T = limi→∞ ∂r#Ti′ = B and
M(T ) ≤ lim infi→∞M

(
r#Ti′

)
, T is the desired mass-minimizer in TB .
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