Compactness of Rectifiable Currents in a Metric Space

Suppose u € BV (R¥) we define the differential mazimal function
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MDu(z) = SUPr>0— | Dul| (B, (z)) .

Lemma 1. £F(A;) < #HDUH(R’“) where A; = {z : MDu(z)> j}. and c(k) depends
only on k.

Proof : We may assume that u has compact support. For z € A;, there exists an r(z) > 0
so that || Dul|(B,(y)(x)) > jwgr(z)¥. The Besicovitch covering gives disjointed subfamilies
of these balls By, ..., B.) whose unions altogether cover A;. Thus
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Lemma 2. If x is a Lebesgue point of u, then
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Proof : We may assume that p = 1, that = 0, and , by smoothing, that u € C'. Then
since u(z) —u(0) = fol Du(tz) - z dt,

/BIWCJZ < /Bl/ollDu(tz)]dtdz _ /Ol/B Du(t2)|dz dt
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= / tk/ |Du(z)|dzdt < wiMDu(0) .
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Theorem 1. (BV—Lipschitz) If u € BV (R, E) with E weakly separable, then there is
an LF null set N so that for x,y € N

dist E(u(m),u(y)) < C(k) [MDu(:l:) + MDu(y)] lx —yl .

Proof : We may assume that £ C ¢*°. Let N be the union of all the non-Lebesgue
points of the components u',u?,... of u. Thus L¥(N) = 0. Let p = |r —y|. For
z€ A=B,(z) NB,(y), we can estimate

u' (@) —u'(y)] _ fu'(z) —u'(2)] N u’(2) — u'(y)]
|z — - |z — 2| lz—yl
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Thus, by Lemma 2,
i/ [u' (z) — u'(y)]
Al |z —yl

Jui(z) - u(z)] i (y) — ()]
= ¢ |Bp|/ B ) m—z| de |Bp|/ e )
< C(MDu(z) + MDu(y)) .

The Theorem follows by taking the supremum over ¢ = 1,2,. ... [ |
Corollary 1. For ¢ > 0 there exists a v € Lip (R*,£%°) so that L¥{x :v(z) # u(z)} <e.

Recall R (E) denotes the set of all integer-multiplicity k rectifiable currents in F
equipped with the flat metric

dist (T, T) = inf{M(R)+M(S) : T—T =R+39S, Re Rip(E), S € Rips1(E)} ,

and that Ry is simply the set of finite sums of integral multiples of point masses in FE.

Theorem 2. If S € BV(RF,Ry), then, for some LF null set N in RF, the set
Uyerk\N SPES(y) is k rectifiable.

Proof : By the finiteness of spt S(y), the number

o(y) =4 min dist g(x, T
(y) x#ZEspt S(y) E( )

is positive. Let
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Yi; = {yeR* : MDS(y) <i, 6(y) 7

)

sothat N=RF\UX_Y,; =0. fy, €Y, and |y — §| < then
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dist (S(y), S(§) < %cmz) < %

For each x € sptS(y), there exists a unique point B, /;(z)Z € sptS(y) and vice versa.
Moreover,

dist g(z,z) < dist #(S(y),S(9)) -
So locally Uyey; ;spt S(y) is a finite union of Lipschitz graphs. This implies that
UsS=1 Uyey; ; sptS(y)

is k rectifiable. ]



Corollary 2. If T € Ni(E) and, for any Lipschitz maps 7 : E — RF, < T, 7,y >€ Ro(E)
for a.e. y € R¥, then T € Ry (E).
Proof : Recall that S =< T',7,- >€ BV (R*, Ro(E)). Since ||T L dr|| = [z« [IS(v)l dy,
each measure || L dr| is carried by the k rectifiable set U,cgr\ n spt S(y). Moreover,
|T|| is a supremum over the measures || T |_ dr|| corresponding to 7 with Lip (%) < 1.
Since this supremum can be taken over a countable collection of such , ||| is a k rectifiable
measure, which implies that 71" is a k rectifiable current. [ |
The compactness of rectifiable currents will follow from the Closure Theorem 4 below
and
Theorem 3.(Normal Current Compactness) Suppose E is a compact metric space and T
is a family of k dimensional normal currents in E with

A = sup M(T)+M(0T) < 0.
TeT

Then T contains a convergent sequence T; — T', and M(T) + M(0T') < A.

Proof : As shown in class, we may use the diagonal trick to find a sequence 7T; so that
T;(fdr) converges for all fdr belonging to a countable dense subset of D¥(E). This defines
T(fdm) for such fdm. We then use an equicontinuity estimate

|S(fdm) — S(fdr)| < C(A) sup |f (x) — f(@)| +C(A, Lipm, Lip 7) sup [ (z) — 7 ()] ,

valid for all S € 7, to extend the convergence to all of D*(E). |
Lemma 3. If 7 : E — R™ is Lipschitz with m < k, then, for almost every y € R™,

supM < Ty, m,y > +MO < Ty, my > < 00

K3
and < Ty, m,y >—< T, 7,y > for some subsequence i’ (depending on y).

Proof : Fatou’s Lemma and the integral estimate
/ (M <Ty,my>+Mo< Ty, my> )dy < C(F)(M(Ti/) + M((?Ty))
guarantees that we can, for almost any y pass to a subsequence to have
supM < Ty, m,y > +MO < Ty, m,y > < o0 .

To prove convergence at almost all slices, we argue by induction on m. For m = 1 we have,

for all but countably many ¢, that
(Tl + 1Tl + 0T + [loT|))(x= {t}) = 0.

So
<T;,mt> = (0T;) L {m <t} — OT; _ {7 <t})
— 7))L {n<t} =0T L {n<t}) =<T,mt> .
For m > 1 we repeat the argument. [ |



Theorem 4. (Rectifiability Closure Theorem) Suppose T; and T' are as in Theorem 3. If
T, € Rk(E), then T € Rk(E)

Proof : The case k = 0 is elementary. Here T; = Zle n; jlai ;] where a; ; are points in K
and n; ; are integers Wich?Ll In;. ;| = M(T;) < A. One sees that spt T" is contained in the
Hausdorff limit of a subsequence of the sets {a; 1,a;2,...,a; %} and so is a finite subset
of K of at most A points. The convergence of T; to T guarantees that, for each a € spt T,
for

1
0 < - inf dist a
< 2 a;édlgsptT 5 E(a7a) ’

and for i sufficiently large, the integer n, = Ti(XBs(a)) is independent of i. Thus,
T= Za@sptT Na [a] € Ro.

For k > 0 and any Lipschitz 7 : E — RF, we apply Lemma 3 and the case k = 0 to
conclude that, for almost all y € R,

<T,my>= lim <Ty,my>€ Ry .

By Corollary 2, T € R (E). |

Corollary 3. (A Plateau Problem in ¢2) Suppose B € Ry_1(¢?), 0B =0, and K = spt B
1s compact. Then there exists a mass-minimizer in the family

T = {T € Ry(t®) : T = B} .

Proof : One easily checks that the cone hy([0,1] x B) € T where h(t,z) = tz. Thus
T # (0. Also

A

K = convex hull(K) = {(1-t)z+ty : 0<t<1, z,y € K}

is compact. Let r : (>~ — K be the nearest point retraction. One readily checks that
Lipr < 1. Assuming T; € 75 is a mass-minimizing sequence, we see that rxT; € Ry ((?)
and that

8T#Ti = T#aTi = T#B =B y

hence, r4T; € Tp. Moreover, r4T; is again a mass-minimizing sequence because
M(rxT;) < M(T;). Applying Theorem 4 with T;, E replaced by T#Ti,f( we find the
convergence of a subsequence rxT; — T € Ryi(E). Since 0T = lim; ., Or4Ty = B and
M(T) < liminf; M(r#T i/), T is the desired mass-minimizer in 7g. [ |



