Compactness of Rectifiable Currents in a Metric Space

Suppose $u \in BV(\mathbf{R}^k)$ we define the differential maximal function

$$MDu(x) = sup_{r>0} \frac{1}{\omega_k r^k} \|Du\| (\mathbf{B}_r(x))$$

Lemma 1. $\mathcal{L}^k(A_j) \leq \frac{c(k)}{j} \|Du\|(\mathbf{R}^k)$ where $A_j = \{x : MDu(x) > j\}$. and c(k) depends only on k.

Proof: We may assume that u has compact support. For $x \in A_j$, there exists an r(x) > 0 so that $||Du||(\mathbf{B}_{r(x)}(x)) > j\omega_k r(x)^k$. The Besicovitch covering gives disjointed subfamilies of these balls $\mathcal{B}_1, \ldots, \mathcal{B}_{c(n)}$ whose unions altogether cover A_j . Thus

$$\mathcal{L}^{k}(A_{j}) \leq \sum_{i=1}^{c(k)} \sum_{B_{r_{j}}(x_{j}) \in \mathcal{B}_{i}} \omega_{k} r_{j}^{k}$$

$$\leq \sum_{i=1}^{c(k)} \frac{1}{j} \sum_{B_{r_{j}}(x_{j}) \in \mathcal{B}_{i}} \|Du\| B_{r_{j}}(x_{j}) \leq \frac{c(k)}{j} \|Du\| (\mathbf{R}^{k}) .$$

Lemma 2. If x is a Lebesgue point of u, then

$$\frac{1}{|\mathbf{B}_{\rho}|} \int_{\mathbf{B}_{\rho}(x)} \frac{|u(z) - u(x)|}{|z - x|} dz \leq M D u(x) .$$

Proof: We may assume that $\rho = 1$, that x = 0, and , by smoothing, that $u \in C^1$. Then since $u(z) - u(0) = \int_0^1 Du(tz) \cdot z \, dt$,

$$\int_{\mathbf{B}_{1}} \frac{|u(z) - u(0)|}{|z|} dz \leq \int_{\mathbf{B}_{1}} \int_{0}^{1} |Du(tz)| dt dz = \int_{0}^{1} \int_{\mathbf{B}_{1}} |Du(tz)| dz dt$$
$$= \int_{0}^{1} t^{-k} \int_{\mathbf{B}_{t}} |Du(z)| dz dt \leq \omega_{k} M D u(0) .$$

Theorem 1. (BV \rightarrow Lipschitz) If $u \in BV(\mathbf{R}^k, E)$ with E weakly separable, then there is an \mathcal{L}^k null set N so that for $x, y \in N$

$$\operatorname{dist}_{E} \big(u(x), u(y) \big) \leq C(k) \big[M D u(x) + M D u(y) \big] |x - y| .$$

Proof: We may assume that $E \subset \ell^{\infty}$. Let N be the union of all the non-Lebesgue points of the components u^1, u^2, \ldots of u. Thus $\mathcal{L}^k(N) = 0$. Let $\rho = |x - y|$. For $z \in A \equiv \mathbf{B}_{\rho}(x) \cap \mathbf{B}_{\rho}(y)$, we can estimate

$$\frac{|u^{i}(x) - u^{i}(y)|}{|x - y|} \leq \frac{|u^{i}(x) - u^{i}(z)|}{|x - z|} + \frac{|u^{i}(z) - u^{i}(y)|}{|z - y|}$$

Thus, by Lemma 2,

$$\frac{1}{|A|} \int_{A} \frac{|u^{i}(x) - u^{i}(y)|}{|x - y|} \\
\leq C\left(\frac{1}{|\mathbf{B}_{\rho}|} \int_{\mathbf{B}_{\rho}(x)} \frac{|u^{i}(x) - u(z)|}{|x - z|} dz + \frac{1}{|\mathbf{B}_{\rho}|} \int_{\mathbf{B}_{\rho}(y)} \frac{|u^{i}(y) - u^{i}(x)|}{|y - x|} dy\right) \\
\leq C\left(MDu(x) + MDu(y)\right).$$

The Theorem follows by taking the supremum over i = 1, 2, ...**Corollary 1.** For $\epsilon > 0$ there exists a $v \in \text{Lip}(\mathbf{R}^k, \ell^\infty)$ so that $\mathcal{L}^k\{x : v(x) \neq u(x)\} < \epsilon$.

Recall $\mathcal{R}_k(E)$ denotes the set of all integer-multiplicity k rectifiable currents in E equipped with the *flat metric*

dist_F(T,
$$\tilde{T}$$
) = inf{ $\mathbf{M}(R) + \mathbf{M}(\partial S)$: $T - \tilde{T} = R + \partial S, R \in \mathcal{R}_k(E), S \in \mathcal{R}_{k+1}(E)$ },

and that \mathcal{R}_0 is simply the set of finite sums of integral multiples of point masses in E.

Theorem 2. If $S \in BV(\mathbf{R}^k, \mathcal{R}_0)$, then, for some \mathcal{L}^k null set N in \mathbf{R}^k , the set $\bigcup_{y \in \mathbf{R}^k \setminus N} \operatorname{spt} S(y)$ is k rectifiable.

Proof : By the finiteness of spt $\mathcal{S}(y)$, the number

$$\delta(y) = 4 \min_{x \neq \tilde{x} \in \operatorname{spt} \mathcal{S}(y)} \operatorname{dist}_{E}(x, \tilde{x})$$

is positive. Let

$$Y_{i,j} = \{ y \in \mathbf{R}^k : MD\mathcal{S}(y) \le i, \ \delta(y) > \frac{1}{j} \}$$

so that $N = \mathbf{R}^k \setminus \bigcup_{i,j=1}^{\infty} Y_{i,j} = 0$. If $y, \tilde{y} \in Y_{i,j}$ and $|y - \tilde{y}| < \frac{1}{2Cij}$, then

dist
$$(\mathcal{S}(y), \mathcal{S}(\tilde{y}) < \frac{1}{2Cij}C(i+i) \leq \frac{1}{j}$$

For each $x \in \operatorname{spt} \mathcal{S}(y)$, there exists a unique point $\mathbf{B}_{1/j}(x)\tilde{x} \in \operatorname{spt} \mathcal{S}(\tilde{y})$ and vice versa. Moreover,

dist
$$_E(x, \tilde{x}) \leq \text{dist}_F(\mathcal{S}(y), \mathcal{S}(\tilde{y}))$$

So locally $\cup_{y \in Y_{i,j}} \operatorname{spt} \mathcal{S}(y)$ is a finite union of Lipschitz graphs. This implies that

$$\bigcup_{i,j=1}^{\infty} \cup_{y \in Y_{i,j}} \operatorname{spt} \mathcal{S}(y)$$

is k rectifiable.

Corollary 2. If $T \in \mathcal{N}_k(E)$ and, for any Lipschitz maps $\pi : E \to \mathbf{R}^k$, $\langle T, \pi, y \rangle \in \mathcal{R}_0(E)$ for a.e. $y \in \mathbf{R}^k$, then $T \in \mathcal{R}_k(E)$.

Proof : Recall that $S = \langle T, \pi, \cdot \rangle \in BV(\mathbf{R}^k, \mathcal{R}_0(E))$. Since $||T \bigsqcup d\pi|| = \int_{\mathbf{R}^k} ||S(y)|| dy$, each measure $||T \bigsqcup d\pi||$ is carried by the k rectifiable set $\cup_{y \in \mathbf{R}^k \setminus N} \operatorname{spt} S(y)$. Moreover, ||T|| is a supremum over the measures $||T \bigsqcup d\pi||$ corresponding to π with $\operatorname{Lip}(\pi^i) \leq 1$. Since this supremum can be taken over a countable collection of such π , ||T|| is a k rectifiable measure, which implies that T is a k rectifiable current.

The compactness of $rectifiable \ currents$ will follow from the Closure Theorem 4 below and

Theorem 3.(Normal Current Compactness) Suppose E is a compact metric space and \mathcal{T} is a family of k dimensional normal currents in E with

$$\Lambda = \sup_{T \in \mathcal{T}} \mathbf{M}(T) + \mathbf{M}(\partial T) < \infty$$

Then \mathcal{T} contains a convergent sequence $T_i \to T$, and $\mathbf{M}(T) + \mathbf{M}(\partial T) \leq \Lambda$.

Proof: As shown in class, we may use the diagonal trick to find a sequence T_i so that $T_i(fd\pi)$ converges for all $fd\pi$ belonging to a countable dense subset of $\mathcal{D}^k(E)$. This defines $T(fd\pi)$ for such $fd\pi$. We then use an equicontinuity estimate

$$|S(fd\pi) - S(\tilde{f}d\tilde{\pi})| \le C(\Lambda) \sup_{x} |f(x) - \tilde{f}(x)| + C(\Lambda, \operatorname{Lip} \pi, \operatorname{Lip} \tilde{\pi}) \sup_{x} |\pi(x) - \tilde{\pi}(x)| ,$$

valid for all $S \in \mathcal{T}$, to extend the convergence to all of $\mathcal{D}^k(E)$.

Lemma 3. If $\pi: E \to \mathbb{R}^m$ is Lipschitz with $m \leq k$, then, for almost every $y \in \mathbb{R}^m$,

$$\sup \mathbf{M} < T_{i'}, \pi, y > + \mathbf{M} \partial < T_{i'}, \pi, y > < \infty$$

and $\langle T_{i'}, \pi, y \rangle \rightarrow \langle T, \pi, y \rangle$ for some subsequence i' (depending on y). Proof : Fatou's Lemma and the integral estimate

$$\int \left(\mathbf{M} < T_{i'}, \pi, y > + \mathbf{M} \partial < T_{i'}, \pi, y > \right) dy \leq C(\pi) \left(\mathbf{M}(T_{i'}) + \mathbf{M}(\partial T_{i'}) \right)$$

guarantees that we can, for almost any y pass to a subsequence to have

$$\sup \mathbf{M} < T_{i'}, \pi, y > +\mathbf{M}\partial < T_{i'}, \pi, y > < \infty .$$

To prove convergence at almost all slices, we argue by induction on m. For m = 1 we have, for all but countably many t, that

$$(||T_i|| + ||T|| + ||\partial T_i|| + ||\partial T||)(\pi^{-1}{t}) = 0.$$

So

$$< T_i, \pi, t > = (\partial T_i) \bigsqcup \{\pi < t\} - \partial (T_i \bigsqcup \{\pi < t\})$$

$$\rightarrow (\partial T) \bigsqcup \{\pi < t\} - \partial (T \bigsqcup \{\pi < t\}) = < T, \pi, t > 1$$

For m > 1 we repeat the argument.

Theorem 4. (Rectifiability Closure Theorem) Suppose T_i and T are as in Theorem 3. If $T_i \in \mathcal{R}_k(E)$, then $T \in \mathcal{R}_k(E)$.

Proof : The case k = 0 is elementary. Here $T_i = \sum_{j=1}^{k_i} n_{i,j} [a_{i,j}]$ where $a_{i,j}$ are points in Kand $n_{i,j}$ are integers with $\sum_{j=1}^{k_i} |n_{i,j}| = \mathbf{M}(T_i) \leq \Lambda$. One sees that spt T is contained in the Hausdorff limit of a subsequence of the sets $\{a_{i,1}, a_{i,2}, \ldots, a_{i,k_i}\}$ and so is a finite subset of K of at most Λ points. The convergence of T_i to T guarantees that, for each $a \in \operatorname{spt} T$, for

$$\delta < \frac{1}{2} \inf_{a \neq \tilde{a} \in \operatorname{spt} T} \operatorname{dist}_{E}(a, \tilde{a}) ,$$

and for *i* sufficiently large, the integer $n_a = T_i(\chi_{\mathbf{B}_{\delta}(a)})$ is independent of *i*. Thus, $T = \sum_{a \in \text{spt } T} n_a[a] \in \mathcal{R}_0.$

For k > 0 and any Lipschitz $\pi : E \to \mathbf{R}^k$, we apply Lemma 3 and the case k = 0 to conclude that, for almost all $y \in \mathbf{R}^k$,

$$< T, \pi, y > = \lim_{i \to \infty} < T_{i'}, \pi, y > \in \mathcal{R}_0$$

By Corollary 2, $T \in \mathcal{R}_k(E)$.

Corollary 3. (A Plateau Problem in ℓ^2) Suppose $B \in \mathcal{R}_{k-1}(\ell^2)$, $\partial B = 0$, and $K = \operatorname{spt} B$ is compact. Then there exists a mass-minimizer in the family

$$\mathcal{T}_B = \{ T \in \mathcal{R}_k(\ell^\infty) : \partial T = B \} .$$

Proof: One easily checks that the cone $h_{\#}([0,1] \times B) \in \mathcal{T}_B$ where h(t,x) = tx. Thus $\mathcal{T}_B \neq \emptyset$. Also

$$\tilde{K} = \text{convex hull}(K) = \{(1-t)x + ty : 0 \le t \le 1, x, y \in K\}$$

is compact. Let $r : \ell^{\infty} \to \hat{K}$ be the nearest point retraction. One readily checks that $\operatorname{Lip} r \leq 1$. Assuming $T_i \in \mathcal{T}_B$ is a mass-minimizing sequence, we see that $r_{\#}T_i \in \mathcal{R}_k(\ell^2)$ and that

$$\partial r_{\#}T_i = r_{\#}\partial T_i = r_{\#}B = B ,$$

hence, $r_{\#}T_i \in \mathcal{T}_B$. Moreover, $r_{\#}T_i$ is again a mass-minimizing sequence because $\mathbf{M}(r_{\#}T_i) \leq \mathbf{M}(T_i)$. Applying Theorem 4 with T_i, E replaced by $r_{\#}T_i, \hat{K}$ we find the convergence of a subsequence $r_{\#}T_{i'} \to T \in \mathcal{R}_k(E)$. Since $\partial T = \lim_{i \to \infty} \partial r_{\#}T_{i'} = B$ and $\mathbf{M}(T) \leq \liminf_{i \to \infty} \mathbf{M}(r_{\#}T_{i'}), T$ is the desired mass-minimizer in \mathcal{T}_B .