BV Compactness for Maps to a Metric Space

Suppose $-\infty \leq a < b \leq \infty$, E is a metric space, e_0 is any fixed point of E, and $f : (a, b) \rightarrow E$ is Lebesgue measurable.

Def. We say f belongs to $L^1((a, b)^n, E)$ if $\int_{(a,b)^n} \text{dist}_E(f(x), e_0) \, dx < \infty$.

Lemma 1. If $f_j, f : (a, b)^n \rightarrow E$ are L^n measurable and $\Lambda_j \equiv \int_{(a,b)^n} \text{dist}_E(f_j(x), f(x)) \, dx \rightarrow 0$ as $j \rightarrow \infty$,

then a subsequence f_j' converges pointwise a.e. to f.

Proof: Choose a subsequence f_j' so that $\sum_{j=1}^{\infty} \Lambda_j < \infty$. Then, since $\int_{(a,b)^n} \sum_{j=1}^{\infty} \text{dist}_E(f_j(x), f(x)) \, dx < \infty$,

$\sum_{j=1}^{\infty} \text{dist}_E(f_j(x), f(x)) < \infty$ for a.e. $x \in (a, b)^n$ and $f_j'(x) \rightarrow 0$ for all such x. ■

For a measurable map $f : (a, b) \rightarrow E$, we define the essential variation

$$\text{ess} V_b^a(f) = \sup \{ \sum_{i=1}^{m} \text{dist}_E(f(t_i), f(t_{i-1})) : a < t_0 < t_1 < \ldots < t_m < b,\ t_i \text{ are Lebesgue pts of } f \} .$$

Suppose $f \in L^1((a, b), \mathbb{R})$ and $\text{ess} V_b^a(f) < \infty$. Then f equals a.e. the difference of the two monotone functions $\text{ess} V_b^a(f) - [\text{ess} V_b^a(f) - f(x)]$. It follows that the limit $\tilde{f}(x) = \lim_{r \downarrow 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} f(y) \, dy$ exists at all points in (a, b) and is continuous except for an atmost countable set where the left and right limits still exist but are different. By Lebesgue’s differentiation theorem, $f = \tilde{f}$ a.e., and so $\text{ess} V_b^a(f)$ coincides with the classical variation of \tilde{f}:

$$V_b^a(\tilde{f}) = \sup \{ \sum_{i=1}^{m} \text{dist}_E(\tilde{f}(t_i), \tilde{f}(t_{i-1})) : a < t_0 < t_1 < \ldots < t_m < b \} .$$

For an open set $U \subset \mathbb{R}^n$, recall also the distribution definition:

Def. $f \in BV(U) \iff f \in L^1(U)$ and

$$\|Df\|(U) \equiv \sup \{ \int f \text{ div } w : w \in C_0^\infty(U, \mathbb{R}^n), \ |w| \leq 1 \} < \infty .$$

For $n = 1$ we have:

Theorem 1. If $f \in L^1((a, b))$, then $\|Df\|((a,b)) = \text{ess} V_b^a(f)$.

The proof given in class, used smoothing for both implications and followed Evans-Gariepy, §5.10.1. ■
Lemma 2. Suppose $0 < M < \infty$ and $f_j : [a, b] \to [-M, M]$ are monotone increasing. Then a subsequence $f_{j'}$ converges pointwise off a countable set. Moreover, $\|f_{j'} - f\|_{L^p} \to 0$ for any $p \in [1, \infty)$.

Proof: Suppose $Q \cap [a, b] = \{a_1, a_2, \ldots\}$. A subsequence $f_{\alpha_1(1)}(a_1), f_{\alpha_1(2)}(a_1), \ldots$ of the bounded sequence of numbers $f_1(a_1), f_2(a_1), \ldots$ converges to a number $f(a_1)$. Inductively, choose a subsequence $f_{\alpha_j(1)}(a_j), f_{\alpha_j(2)}(a_j), \ldots$ of the sequence $f_{\alpha_{j-1}(1)}(a_j), f_{\alpha_{j-1}(2)}(a_j), \ldots$ convergent to a number $f(a_j)$.

Let $j' = \alpha_j(j)$ and $f(x) = \sup_{a_i < x} f(a_i) = \lim_{\epsilon \downarrow 0} \sup_{x-\epsilon < a_i < x} f(a_i)$. Then f is monotone increasing and the set Z of discontinuities of f is at most countable. To see that $\lim_{j \to \infty} f_{j'}(x) = f(x)$ for any $x \in (a, b) \setminus Z$, we choose, for $\epsilon > 0$, numbers $a_i < x < a_j$ so that $f(a_i) - \epsilon < f(x) < f(a_i) + \epsilon$, and then J so that

$$|f_{j'}(a_i) - f(a_i)| < \epsilon \quad \text{and} \quad |f_{j'}(a_j) - f(a_j)| < \epsilon$$

for $j \geq J$. For such j it follows that

$$f(x) - 2\epsilon < f(a_i) - \epsilon < f_{j'}(a_i) < f_{j'}(x) < f_{j'}(a_j) < f(a_j) + \epsilon < f(x) + 2\epsilon.$$ Thus $|f_{j'}(x) - f(x)| < 2\epsilon$.

To verify the second conclusion note that $|f_{j'} - f|^p \leq 2^p M^p$ and apply the Lebesgue dominated convergence theorem.

Corollary 1. Any sequence of functions $f_j \in L^1((a, b))$ with

$$M \equiv \sup_j \int_a^b |f_j| \, dx + \|Df_j\|((a, b)) < \infty$$

contains a subsequence $f_{j'}$ convergent pointwise a.e. and in L^1 to a function f with $\int_a^b |f| \, dx + \|Df\|((a, b)) \leq M$.

Proof: For the normalized functions \tilde{f}_j we have the bound

$$|\tilde{f}_j| \leq |b - a| V^b_a \tilde{f}_j + \inf |\tilde{f}_j| \
\leq |b - a| \|Df_j\|((a, b)) + \frac{1}{|b - a|} \int_a^b |f_j| \leq M(|b - a| + |b - a|^{-1}).$$

We may as above then write \tilde{f}_j as the difference $g_j - h_j$ of two uniformly bounded monotone increasing functions. Applying Lemma 2 to g_j and h_j gives the Corollary.
Recall that a metric space E is weakly separable if there is a sequence of functions $\phi_i : E \to \mathbb{R}$ with $\text{Lip}(\phi_i) \leq 1$ so that

$$\text{dist}_E(x, y) = \inf_i |\phi_i(x) - \phi_i(y)| \text{ for all } x, y \in E.$$

A separable metric space E is weakly separable as one sees by taking $\phi_i(x) = \text{dist}_E(x, e_i)$ for some countable dense subset $\{e_i\}$ of E. Moreover, E is weakly separable if and only if there is a distance preserving embedding of E into

$$\ell^\infty = \{(a_1, a_2, \ldots) : \sup_i |a_i| < \infty\}.$$

With ϕ_i as above, one such embedding is

$$\iota(x) = (\phi_1(x) - \phi_1(e_0), \phi_2(x) - \phi_2(e_0), \ldots)$$

where e_0 is any given point of E.

We also say E is boundedly compact if every closed ball $\overline{B}_R(e_0) = \{x : \text{dist}_E(x, e_0) \leq R\}$ is compact for $0 < R < \infty$. This implies that E is locally compact and complete.

Corollary 2. (BV compactness for $n = 1$) Suppose E is a boundedly compact weakly separable metric space, $e_0 \in E$, and $0 < a < b < \infty$. Any sequence of functions $f_j \in L^1((a, b), E)$ with

$$M \equiv \sup_j \int_a^b \text{dist}_E(f_j(x), e_0) \, dx + \text{ess} \sup V^b_a(f_j) < \infty$$

contains a subsequence $f_{j'}$ convergent pointwise a.e. and in L^1 to a function f with

$$\int_a^b \text{dist}_E(f(x), e_0) \, dx + \text{ess} \sup V^b_a(f) \leq M.$$

Proof: We may assume E is a boundedly compact subset of ℓ^∞ and write $f_j = (f^1_j, f^2_j, \ldots)$.

We apply Corollary 1 first to the sequence (f^1_j, f^2_j, \ldots) to obtain a subsequence $f^1_{\alpha_{1}(j)}$ that is L^1 and pointwise a.e. convergent to some f^1, then inductively to the sequence $f^k_{\alpha_{k-1}(j)}$ to obtain a subsequence $f^k_{\alpha_k(j)}$ convergent to some f^k. We conclude that, for the diagonal sequence $f_{j'} = f_{\alpha_{k}(j)}$, each $f^k_{j'}$ is L^1 and pointwise a.e. convergent to f^k as $j \to \infty$. But, for the convergence of the functions $\|f_{j'}(x) - f(x)\|_{\ell^\infty}$, we still need to show that the rates of the convergences of $f^k_{j'}(x)$ to $f^k(x)$ are uniform independent of k and that the limit $f(x) \in E$ for almost every $x \in (a, b)$. For this purpose we will show that, for a.e. $x \in (a, b)$, any subsequence j''' of j' contains a subsequence j''' so that $f_{j''''}(x) \to f(x)$. First Fatou’s Lemma gives that, for a.e. $x \in (a, b)$,

$$\liminf_{j' \to \infty} \text{dist}_E(f_{j'''}(x), e_0) < \infty.$$

So there is, by the bounded compactness assumption, a subsequence j''' of j'' (depending on x) and a limit point $e \in E$ so that $\|f_{j'''}(x) - e\|_{\ell^\infty} \to 0$ as $j \to \infty$. But the previous convergences of the components $f^k_{j'}$ show that $e = (e^1, e^2, \ldots) = (f^1(x), f^2(x), \ldots) = f(x).$
Thus we obtain the desired pointwise a.e. convergence. The L^1 convergence then follows by Lebesgue dominated convergence as in the proof of Corollary 1, and one readily checks that

$$\int_a^b \|f(x)\|_{L^\infty} \, dx + \text{ess} \, V_a^b(f) \leq M.$$

Now we turn again to functions of n variables. For $x \in \mathbb{R}^n$, $k \in \{1, \ldots, n\}$, and $f : (a, b)^n \to E$, we define

$$\hat{x}_k = (x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n), \quad f_{(k)}(\hat{x}_k, x_k) = f(x).$$

Then we have:

Lemma 3. For $f \in L^1((a, b)^n, E)$ with E weakly separable, the mapping

$$y \mapsto \text{ess} \, V_a^b f_{(k)}(y, \cdot)$$

is L^{n-1} measurable.

Theorem 2. Suppose $f \in L^1((a, b)^n)$. Then

$$\|Df\|((a, b)^n) \leq \sum_{k=1}^n \int_{(a, b)^n} \text{ess} \, V_a^b f_{(k)}(y, \cdot) \, dy \leq n \|Df\|((a, b)^n).$$

The proofs given in class followed Evans-Gariepy, §5.10.2.

Based on the above it is reasonable to say that a function $f \in L^1((a, b)^n, E)$ belongs to $BV((a, b)^n, E)$ if the variation on lines

$$VL(f) \equiv \sum_{k=1}^n \int_{(a, b)^n} \text{ess} \, V_a^b f_{(k)}(y, \cdot) \, dy < \infty$$

and prove the following:

Theorem 3. (BV compactness) Suppose E is a boundedly compact weakly separable metric space, $e_0 \in E$, and $0 < a < b < \infty$. Any sequence of functions $f_j \in L^1((a, b)^n, E)$ with

$$M \equiv \sup_j \int_{(a, b)^n} \text{dist}_E(f_j(x), e_0) \, dx + VL(f_j) < \infty$$

contains a subsequence $f_{j'}$ convergent pointwise a.e. and in L^1 to a function f with

$$\int_{(a, b)^n} \text{dist}_E(f(x), e_0) \, dx + VL(f) \leq M.$$
Proof: We argue by induction on \(n \). The case \(n = 1 \) follows from Corollary 2. Assuming the theorem true for dimensions less than \(n \), we will use the metric space

\[
\tilde{E} \equiv \{ f \in L^1((a,b)^{n-1}, E) : \int_{(a,b)^{n-1}} \text{dist}_E(f(x), e_0) \, dx + VL(f) \leq M \} .
\]

One easily checks that \(\tilde{E} \) is weakly separable by again viewing \(E \) as a boundedly compact subset of \(\ell^\infty \). The inductive assumption guarantees that \(\tilde{E} \) is compact, hence boundedly compact.

For each \(k \in \{1, \ldots, n\} \), Fubini’s theorem implies that, for a.e. \(t \in \mathbb{R} \), each function \(f_{j(k)}(\cdot, t) \in \tilde{E} \) and that the map \(t \mapsto f_{j(k)}(\cdot, t) \) belongs to \(L^1((a,b), \tilde{E}) \) with the \(L^1 \) norm uniformly bounded by \(M \). Also for \(a \leq s < t \leq b \),

\[
\text{dist}_E(f_{j(k)}(\cdot, s), f_{j(k)}(\cdot, t)) = \int_{(a,b)^{n-1}} \text{dist}_E(f_{j(k)}(y, s), f_{j(k)}(y, t)) \, dy
\]

so that

\[
\text{ess} V_a^b f_{j(k)}(\cdot, \cdot) = \int_{(a,b)^{n-1}} \text{ess} V_a^b f_{j(k)}(y, \cdot) \, dy \leq M .
\]

The case \(n = 1 \) now gives \(L^1 \) convergence of a subsequence \(f_{j'}(\cdot, t) \) to a function \(g_k \in BV((a,b), \tilde{E}) \). We obtain \(g_1, g_2, \ldots, g_n \) by taking consecutive subsequences. The compatibility condition of the approximating functions

\[
f_{j(k)}(x'_k, x_k) = f_j(x_1, \ldots, x_n) = f_{j(l)}(x'_l, x_l)
\]

for \(k, l \in \{1, \ldots, n\} \) along with Lemma 1 implies the compatibility of these limit functions

\[
g_k(x'_k, x_k) = g_l(x'_l, x_l)
\]

which implies, using Fubini’s Theorem, the existence of a function well-defined by

\[
f(x_1, \ldots, x_n) = g_k(x'_k, x_k)
\]

for all \(k = 1, \ldots, n \) and almost all \(x \in (a,b)^n \). Also one has, by Fubini’s theorem the \(L^1 \) convergence

\[
\int_{(a,b)^{n-1}} \text{dist}_E(f_{j'}, f) \, dx = \int_a^b \text{dist}_E(f_{j'}(\cdot, t), f(\cdot, t)) \, dt \to 0
\]
as \(j \to \infty \). By Lemma 1, a subsequence of the \(f_{j'} \) also converges pointwise a.e. to \(f \). Measurability is a consequence of the pointwise convergence. One readily verifies the estimate

\[
\int_{(a,b)^{n}} \text{dist}_E(f(x), e_0) \, dx + VL(f) \leq M
\].