ANALYSIS QUALIFYING EXAM

AUGUST 2002

Justify answers as completely as you can. Give careful statements of theorems you are using. Time limit -3 HOURS.

1. Suppose that f is a nonegative Lebesgue measurable function on [0, 1] and that $c = \int_0^1 f(x) dx < \infty$. Calculate:

$$\lim_{n \to \infty} \int_0^1 n \log(1 + \frac{f}{n}) \, dx$$

and justify every step.

2. Let A be the set of rational numbers between 0 and 1, and let $\{I_n\}$ be a finite collection of open intervals covering A. Show that $\sum m(I_n) \ge 1$, where m is the Lebesgue measure.

3. Suppose that f is holomorphic and nonconstant in a bounded open, connected set Ω and that $\lim_{z\to z_0} |f(z)| = 1$ for all $z_0 \in \partial \Omega$.

- a) Show that $f(\Omega)$ is a subset of the open unit disk.
- b) Show that there is a point $w \in \Omega$ such that f(w) = 0.
- c) Use part b) to show that $f(\Omega)$ is equal to the open unit disk. (*Hint:* Consider $\phi \circ f$ for suitable Möbius transformations ϕ that map the unit disk onto itself.

4. Suppose that f(z) is holomorphic on the annulus $\{z \mid r < |z| < R\}$, and that the real part of f is constant on each circle $\{z \mid |z| = \rho\}$ for $r < \rho < R$. Show that f is a constant function. (*Hint:* consider $F(w) = f(e^w)$.)

5. (a) Suppose that f is a meromorphic function on an open subset Ω of the complex plane and that

$$\int_{\Omega} |f(z)|^2 \, dx dy < \infty.$$

Show that f is actually *holomorphic* on all of Ω .

(b) Give an example of a meromorphic function on $\{z \mid |z| < 1\}$ which is not holomorphic and which has

$$\int_{\{z \mid |z| < 1\}} |f(z)| \, dx dy < \infty.$$

6. Assume that f(x) is a Lebesgue measurable function on \mathbb{R} . Prove the function defined on \mathbb{R}^2 by

$$F(x,y) = f(x-y)$$

is Lebesgue measurable .