ANALYSIS QUALIFYING EXAM

September 1998

Justify answers as completely as you can. Give careful statements of theorems you are using. Time limit -3 HOURS.

1. (a) For what real numbers α is $|x|^{\alpha}$ integrable on $\{x \in \mathbb{R}^n : |x| < 1\}$?

(b) For what real numbers β is $|x|^{\beta}$ integrable on $\{x \in \mathbb{R}^n : |x| > 1\}$?

2. (a) How many roots does $p(z) = 2z^5 + 4z^2 + 1$ have in the disk |z| < 1?

(b) How many roots does the same polynomial have on the real axis?

3. Let $P_n(x) = a_n x^2 + b_n x + c_n$ be a sequence of quadratic polynomials which converges pointwise on $0 \le x \le 1$.

- (a) Prove that P_n converges uniformly on [0, 1].
- (b) Does P_n converge uniformly on [0, 2]?

4. Evaluate the improper integral

$$\int_{-\infty}^{\infty} \left(\frac{\sin x}{x}\right)^2 dx$$

[Hint: Express $\sin^2 x$ in terms of e^{2ix} .]

5. Suppose $f : \mathbb{R} \to \mathbb{R}, 0 < f(0)$ and f(100) < 100.

(a) Prove that f(x) = x for some x if f is continuous.

(b) Prove that f(x) = x for some x if f is monotonically increasing (though possibly discontinuous).

6. What is the general form of an entire function which has absolute value 1 on the circle |z| = 1 and has no zero inside the circle? Prove your result.