ANALYSIS QUALIFYING EXAM
AUGUST 1999

Justify answers as completely as you can. Give careful statements of theorems you are using. Time limit – 3 HOURS.

1. Suppose that \(f_1, f_2, \ldots \) are nonnegative continuous functions on \([0, 1]\) with \(\int_0^1 f_n(x) \, dx \leq M \).
 (1) Show that there exists a point \(a \in [0, 1] \) with \(f_1(a) \leq 2M \) and \(f_2(a) \leq 2M \).
 (2) Does there exist a better estimate? That is, a number \(N < M \) so that \(\inf_{0 \leq a \leq 1} \max\{f_1(a), f_2(a)\} \leq N \) for all such \(f_1, f_2 \). If so, find the smallest such \(N \). If not, give a counterexample.
 (3) Show that there always exists an \(a \in [0, 1] \) so that \(f_n(a) \leq M \) for infinitely many \(n \).

2. Suppose \(f \) is a holomorphic function on \(\{ z \mid |z| < 3R \} \), \(f(0) = 0 \), \(M_R = \sup_{|z| \leq R} |f(z)| \), and \(N_R = \sup_{|z| \leq R} |f'(z)| \).
 (1) Estimate \(M_R \) (from above) in terms of \(N_R \).
 (2) Estimate \(N_R \) (from above) in terms of \(M_{2R} \).

3. Suppose that \(f(x) \) is defined on \([-1, 1]\), and that \(f'''(x) \) is continuous. Show that the series
 \[\sum_{n=1}^{\infty} (n(f(1/n) - f(-1/n)) - 2f'(0)) \]
 converges.

4. Prove that there is no one-to-one conformal map of the punctured disc \(G = \{ z \in \mathbb{C} \mid 0 < |z| < 1 \} \) onto the annulus \(A = \{ z \in \mathbb{C} \mid 1 < |z| < 2 \} \).

5. Let \(f \) is a meromorphic function on the complex plane such that \(f(z) = 1 + z + z^2 + \cdots \) whenever \(|z| < 1 \). Define a sequence of real numbers \(a_0, a_1, a_2, \ldots \) by
 \[f(z) = \sum_{n=0}^{\infty} a_n (z + 2)^n \]
 What is the radius of convergence of the new series \(\sum_{n=0}^{\infty} a_n z^n \)?

6. A function \(g : [0, 1] \to \mathbb{R} \) is concave if \(tg(x) + (1 - t)g(y) \leq g(tx + (1 - t)y) \) for \(0 \leq t \leq 1 \). Prove that for any continuous \(f : [0, 1] \to \mathbb{R} \) with \(f(0) = 0 \), there is a continuous concave function \(g : [0, 1] \to \mathbb{R} \) such that \(g(0) = 0 \) and \(g(x) \geq f(x) \) for all \(x \in [0, 1] \).
 (Hint: Show that \(g(x) = \inf \{ h(x) : h \text{ is a continuous concave function on } [0, 1], h(y) \geq f(y) \text{ for } y \in [0, 1] \} \))
works (in particular, \(g(0) = 0 \)).