ANALYSIS QUALIFYING EXAM

January 2000

Justify answers as completely as you can. Give careful statements of theorems you are using. Time limit – 3 HOURS.

1. Suppose $g(x) = \lim_{n \to \infty} g_n(x)$ for $x \in [0,1]$ where each g_n is a positive continuous function on [0, 1] with $\int_0^1 g_n dx = 1$.

a. Is it always true that $\int_0^1 g(x) dx \le 1$? Prove or find a counter-example. b. Is it always true that $\int_0^1 g(x) dx \ge 1$? Prove or find a counter-example.

2. Let f be a complex-valued function in the open unit disc, \mathbb{D} , of the complex plane such that the functions $g = f^2$ and $h = f^3$ are both analytic. Prove that f is analytic in \mathbb{D} .

3. Construct an open set $U \subset [0, 1]$ such that U is dense in [0, 1], the Lebesgue measure $\mu(U) < 1$, and that $\mu(U \cap (a, b)) > 0$ for any interval $(a, b) \subset [0, 1]$.

4. Let f, g_1, g_2, \cdots be entire functions. Assume that the kth derivatives at 0 satisfy

- a. $|g_n^{(k)}(0)| \le |f^{(k)}(0)|$ for all *n* and *k*;
- a. $|g_n^{(k)}(0)| \ge |J^{(k)}(0)|$ for all *n* and *k*, b. $\lim_{n\to\infty} g_n^{(k)}(0)$ exists for all *k*. Prove that the sequence $\{g_n\}$ converges uniformly on compact sets and that its limit is an entire function.

5. Let f be a continuous, strictly increasing function from $[0,\infty)$ onto $[0,\infty)$ and let $q = f^{-1}$ be the inverse function of f. Prove that

$$\int_0^a f(x)dx + \int_0^b g(x)dx \ge ab$$

for all positive numbers a and b.

- **6.** Suppose that f(z) that is analytic and satisfies $f(\frac{1}{z}) = f(z)$ for all $z \in \mathbb{C} \setminus \{0\}$.
- a. Write down the general Laurent expansion for f.
- b. Show that the coefficients of this expansion are all real if this f has real values on the unit circle |z| = 1.