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1. (a) Classify all entire functions f : C → C such that

sup
z∈C

|f(z)|
1 + |z|4

< ∞ .

The function f( 1
z ) has an isolated singularity at 0. If this singularity is removable,

then f is bounded and so constant by Louiville’s theorem, which is one possibility. If
it had a transcendental singularity at 0, then z4f( 1

z ) would also have a transcendental
singularity at 0 and be unbounded, contradicting the growth assumption on f at ∞. We
see that f( 1

z ) must have a pole at 0 so that f is necessarily a polynomial. Also we see
that the degree of f is at most 4, and any such polynomial satisfies the hypothesis. Thus
f(z) = a0 + a1z + a− 2z2 + a3z

3 + a4z
4 for some complex numbers a0, . . . , a4

(b) Classify all entire functions g : C → C such that

inf
z∈C

|g(z)|
|z|4

> 0 .

Again g( 1
z ) cannot have a transcendental singularity at 0 because then z4g( 1

z ) would be
arbitrarily close to zero for some points z near 0. So again g is a polynomial. But now the
condition implies that g can vanish only at the origin. So, by the fundamental theorem of
algebra, g(z) = azm. The condition infz∈C |a||z|m−4 > 0 requires that m − 4 ≥ 0 (for z

near 0) and m− 4 ≤ 0 (for z near ∞). So g(z) = az4 with a 6= 0.

2. Suppose that fn : R → R is a differentiable function for every positive integer n,
M = supn,x |f ′n(x)| < ∞ and that f(x) = limn→∞ fn(x) ∈ R exists for all x ∈ R.

(a) Show that the functions fn are uniformly bounded on each fixed interval [a, b] ⊂ R.
Since f(a) = limn→∞ fn(a), N = supn |fn(a)| < ∞. Then for any x ∈ [a, b] the

fundamental theorem of calculus gives the uniform bound

|fn(x)| ≤ |fn(a)|+ |
∫ x

a

f ′n(t) dt| ≤ N + M |b− a| .

(b) Is f continuous on R ? Prove or find a counterexample. Yes, as in (a) the
fundamental theorem of calculus implies that for −∞ < x < y < ∞,

|f(y)− f(x)| = lim
n→∞

|fn(y)− fn(x)| ≤ lim sup
n→∞

∫ y

x

|f ′n(t)| dt ≤ M(y − x) .

(c) Is f differentiable on R ? Prove or find a counterexample. Not necessarily. One
easily obtains an example with f(x) = |x| and the graph of fn(x) being obtained by slightly
rounding the graph of |x|.
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3. Compute the (improper) integral∫ ∞

0

sinx

x(x2 + 1)
dx .

This improper integral exists as limR→∞ IR where

IR =
∫ R

1/R

sinx

x(x2 + 1)
dx =

1
2
[ ∫ −1/R

−R

+
∫ R

1/R

] sinx

x(x2 + 1)
dx .

because | sin x
x | ≤ 1 and 1

x2+1 is integrable on [0,∞). We want to use the Cauchy integral
formula, but we need to choose the f(z) so that the integral on the extra outer boundary
curve will approach 0 as the domain gets larger. [Warning: The estimate | sin z| ≤ 1 is not
always true for z complex.] One thing that works is to note that sin x

x(x2+1) = Im eix

x(x2+1) for
x real and take

f(z) =
eiz

z(z2 + 1)
on the domain ΩR in the upper halfplane bounded by the 4 curves

[−R,− 1
R

], γR = { 1
R

eiθ : π ≥ θ ≥ 0}, [
1
R

,R], ΓR = {Reiθ : 0 ≤ θ ≤ π} .

Inside ΩR, f(z) has a single pole at z = i with residue ei2

i(i+i) = − 1
2e . Thus, Cauchy’s

residue formula gives

−π

e
= Im

(
2πi(− 1

2e
)
)

= Im

∫
∂ΩR

f(z) dz = 2IR + Im

∫
γR

f(z) dz + Im

∫
ΓR

f(z) dz .

On ΓR, |eiReiθ | = |e−R sin θ| ≤ 1 because sin θ ∈ [0, 1]. So we see that

|
∫

ΓR

f(z) dz| ≤ 1
R3

πR → 0 as R →∞ .

Finally ∫
γR

f(z) dz = −1
2

∫
∂B1/R

f(z) dz = −1
2
(2πi)Res 0f = −πi(1) .

So, taking imaginary parts,

lim
R→∞

IR =
1
2
[
− π

e
+ π

]
=

π

2
(1− e−1) .

4. (a) In the unit disk {z ∈ C : |z| < 1} how many solutions are there to the equation
z8−5z3 +z = 2 ? We apply Rouché’s Theorem with f(z) = z8−5z3 +z2 and g(z) = −5z3

on the unit disk noting that for |z| = 1,

|f(z)− g(z)| = |z8 + z − 2| ≤ |z|8 + |z|+ 2 = 1 + 1 + 2 = 4 < 5(1)3 = |g(z)|.

Thus, in the unit disk, f(z) has the same number of zeros as g(z) (counting multiplicities),
namely 3. So the equation z8 − 5z3 + z = 2 has 3 solutions in the unit disk.
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(b) In the radius-2 disk {z ∈ C : |z| < 2} how many solutions are there to the same
equation z8 − 5z3 + z = 2 ? Here we use the same f but now take g(z) = z8 and note
that for |z| = 2 one has

|f(z)− g(z)| = | − 5z3 + z − 2| ≤ 5(2)3 + 2 + 2 = 44 < (2)8 = |g(z)| .

So the equation z8 − 5z3 + z = 2 has 8 solutions in the radius-2 disk.

5. (a) Suppose that f is integrable on [0, 1]. Show that there exists a sequence of positive
numbers an ↓ 0 so that limn→∞ an|f(an)| = 0.

If this were false, then ε = lim infx→0 x|f(x)| > 0, and there there would exist a
positive δ so that x|f(x)| ≥ 1

2ε whenever 0 < x ≤ δ. But then

∫ 1

0

|f(x)| dx ≥
∫ δ

0

|f(x)| dx ≥
∫ δ

0

ε

2x
dx = ∞ ,

contradicting the integrability of f .
(b) Let fn be a sequence of functions integrable on [0, 1] with supn

∫ 1

0
|fn(x)| dx < ∞.

Does there exist a subsequence fnk
of fn and sequence of positive numbers bk ↓ 0 and so

that limk→∞ bk|fnk
(bk)| = 0. If so, prove it. If not, find a counterexample.

As Frank pointed out, a stronger result is true. One need only assume that each fn

is integrable and one doesn’t need to pass to a subsequence fnk
for the conclusion. Here

we first choose αk ↓ 0 so that
∑∞

k=1 αk

∫ 1

0
|fk(x)| dx < ∞, and apply (a) to the integrable

function f(x) =
∑∞

k=1 αk|fk(x)| to find points am ↓ 0 so that limm→∞ amf(am) = 0.
Passing to a subsequence we can make this sequence converge as fast as we want. In
particular we can choose inductively amk

↓ 0 so that amk
f(amk

) ≤ α2
k. Letting bk = amk

,
we conclude that

bkfk(bk) ≤ bkα−1
k f(bk) ≤ α−1

k α2
k = αk → 0 as k →∞ .

6. Suppose 1 ≤ p ≤ ∞, f ∈ Lp
(
[0, 1]

)
, and h(t) is the Lebesgue measure of the set

{x ∈ [0, 1] : |f(x)| > t} for 0 ≤ t < ∞.

(a) Show that
∫∞
0

h(t) dt < ∞ if 1 < p ≤ ∞.

(b) Is this still true for p = 1? Prove or find a counterexample.
Here this is true for p = 1. Since Hölder’s inequality implies that Lp

(
[0, 1]

)
⊂

L1
(
[0, 1]

)
, we only need do the case p = 1 and part (a) follows.

For this, one uses Fubini’s theorem with the characteristic function of the subgraph

A = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y < |f(x)|} .
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Let λ denote 1 dimensional Lebesgue measure. By Fubini’s theorem, A is 2 dimensional
Lebesgue measurable with 2 dimensional measure

|A| =
∫ 1

0

λ{y : (x, y) ∈ A} dx =
∫ 1

0

|f(x)| dx < ∞ .

But slicing the other way shows that∫ ∞

0

h(y) dy =
∫ ∞

0

λ{x : |f(x)| > y} dy =
∫ ∞

0

λ{x : (x, y) ∈ A} dy = |A| < ∞ .

One can get an alternate proof of (a) (but not (b)) by using Chebychev’s inequality
to see that

h(t) = λ{x ∈ [0, 1] : |f(x)|p > tp} ≤ 1
tp

∫ 1

0

|f(x)|p dx .

So ∫ ∞

0

h(t) dt ≤ 1 +
∫ ∞

1

h(t) dt ≤ 1 +
( ∫ 1

0

|f(x)|p dx
) ∫ ∞

1

t−p dt < ∞ .
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