ANALYSIS QUALIFYING EXAM

Janurary 1999

Justify answers as completely as you can. Give careful statements of theorems you are using. Time limit – 3 HOURS.

1. Evaluate

,

$$\int_{|z|=1} (e^{2\pi z} + 1)^{-2} \, dz$$

where the integral is taken in the counterclockwise direction.

2. Give an example of a subset of \mathbb{R} having uncountably many connected components. Can such a subset be open? Closed?

3. Let f be a meromorphic function on \mathbb{C} which is analytic in a neighborhood of 0. Suppose its Taylor series at 0

$$\sum_{k=0}^{\infty} a_k z^k$$

has all $a_k \ge 0$. Let $r = \min\{|z_0| : f \text{ has a pole at } z_0\} < \infty$. Prove that f must have a pole at the real point z = r.

4. Let f(x) be a real-valued function defined for all $x \ge 1$, satisfying f(1) = 1and

$$f'(x) = \frac{1}{x^2 + f(x)^2}.$$

Prove that

$$\lim_{x \to \infty} f(x)$$

exists and is less than $1 + \frac{\pi}{4}$.

- **5.** Suppose $f:[0,1] \to \mathbb{R}$ is continuous.
- a) Prove that $\lim_{n\to\infty} \int_0^1 x^n f(x) \, dx = 0$. b) Prove that $\lim_{n\to\infty} n \int_0^1 x^n f(x) \, dx = f(1)$.

6. Let a be a complex number and ϵ a positive number. Prove that the function $f(z) = \sin z + \frac{1}{z-a}$ has infinitely many zeros in the strip $|Imz| < \epsilon$