(1) Suppose $f : \mathbb{D} \to \mathbb{D}$ is holomorphic and $a, b \in \mathbb{D}$ with f(a) = b. Prove that

$$f'(a) \le \frac{1-|b|^2}{1-|a|^2}.$$

(Here \mathbb{D} denotes the open unit disc in \mathbb{C} .)

- (2) Suppose that f is a Lebesgue measurable function on the interval [0, 1] and $g(x) = \sqrt{x}$ for $x \in [0, 1]$. Prove:
 - (a) $||f \circ g||_{L^1} \le 2||f||_{L^1}$.

(b)
$$||f \circ g||_{L^1} \leq \frac{7}{6} ||f||_{L^2}$$
.

Here $||f||_{L^p} = (\int_0^1 |f(x)|^p dx)^{1/p}$.

(3) Evaluate the integral

$$\int_0^\infty \frac{\sin ax}{x(1+x^2)} \; ,$$

where a > 0.

(4) Prove that for any (real-valued) $f \in L^1([0,1])$, there exists a number $c \in [0, \frac{1}{2})$ such that

$$\int_{c}^{c+\frac{1}{2}} f(x) \, dx = \frac{1}{2} \int_{0}^{1} f(x) \, dx \, .$$

- (5) How many zeros does the function $f(z) = 9z^{10} e^{2z}$ have inside the unit circle? Are the zeros distinct?
- (6) Compute:

(a)
$$\lim_{n\to\infty} \int_0^\infty \frac{x^{n-2}}{1+x^n} dx$$

(b) $\lim_{n\to\infty} n \int_0^\infty \frac{\sin y}{y(1+n^2y^2)} dy$. Hint: Substitute $x = ny$.