
ANALYSIS QUALIFYING EXAM

August 2004

1. (a) Find a real-valued function u on the complex plane so that

f
(
x + iy

)
= u(x + iy) + i

(
x3 + x2 − y2(3x + 1)

)
is holomorphic.

(b) Is your answer unique? If so, prove it. If not, find all the solutions.

2. Suppose that g is twice continuously differentiable and real-valued on R2. You are to
prove that

∂2g

∂x∂y
(0, 0) =

∂2g

∂y∂x
(0, 0) , (∗)

using the following steps:
(a) Compute the integral of ∂2g

∂x∂y over a rectangle [0, a]× [0, b].

(b) Do the same for ∂2g
∂y∂x .

(c) Prove that the results are the same.
(d) Show that this implies (*) .

3. Suppose that D = {z ∈ C : |z| < 1}, f : D → D is holomorphic, and z0 ∈ D. Let
w0 = f(z0).

Show that for every z ∈ D,
(a) ∣∣ f(z)− w0

1− w̄0f(z)

∣∣ ≤ ∣∣ z − z0

1− z̄0z

∣∣ ,

(b)
|f ′(z)|

1− |f(z)|2
≤ 1

1− |z|2
.

4.(a) Suppose that f : R → R is a continuous function such that, for almost all t ∈ R,
f ′(t) exists and |f ′(t)| ≤ 1. Is it true that, f(b)−f(a) =

∫ b

a
f ′(t) dt for −∞ < a < b < ∞?

If so, prove it. If not, give a counterexample.
(b) Suppose g : R → R is differentiable at every point t ∈ R. Is g necessarily

of bounded variation on every closed interval [a, b] ⊂ R? If so, prove it. If not, give a
counterexample.

5. Suppose that f is a holomorphic function on the punctured plane C \ {0}.
(a) For each positive numbers ε < R < ∞, find a formula for f(z) on the annulus

{z ∈ C : ε < |z| < R} in terms of the values of f on the inner boundary circle {z : |z| = ε}
and on the outer boundary circle {z : |z| = R} .
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(b) Prove that if f is meromorphic and∫
{z : 0<|z|<1}

|f(z)| dx dy < ∞ , (∗∗)

then, at 0, f either has a removable singularity or is meromorphic with a pole of order 1.
(c) Does the integrability assumption (**) alone imply that f is automatically

meromorphic at 0. If so, prove it. If not, give a counterexample.

6. Suppose that E1, E2, E3, . . . is a sequence of Lebesgue measurable subsets of the unit
ball B in Rn, and that each Ek has positive Lebesgue measure µ(Ek) > ε for a fixed ε > 0.
For each x ∈ B, let n(x) denote the number of integers k so that x ∈ Ek.

(a) Show that n(x) ≥ 2 for some x ∈ B.
(b) Show that supx∈B n(x) = ∞.
(c) Show that n(x) = ∞ for some x ∈ B.

[The weaker statements (a) and (b) are not necessarily needed for the proof of (c).]
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