
Application of Scans and Fractional Power Integrands

Thierry De Pauw* and Robert Hardt**

In this note we describe the notion of a rectifiable scan and consider some applications
[DH1], [DH2] to Plateau-type minimization problems. “Scans” were first introduced in
the work [HR1] of Tristan Rivière and the second author to adequately describe certain
bubbling phenomena. There, the behavior of certain W 1,3 weakly convergent sequences of
smooth maps from 4 dimensional domains into S2 led to the consideration of a necessarily
infinite mass generalization of a rectifiable current. The definition of a scan is motivated by
the fact that a rectifiable current can be expressed in terms of its lower dimensional slices
by oriented affine subspaces. By integral geometry, the slicing function for the rectifiable
current is a mass integrable function of the subspaces. With a scan one considers more
general such functions that are not necessarily mass integrable.

§1. RECTIFIABLE CURRENTS AND THE PLATEAU PROBLEM

An m dimensional rectifiable set R in Rn is a subset of some countable union ∪∞i=0Mi

whereM1,M2, . . . arem dimensional C1 submanifolds andM0 hasm dimensional Hausdorff
measure Hm(M0) = 0. At Hm almost every point x ∈ R, R has an approximate tangent
space. [S],§3. An m dimensional (integer-multiplicity) rectifiable current T in Rn is given
by a bounded m dimensional Borel measurable rectifiable concentration set RT together
with an Hm integrable density function θT : RT → {1, 2, . . .} and an Hm measurable
orientation ~T : RT →

∧
m Rn so that at Hm almost every x ∈ RT , ~T (x) is the wedge

product of vectors from an orthonormal basis of the approximate tangent space of RT at
x. See [F1],4.1.24 or [S],§27. Thus the action of the current T on a differential m form
φ ∈ Dm(Rn) is given by the integration

T (φ) =
∫

RT

〈
~T (x), φ(x)

〉
θT (x) dHmx .

The mass of T is then simply M(T ) =
∫

RT
θT (x) dHmx. For m ≥ 1, boundary of

T is the m − 1 dimensional current defined by the formula ∂T (ψ) = T (dψ) for ψ ∈
Dm−1(Rn). A rectifiable current generalizes an oriented submanifold M . We sometimes
use the abbreviated notation [[M ]], in case the orientation is known, for the corresponding
multiplicity one rectifiable current. So if M is an oriented manifold with boundary, Stokes
Theorem becomes ∂[[M ]] = [[∂M ]]. Even though Hm(RT ) < ∞, one should be aware that
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the support of the current, sptT , which may be much larger than RT , might even be n
dimensional for m ≥ 1. On the other hand a zero dimensional rectifiable current is simply
a finite integral combination of point masses. Let Rm denote the group of m dimensional
rectifiable currents in Rn.

In 1960, H. Federer and W. Fleming obtained the following fundamental existence
theorem:

1.1 Theorem. [FF] Given any T0 ∈ Rm with ∂T0 ∈ Rm−1, the family of currents
{T ∈ Rm : ∂T = ∂T0} contains a rectifiable current of least mass.

This theorem is valid for all m ≥ 1 in any Rn as well as in any compact Riemannian
manifold (provided the admissible family is nonempty). There one also has, in any
homology class, a rectifiable current that minimizes mass. Among general currents the
existence of a mass minimizers is an easy consequence of the Banach-Alaoglu theorem, but
what is important in [FF] is the rectifiability, which should be understood as an initial
regularity for minimizers.

The complete interior regularity, of such rectifiable mass-minimizers, i.e. that
sptT \ spt ∂T is an embedded real analytic submanifold, was established in the sixties
for 1 ≤ m = n − 1 ≤ 6 by works of Fleming [Fl], De Giorgi [D], Almgren [A1], Triscari
[Tr], and Simons [Ss]. De Giorgi’s work showed that a 7 dimensional mass-minimizer in
R8 would have at most isolated interior singularities, and, in fact in 1970, Bombieri, De
Giorgi [D], and Giusti [BDG] established the mass-minimality of the specific example

Q = ∂[[{(x, y) ∈ R4 ×R4 : |x| < |y|}]] B8
1 ,

which has an isolated singularity at (0, 0). Then the cartesian product with a cube
Q× [[−1, 1]]j is mass minimizing in R8+j , and so the following result of H. Federer gives the
optimal estimate of the Hausdorff dimension of the interior singular set of a codimension
one minimizer:

1.2 Theorem. [F2] For any m dimensional mass-minimizing rectifiable current T in
Rm+1 and ε > 0

Hm−7+ε
(
Sing (sptT \ spt ∂T )

)
= 0 .

The complete boundary regularity of T was established by Hardt and Simon [HS] near any
point where the given ∂T0 is a smooth m− 1 dimensional oriented embedded submanifold
of Rm+1. In 1984, F.J. Almgren completed a massive work treating the higher codimension
interior partial regularity:

1.3 Theorem. [A4] For any m dimensional mass-minimizing rectifiable current T in Rn

and ε > 0
Hm−2+ε

(
Sing (sptT \ spt ∂T )

)
= 0 ,
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and S. Chang [C] showed that interior singularities are at most isolated points for m = 2.
Note that [FF] already contained the singular minimizing example of the sum of two
oriented totally orthogonal disks in R2 ×R2.

[[B2
1 × {0}]] + [[{0} ×B2

1]] .

§2. SIZE AND FRACTIONAL POWERS OF THE DENSITY

In R3, two dimensional mass-minimizing rectifiable currents have no interior singu-
larities and provide a nice model for some but not all “soap films”. General soap films
may have interior singular curves which simultaneously border three surfaces meeting at
equal angles. To use currents in a better model for soap films, Almgren [A3] introduced
the notion of size for a rectifiable current:

Size (T ) = Hm(RT ) .

Thus one ignores the density function in computing size. To understand size versus mass
minimization, consider the one dimensional rectifiable current in the plane consisting of 2
parallel similarly oriented intervals

T0 = [[(−1
2
,

√
3

2
), (

7
2
,

√
3

2
)]] + [[(−1

2
,−

√
3

2
), (

7
2
,−

√
3

2
)]] .

Then T0 is mass-minimizing among all rectifiable currents having boundary equal to ∂T0.
However, the size minimizer is sum of five oriented intervals,

T1 = [[(−1
2
,

√
3

2
), (0, 0)]] + [[(−1

2
,−

√
3

2
), (0, 0)]]

+ 2[[(0, 0), (3, 0)]] + [[(3, 0), (
7
2
,

√
3

2
)]] + [[(3, 0), (

7
2
,

√
3

2
)]] ,

one of which has multiplicity 2. Note that

M(T0) = 2 · 4 < 4 · 1 + 2 · 3 = M(T1) and Size (T0) = 8 > 4 · 1 + 3 = Size (T1).

Similarly in dimension 2 one may consider the sum T0 of two close coaxial, parallel and
similarly oriented, disks. Then T0 is mass-minimizing, but the size-minimizer T1 with
boundary ∂T0 contains a single multiplicity 2 disk in the middle and the set sptT1 models
a soap film with an interior singular curve.

A fundamental problem with size-minimization is the lack of a general existence
theorem. One is faced with the possibility of a size-minimizing sequence of rectifiable
currents having unbounded masses and failing to have subsequences convergent as currents.
This is what happens in an example of F. Morgan.

3



2.1 Example [M]. For a fixed 1 < β < 2 consider the following countable sum of vertical
oriented intervals in the plane:

T0 =
∞∑

j=1

[[(
1
j
,− 1

jβ
), (

1
j
,

1
jβ

)]] .

Then T0 ∈ R1 because M(T0) =
∑∞

j=1
2
jβ <∞. One may check that T0 is mass-minimizing

by an easy callibration argument. However, one sees, as in the previous section, that one
may decrease the size, at the expense of increasing the mass, by replacing the oriented
interval [[(1,−1), (1, 1)]] by the sum of three intervals

[[(1,−1), (
1
2
, 1)]] + [[(

1
2
,− 1

2β
), (

1
2
,

1
2β

)]] + [[(
1
2
,

1
2β

), (1, 1)]] .

The new current has the multiplicity 2 interval 2[[( 1
2 ,−

1
2β ), ( 1

2 ,
1
2β )]] which we may then

replace by the sum

2[[(
1
2
,− 1

2β
), (

1
3
,− 1

3β
)]] + 2[[(

1
3
,− 1

3β
), (

1
3
,

1
3β

)]] + 2[[(
1
3
,

1
3β

), (
1
2
,− 1

2β
)]] .

Continuing we obtain a size-minimizing sequence whose mass approaches infinity. These
do not converge as currents and the resulting formal countable sum of oriented intervals
with integer multiplicities is not a current. We will see that this can be understood as a
“scan”.

There are some positive results concerning size-minimization.

2.2 Theorem. [M] If spt (∂T0) is a smooth m− 1 dimensional submanifold of Rm+1 that
lies on the boundary of a smooth compact convex body, then there exists a size-minimizing
rectifiable current T with ∂T = ∂T0.

The idea here is that one can modify a size-minimizing sequence using decompositions
into oriented boundaries of sets which extend all the way to the boundary Γ of the convex
body. Since Γ \ spt ∂T0 contains only finitely many components, one thus obtains a bound
Hm almost everywhere on the densities in the sequence. So the masses are bounded, and
one has convergence as currents. The lower semicontinuity of size under this condition was
established in [A3].

In [DH1] we obtain, for a general codimension one rectifiable current T0, (without the
convex hull property of spt (∂T0)) a weaker result concerning the existence of a minimizing
set. An m dimensional set S ⊂ Rn is minimizing [A2] relative to a compact set K if

Hm[f(S)] ≥ Hm(S)

for any Lipschitz map f : Rn → Rn with {x : f(x) 6= x} ⊂ Rn \K.
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2.3 Theorem. [DH1] If, in Rm+1, T0 ∈ Rm and Hm(spt ∂T0)) = 0, then there exists a
minimizing set S with respect to spt ∂T0 having spt ∂T0 ⊂ S.

Here is a brief outline of our construction.
First we penalize the lack of compactness by choosing, for any 0 < ε < 1, a rectifiable

current Tε minimizing Size (T ) + εM(T ) among rectifiable currents T with ∂Tε = ∂T0.
Second we observe that the (renormalized) measure

µε = (Hm RTε)(1 + εθTe)

defines a (real) rectifiable varifold, stationary [Al] in Rm+1 \ spt ∂T0. That is, the first
variation of the total mass of the varifold µε vanishes for any deformation which fixes
spt ∂T0. Since the total mass of each µε is bounded by Size (T0) + M(T0), we may by
[Al], choose a sequence µεj

weakly convergent to a rectifiable varifold µ. We show that
the m density of this varifold is one at Hm almost every point of sptµ \ spt ∂T0. Thus
µ = Hm S for some rectifiable set S.

Third, by modifying some arguments of Ambrosio, Fusco and Hutchinson [AKH],
which proved the minimality of a limit of codimension one minimizing sets, we verify that
S is the desired minimizing set.

It is an interesting question to find conditions that will guarantee that the currents
Tεj

converge. While Morgan’s example above shows that this will not happen in general,
the condition that spt ∂T0 be a smooth submanifold may be sufficient.

Even for the “soap-film case” of two dimensional size-minimizers in R3, lack of a priori
knowledge of the boundary behavior prevents progress. In the next result, one avoids the
boundary behavior problem.

2.4 Theorem. [M], [DH1] In a compact Riemannian 3 manifold, any two dimensional
homology class contains a size-minimizing rectifiable current.

J. Taylor [T] classified the local interior structure of the minimizing set S. Up to a C1,α

diffeomorphism of space, the neighborhood of an interior point is either a plane, three half-
planes meeting at equal angles along a line, or 6 planar sectors meeting at equal dihedral
angles at a point. This local structure and the compactness of S imply that there exists a
global Lipschitz retraction ρ of some open neighborhood of S onto S. Since sptTεj

= sptµεj

converge in Hausdorff metric to S, we find that, for some fixed, sufficiently large j, the
retracted current ρ#Tεj

is the desired size-minimizing homology representative.
To use this retraction argument for the original Plateau boundary problem, one would

need more information about the boundary behavior of minimizing sets or (approximately)
size-minimizing currents.

One can also consider a free boundary or obstacle problem where the minimization
occurs among rectifiable currents constrained to have their boundaries lie on a given
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hypersurface. Here, for two dimensions in three space, the local structure is easy to classify.
Again up to a C1,α diffeomorphism of space, the neighborhood of a free boundary point
is either a half-space perpendicular to the given hypersurface or else 3 quadrants at equal
angles to each other, meeting the hypersurface orthogonally. Thus one obtains

2.5 Theorem. [DH2] For any smoothly bounded region Ω ⊂ R3 and any T0 ∈ R2 with
sptT0 ⊂ R3 \ Ω and spt ∂T0 ⊂ ∂Ω, the relative homology class

{T ∈ R2 : sptT ⊂ R3 \ Ω, spt ∂T0 ⊂ ∂Ω, and

spt (T − T0 − ∂S) ⊂ ∂Ω for some S ∈ R3}

contains a rectifiable current of least size.

Note that one can imagine Ω as the interior of a thick 3 dimensional wire whose boundary
surface is supporting the boundary of a soap film. Unfortunately this last existence theorem
provides no obvious uniform mass bounds on the size-minimizing currents for a sequence
of such thick wires Ωi shrinking to a 1 dimensional smooth curve.

There are many other functionals that may also give rise to some minimizing sequences
which have unbounded mass and which have no subsequences convergent as currents.
Perhaps the simplest are given by “fractional” powers of the density.

2.6 Definition. For any α ∈ [0, 1] and T ∈ Rm, the α-mass of T equals

Mα(T ) =
∫

RT

[θT (x)]α dHmx .

The case α = 0 corresponds to the Size(T ) = Hm(RT ) and the case α = 1 corresponds
to the ordinary mass M(T ). The special property of the range 0 ≤ α ≤ 1 is that the
functional Mα is weakly lower semicontinuous on mass bounded sequences. In case m = 0
one is only dealing with “collisions of atoms” and the result is elementary, based on the
inequality

|i+ j|α ≤ |i|α + |j|α for any integers i and j ,

which is only valid for α ∈ [0, 1]. For larger m one may reduce to the case m = 0 by slicing
which we now review.

§3 SLICING

For any bounded Borel m form Ω on Rn, let T Ω denote the 0 dimensional
current given by (T Ω)(ψ) = T (ψΩ) for ψ ∈ C∞0 (Rn). From [F1], 4.3 we recall that if
f : Rn → Rm is Lipschitz and T ∈ Rm, then, for a.e. y ∈ Rm the slice

〈
T, f, y

〉
∈ R0

where 〈
T, f, y

〉
= lim

r↓0
T f#

(χBr(y)

ωmrm
Ωm

)
with Ωm = dx1 ∧ . . . ∧ dxm .
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In fact, for a.e. y ∈ Rm, RT ∩ f−1{y} is a finite set of points x where the approximate
tangent space of RT exists with f |RT being approximately differentiable of rank m at x,
and the slice is given by the formula〈

T, f, y
〉

=
∑

x∈RT∩f−1{y}

σ(x)θT (x)δx

where σ(x) = sgn
〈 ∧

mDf(x)~T (x),Ωm

〉
. One also has the integral formulas∫

Rm

〈
T, f, y

〉
dy = T f#Ωm ,

∫
Rm

Mα

〈
T, f, y

〉
dy = Mα[T f#Ωm] .

Recall also the compact space P of orthogonal projections of Rn onto Rm, which has
an invariant probability measure induced by the transitive action of O(n). In particular,
for each increasing function λ : {1, . . . ,m} → {1, . . . , n} we have the coordinate projection

pλ : Rn → Rm , pλ(x1, . . . , xn) = (xλ(1), . . . , xλ(m)) .

By writing an m form φ ∈ D(Rn) in coordinates

φ =
∑

λ

φλdx
λ =

∑
λ

φλp
#
λ Ωm

with each φλ ∈ C∞0 (Rn), we see how the current T is expressed in terms of its 0 dimensional
coordinate slices

T (φ) =
∑

λ

T [φλp
#
λ Ωm] =

∑
λ

(
T p#

λ Ωm

)
(φλ)

=
∑

λ

∫
Rm

〈
T, pλ, y

〉
(φλ) dy .

Composing with rotations and integrating over O(n), we find a formula

T (φ) = (volO(n))−1

∫
O(n)

∑
λ

∫
Rm

〈
T, pλ ◦ g, y

〉
(φ · (pλ ◦ g)#Ωm) dy dg

=
(
n

m

)
(volO(n))−1

∫
P

∫
Rm

〈
T, p, y

〉
(φ · p#Ωm) dy dp .

One also has the integral geometric relation

Mα(T ) = β(m,n)
∫
P

∫
Rm

Mα

〈
T, p, y

〉
dp dy .
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This motivates us to define various classes of scans as measurable functions

T : P ×Rm → {0 dimensional currents } .

In particular, a rectifiable scan is a measurable function

T : P ×Rm → R0

corresponding to some rectifiable set RT , some Hm measurable θT : RT → {1, 2, . . .} and
some Hm measurable orientation ~T of RT so that, for almost all (p, y) ∈ P ×Rm,

T (p, y) =
∑

x∈RT∩p−1{y}

σ(x)θT (x)δx

where σ(x) = sgn
〈 ∧

m p~T (x),Ωm

〉
. One defines

Mα(T ) = β(m,n)
∫
P

∫
Rm

Mα

(
T (p, y)

)
dp dy ,

and sees that the scan T corresponds to a rectifiable current if and only if M1(T ) < ∞.
For a rectifiable current T ∈ Rm, an elementary Fourier transform argument shows that

∂T = 0 if and only if
〈
T, p, y

〉
(1) = 0 for almost all (p, y) ∈ P ×Rm .

Thus, for 2 rectifiable scans S, T we say

∂S = ∂T if and only if (S − T )(p, y)(1) = 0 for almost all (p, y) .

3.1 Theorem. [DH1] Suppose 0 < α ≤ 1, T0 ∈ Rm, and Hm(spt ∂T0) = 0. Then there
exists a rectifiable scan T with ∂T = ∂T0 and

Mα(T ) = inf{Ma(T ) : T ∈ Rm, ∂T = ∂T0} .

The proof involves getting the convergence as scans of a subsequence of an Mα minimizing
sequence. We must work with a convergence that is weaker than the weak convergence of
currents. To see this, consider the following

3.2 Example. Suppose Sj = j2∂[[B1/j ]] in R2. Thus Sj is an oriented circle of radius 1
j

with multiplicity j2. Then, in the weak topology of currents,

Tj ⇀ ∂[[δ(0,0)e1 ∧ e2]] 6= 0 ,

but, for 0 < α < 1
2 ,

Mα(Tj) = j2α · (2π
j

) → 0 .
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An appropriate topology is the α flat distance [Fl2], [W] on Rm

Fα(T1, T2) = inf{Mα(R) + Mα(S) : T1 − T2 = R+ ∂S, R ∈ Rm, S ∈ Rm+1} .

Recall now from [AK] that a measurable function f from Rm into a general metric space
X has finite total variation if φ ◦ f is BV for all Lipschitz φ : X → R and

‖Df‖(Rm) ≡ sup{
∫
|D(φ ◦ f)| : φ : X → R, Lipφ ≤ 1} < ∞ .

R. Jerrard [JS] observed that the slice of a normal current was of metric bounded variation
with respect to the flat norm. The next result is the analogue for the Fα distance.

3.3 Theorem. [DH1] If T ∈ Rm, ∂T ∈ Rm−1, Mα(T ) + Mα(∂T ) <∞, and p ∈ P, then

f : Rm →
(
R0,Fα

)
, f(y) =

〈
T, p, y

〉
has finite total variation

‖Df‖(Rm) ≤ m [Mα(T ) + Mα(∂T ) ]

Proof : In case m = 1 the equation, for almost all s < t,〈
T, p, s

〉
−

〈
T, p, t

〉
= (∂T ) p−1[s, t] − ∂

(
T p−1[s, t]

)
implies that

Fα

(〈
T, p, s

〉
,
〈
T, p, t

〉
) ≤ Mα

(
T p−1[s, t]

)
+ Mα

(
(∂T ) p−1[s, t]

)
.

Summing over almost all partitions of R then gives that the essential variation

essvar (f) ≤ Mα(T ) + Mα(∂T ) ,

which implies the case m = 1.
For m = 2, 3, . . ., we use the formula [F1],4.5.9.27∫

Rm

|Dψ| ≤
m∑

i=1

∫
Rm−1

essvarψ(y1, . . . , yi−1, ·, yi+1, . . . , ym) dy1 . . . dyi−1dyi+1 . . . dym

with ψ = φ ◦ f to get the desired bound.
This estimate gives the desired variation in y. To get a similar variation bound in

(p, y) one may use, for almost all (p, y), the formula〈
T, p, y

〉
= Π#

〈
T × [[P]], P, (y, p)

〉
where Π(x, q) = x and P (x, q) =

(
q(x), q

)
for (x, q) ∈ Rn × P.

From the usual BV compactness for real-valued functions it is not difficult to derive
the following metric-space-valued version:
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3.4 Theorem. [DH1] Suppose N is a Riemannian manifold, Y is a separable metric
space, M : Y → R+ is lower semicontinuous, and M−1[0, R] is sequentially compact for
all R > 0. If fj : N → Y is measurable with

Λ = sup
j
‖Dfj‖(N) +

∫
N

M
(
fj(x)

)
< ∞ ,

then some subsequence fj′ converges pointwise a.e. to a measurable f : N → Y with

‖Df‖(N) +
∫

N

M
(
f(x)

)
≤ Λ .

To prove the existence of a suitable scan T for Theorem 3.1, we can now apply
Theorem 3.3, the remark after, and Theorem 3.4 with

N = P ×Rm, Y = (R0,Fα), M = Mα, fj(p, y) =
〈
Tj , p, y

〉
.

The lower semicontinuity follows from Fatou’s lemma and the lower semicontinuity of Ma

on (R0,Fα).
To verify the rectifiability of the limiting scan, we obtain a rectifiable varifold as in the

proof of Theorem 2.3 and then show that our scan is necessarily concentrated on an Hm-
finite rectifiable concentration set of this varifold. Almost every projection is transverse a.e.
to this rectifiable set and one works with the convergence of the slices in these directions
to eventually get the desired consistently defined multiplicity θT and orientation ~T .

In [DH2] we obtain a general compactness theorem in the class of rectifiable scans
having rectifiable boundaries and having Mα + Ma∂ uniformly bounded. This gives an
existence theory for various Plateau problems. We also obtain the optimal interior partial
regularity estimate for Mα minimizers:

3.5 Theorem. [DH2] For any m dimensional Mα minimizing rectifiable scan T in Rn

and ε > 0
Hm−1+ε

(
Sing (spt T \ spt ∂T )

)
= 0 .

Moreover, T K has finite mass for every compact K ⊂ Rn \ spt ∂T .

The proof uses the following (roughly stated)

3.6 Lemma. If 0 < α < 1, then, near any point a of spt T \ spt ∂T where T has
a multiplicity ν tangent plane, the scan T is mostly a multiplicity ν graph of a single
function.

In shrinking cylinders about such a point, the ν excess [F1], 5.3, as well as the ordinary
excess, approaches zero. This is in sharp contrast to the case α = 1 of mass-minimizing
currents. For example, the complex cusp

{(z, w) ∈ C×C : w2 = z3}
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supports a multiplicity one mass-minimizing rectifiable current with a multiplicity two
tangent plane at (0, 0). The proof of Lemma 3.6 is based on a multi-valued graphical
approximation followed by a squashed comparison current.

§4. ANOTHER FRACTIONAL INTEGRAND

In the works [HR1], [HR2] treating various energy-bounded sequences of Sobolev
mappings, one encounters rectifiable currents with bounds on the integral of fractional
powers of the (ordinary) mass of slice. In our notations, the analogous situation is to
consider for T ∈ Rm and 0 < α ≤ 1, the integral

M̃α(T ) = β(m,n)
∫
P

∫
Rm

(
M

〈
T, p, y

〉)α
dp dy .

Note the inequalities

M̃α(T ) ≤ Mα(T ), M(T ) ≤ M̃1(T ) ≤ M(T ) .

4.1 Example. Consider in R2 the concentric, multiplicity one circles Tj =
∑j

i=1 ∂[[B1/i]] ∈
R1. Then, as j →∞,

Mα(Tj) = M(Tj) →∞ ,but sup
j

M̃α(Tj) < ∞ .

Here the limit is a rectifiable scan with M̃α finite, but with a concentration set of infinite
Hausdorf measure.

As in [HR1], [HR2], one may again work with (R0,Fα) to obtain the lower semiconti-
nuity of M̃α. One can obtain the existence of M̃α minimizing scans by using a weak-type
bound in the Lorentz space L

1
α ,∞. See [HR1], §9. However the partial regularity or even

rectifiability of M̃α minimizers is unknown. See [HR1], §.8.2.

§5. RELATED PROBLEMS

In the study of Ma minimizers, one may replace the power function θα by a smooth
concave unbounded increasing function H(θ) with H(0) = 0 and H(1) = 1. Use of scans
accommodates as well treatment of the case when H = H(θ, x) is also allowed to depend
smoothly on the space variable x.

By using H(θ) as an alternate norm on the group of integers, a rectifiable minimizer
may also be found in a generalized class of flat chains following the works of Fleming [F2]
and White [W]. The close relation between rectifiability and slicing explained in [AK] and
[W] was an important motivation for the definition of scans in [HR1] and [DH1].
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One dimensional flat Mα minimizers are also applied to describe transport paths
in [X1], [X2]. The Mα functional reflects the efficiency of combining paths in various
distribution systems, such as mail delivery, the circulatory system, etc. Here one obtains,
for any two probability measures µ0, µ1 in Rn, a flat 1 chain T which minimizes Mα subject
to the constraint ∂T = µ1 − µ0 as 0 dimensional currents. In [X1], the transport path T

has positive real density function θT with values in (0, 1] because M(µ1) = 1 = M(µ2). So
one here has the inequality

Mα(T ) ≥ M(T ) ,

which is just the opposite of the inequality that we had in our study [DH1], [DH2] of
integer-multiplicity rectifiable currents. In contrast to [DH1], [DH2], Mα minimization for
transport paths always gives finite mass currents. In [X2], Q.Xia proves the precise local
interior regularity of an Mα minimizing path: that, in Rn \ (sptµ1 ∪ sptµ2), T is locally
a finite collection of oriented intervals with multiplicities.

Finally we have begun work in [DH3] on carrying over various results of geometric
measure theory to rectifiable scans. There we introduce the notion of a rectifiable scan
in a metric space X, and give some results generalizing the work of L.Ambrosio and B.
Kirchheim [AK] on currents in metric spaces. The idea is that an m dimensional rectifiable
scan in X is a measurable function

T : Lip (X,Rm)×Rm → R0(X)

which admits a representation in terms of an m dimensional rectifiable [AK] set RT ⊂ X,
and integer density function θT , and an orientation ~T of RT . (The notion of orientation
requires some effort to describe.) For a Lipschitz map g : X → Y of metric spaces and m
dimensional rectifiable scan T on X, the push-forward g#T defined by

(g#T )(f, y) = g#
(
T (f ◦ g, y)

)
for almost all (f, y) ∈ Lip (X,Rm)×Rm, is a rectifiable scan on Y . An m− 1 dimensional
scan S is the boundary, ∂T , of T if, for all points α ∈ X,

S(g, z) = lim
r↓0

T
(
(g,dist (·, a)), (r, z)

)
for almost all (g, z) ∈ Lip (X,Rm−1) × Rm−1. One may again impose bounds on Mα

and Mα∂ along with suitable topological bounds on supports to obtain scan compactness
theorems.
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