1. (10 pts) State Rademacher’s Theorem and the Area and Co-area Formulas.

Suppose that \(f : \mathbb{R}^n \to \mathbb{R}^m \) is Lipschitz and that \(A \) is an \(\mathcal{H}^n \) measurable subset of \(\mathbb{R}^n \).

Rademacher’s Thm. Then \(f \) is differentiable \(\mathcal{H}^n \) almost everywhere.

Area Formula. If \(n \leq m \), then

\[
\int_A [[Df(x)]] \, d\mathcal{H}^n x = \int_{f(A)} \mathcal{H}^0(A \cap f^{-1}\{y\}) \, d\mathcal{H}^m y.
\]

Co-area Formula. If \(n \geq m \), then

\[
\int_A [[Df(x)]] \, d\mathcal{H}^n x = \int_{f(A)} \mathcal{H}^{n-m}(A \cap f^{-1}\{y\}) \, d\mathcal{H}^m y.
\]

2. (10 pts) Suppose \(A \) is an \(\mathcal{H}^1 \) measurable subset of \(\mathbb{R}^2 \) with \(\mathcal{H}^1(A) < \infty \). True or False (No proofs necessary.)

(a) \[
\lim_{r \downarrow 0} \frac{\mathcal{H}^1[A \cap B(a,r)]}{2r} = 1
\]

for \(\mathcal{H}^1 \) almost all \(a \in A \). FALSE (See the example from the 1st week.)

(b) \[
\mathcal{H}^1(A) = \inf \{\mathcal{H}^1(U) : U \text{ is an open neighborhood of } A\}.
\]

FALSE Nonempty open sets have infinite \(\mathcal{H}^1 \) measure.

(c) \[
\mathcal{H}^1(A) = \sup \{\mathcal{H}^1(K) : K \text{ is a compact subset of } A\}. TRUE
\]

3. (10 pts) Find the approximate Hausdorff outer measures

\[
\mathcal{H}^1_{\infty}(S^1) \quad \text{and} \quad \mathcal{H}^1_{\sqrt{2}}(S^1)
\]

where \(S^1 \) is the unit circle in the plane. \(\mathcal{H}^1_{\infty}(S^1) = 2 \) and \(\mathcal{H}^1_{\sqrt{2}}(S^1) = 4\sqrt{2} \).
4. (10 pts) Prove or find a counterexample: For any subsets A_1, A_2, \ldots of R^n, the Hausdorff dimension
\[
\dim (\bigcup_{i=1}^{\infty} A_i) = \sup_i \dim A_i .
\]

Proof: Let $s = \sup_i \dim A_i$. Then, for $t > s$,
\[
\mathcal{H}^t (\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mathcal{H}^t (A_i) = 0
\]
because $t > \dim A_i$ for all i. Also, for $r < s$, there is a j with $r < \dim A_j \leq s$ so that
\[
\mathcal{H}^r (\bigcup_{i=1}^{\infty} A_i) \geq \mathcal{H}^r (A_j) = \infty .
\]
Thus, $\dim (\bigcup_{i=1}^{\infty} A_i) = s$.

5. (10 pts) Let S_0 be the unit square $[0, 1] \times [0, 1]$ in the plane. Dividing S_0 into 9 congruent squares, let S_1 be obtained from S_0 by removing the middle third square:
\[
S_1 = S_0 \setminus ([1/3, 2/3] \times [1/3, 2/3]).
\]
Similarly, let S_2 be obtained from S_1 by omitting the middle third squares from each of the 8 remaining squares. Continuing, we let S_{i+1} be obtained from S_i by omitting the middle third squares from the remaining squares of S_i. What is the Hausdorff dimension of $S = \bigcap_{i=1}^{\infty} S_i$? Does S have finite Hausdorff measure in this dimension?

This is a self-similar set consisting of 8 pieces each of which can be expanded by a factor of 3 to give a congruent copy of the original set. Its dimension is $t = \frac{\log 8}{\log 3}$.

For each i, we may cover S by 8^i squares of diameter $\sqrt{3}^{-i}$ so that
\[
\mathcal{H}^t (S) \leq 8^i \alpha_t (\sqrt{3}^{-i})^t = \alpha_t (\sqrt{2})^t (8 \cdot 3^{-t})^i = \alpha_t (\sqrt{2})^t < \infty .
\]
Thus $\dim S \leq t$. The fact that $\mathcal{H}^t (S) > 0$, hence $\dim S \geq t$ follows as in our discussion of the Cantor set.

6. (10 pts) A function $f : R^n \to R$ is approximately continuous at a point $a \in R^n$ if, for every positive ϵ there is a positive δ so that
\[
\frac{\lambda \left(\{ x \in B(a, r) : |f(x) - f(a)| > \epsilon \} \right)}{\lambda (B(a, r))} > \epsilon
\]
whenever $0 < r < \delta$.

(a) Prove or find a counterexample: If a is a Lebesgue point of f, then f is approximately continuous at a.

Proof: At a Lebesgue point a of f we may choose, for $\epsilon > 0$, a positive δ so that, for $0 < r < \delta$,
\[
\left[\lambda(B(a, r))\right]^{-1} \int_{B(a, r)} |f(x) - f(a)| \, dx \leq \epsilon^2,
\]
hence,
\[
\frac{\lambda\{x \in B(a, r) : |f(x) - f(a)| > \epsilon\}}{\lambda(B(a, r))} \geq \epsilon.
\]

(b) Prove or find a counterexample: If f is approximately continuous at a, then a is a Lebesgue point of f.

For a counterexample one can take
\[
f = \sum_{i=1}^{\infty} \frac{1}{|b_i - a_{i+1}|} \chi_{[a_{i+1}, b_i]}
\]
where positive numbers $a_1 > b_1 > a_2 > b_2 > \ldots$ are chosen inductively so that $\frac{a_i - b_i}{a_i} \to 1$ as $i \to \infty$.

7. (10 pts) Suppose A is a closed subset of \mathbb{R}^n of Lebesgue measure zero, and $f(x) = \text{dist} (x, A) \equiv \inf \{|x - a| : a \in A\}$.

(a) Show that f is differentiable λ almost everywhere.

For $x, y \in \mathbb{R}^n$ the triangular inequality implies that
\[
\text{dist} (x, A) \leq |x - y| + \text{dist} (y, A) \quad \text{and} \quad \text{dist} (y, A) \leq |x - y| + \text{dist} (x, A),
\]
so that
\[
|f(x) - f(y)| \leq |x - y|.
\]
Thus f is Lipschitz and so differentiable almost everywhere by Rademacher’s theorem.

(b) Show that for any $g \in L^1(\mathbb{R}^n)$
\[
\int g(x) \, dx = \int_0^{\infty} \int_{f^{-1}(t)} g(y) \, d\mathcal{H}^{n-1}y.
\]
At a point x of differentiability of f we showed that $[[Df(x)]] = 1$, and so the above formula follows from the co-area change of variables formula.
8. (10 pts) Suppose that K is a compact subsets of \mathbb{R}^n with $\mathcal{H}^{n-1}(K) = 0$. Prove that any 2 points in $\mathbb{R}^n \setminus K$ may be connected by a path in $\mathbb{R}^n \setminus K$.

For distinct points $a, b \in \mathbb{R}^n \setminus K$, choose first $0 < \epsilon < \frac{1}{2} |a - b|$ so that the two closed balls $\overline{B}_\epsilon(a)$ and $\overline{B}_\epsilon(b)$ do not intersect K. Note that the retraction map

$$f : \mathbb{R}^n \setminus B_\epsilon(a) \to \partial B_\epsilon(a), \quad f(x) = a + \epsilon \frac{x - a}{|x - a|},$$

is Lipschitz with $\text{Lip}(f) \leq \frac{1}{\epsilon}$. Thus

$$\mathcal{H}^{n-1}(f(K)) \leq \frac{1}{\epsilon^k} \mathcal{H}^{n-1}(K) = 0.$$

Since also $f(\partial B_\epsilon(b))$ is a nonempty open region in $\partial B_\epsilon(a)$, we may chose a point $\omega \in \partial B_\epsilon(a) \setminus f(\partial B_\epsilon(b))$. Then the half-line $f^{-1}\{\omega\}$ misses K and contains an interval joining the two spheres $\partial B_\epsilon(a)$ and $\partial B_\epsilon(b)$. Joining the endpoints of this interval radially to a and b respectively, gives the desired path in $\mathbb{R}^n \setminus K$ joining a and b.

9. (10 points) Suppose μ and ν are Borel measures on \mathbb{R}^n with $0 < \mu(\mathbb{R}^n) < \infty$ and $0 < \nu(\mathbb{R}^n) < \infty$. Show that

$$\mu \{ x \in \mathbb{R}^n : \limsup_{r \downarrow 0} \frac{\nu(B_r(x))}{\mu(B_r(x))} = \infty \} = 0.$$

Proof: The above set is the decreasing intersection of the sets

$$E_i = \{ x \in \mathbb{R}^n : \limsup_{r \downarrow 0} \frac{\nu(B_r(x))}{\mu(B_r(x))} > i \}.$$

Thus, if the statement is false, then $\mu(E_i) > \delta$ for some positive number δ and all i sufficiently large. For each point $x \in E_i$, we can choose a positive r_x so that

$$\frac{\nu(B_{r_x}(x))}{\mu(B_{r_x}(x))} > i.$$

Now, for each i, we may repeat the proof of the Vitali Covering Theorem to choose from these balls a sequence of balls $B_{r_1}(a_1), B_{r_2}(a_2), \ldots$ covering E_i so that the shrunked balls $B_{r_1/5}(a_1), B_{r_2/5}(a_2), \ldots$ are disjoint. The “essentially largest first” aspect of the proof of Vitali gives us a bound c_n (depending only on n) on the number of balls $B_{r_j}(a_j)$ which may intersect $B_{r_k}(a_k)$ with $j \leq k$. Thus, although
the original balls $B_{r_1}(a_1), B_{r_2}(a_2), \ldots$ are not disjoint, any given point lies in at most c_n of them. It follows that

$$c_n \nu(R^n) \geq \sum_{j=1}^{\infty} \nu(B_{r_j}(a_j)) \geq i \sum_{j=1}^{\infty} \mu(B_{r_j}(a_j))$$

$$\geq i \mu(E_i) \geq i \delta \to \infty \text{ as } i \to \infty,$$

contradicting the finiteness of $\nu(R^n)$.

10. (10 pts) P(a) Prove or find a counterexample:

If \mathcal{I} is a (possibly uncountable) family of open rectangles in R^2 and A_I is any set with $I \subset A_I \subset \text{Clos} I$ for each $I \in \mathcal{I}$, then $\bigcup_{I \in \mathcal{I}} A_I$ is Lebesgue measurable in R^2.

Proof: Replacing \mathcal{I} by $\bigcup_{I \in \mathcal{I}} S_I$ where $S_I = \{\text{open squares } \subset I\}$ and letting

$$A_S = A_I \cap \overline{S} \text{ whenever } I \in \mathcal{I}, S \in S_I,$$

we may assume that \mathcal{I} itself consists of squares which are fine about each point of $\bigcup_{I \in \mathcal{I}} \overline{I}$. Thus by Vitali’s theorem, we may choose a countable disjointed subfamily \mathcal{C} of $\{\overline{I} : I \in \mathcal{I}\}$ which covers almost all of $\bigcup_{I \in \mathcal{I}} \overline{I}$. Since $\bigcup_{I \in \mathcal{I}} A_I$ contains the open set $\bigcup_{I \in \mathcal{I}} \text{Int} I$ and since

$$\lambda(\bigcup_{I \in \mathcal{I}} A_I \setminus \bigcup_{I \in \mathcal{I}} \text{Int} I)$$

$$\leq \lambda(\bigcup_{I \in \mathcal{I}} \overline{I} \setminus \mathcal{C}) + \lambda(\bigcup_{I \in \mathcal{I}} \partial I) = 0 + 0,$$

$\bigcup_{I \in \mathcal{I}} A_I$ is λ measurable.

HAPPY SUMMER!