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x0. Introduction.

There are many interesting questions and works concerning the relation between the

topology of Riemannian manifolds M and N and the structure of the various Sobolev

spaces W s;p(M;N) of maps between them. For example, the space W 1;p(M;Sp) of �nite

p energy maps to the p sphere and issues concerning the possible approximability by

smooth maps have been well-studied by F. Bethuel [Be1] and others using the notion

of topological degree, which is associated with �p(S
p). For dimM < p, these Sobolev

maps are automatically continuous. In the critical dimension dimM = p, one has the

phenomenon of bubbling whereby a weakly convergent sequence of smooth maps may, in

the limit, drop energy and topological degree and produce, in a suitable space, auxiliary

objects (bubbles) accounting for topological changes near a �nite set of points. In case

dimM > p, the limiting map itself may have essential topologically singularities, detected

by degree, which are topologically connected by a bubbling set of dimension dimM � [p].

These are particularly well-understood for dimM = 3; p = 2 [HL1], [BCL], [Be2], [BBC],

[GMS1] where, for example, the bubbling set carries a 1 dimensional �nite mass recti�able

current whose boundary is the topological singularities of the limit map.

In general, the homotopy group �p(N) should be used to study the Sobolev spaces

W 1;p(M;N). In the present paper we work with the Hopf invariant, which is associated

with �3(S
2), to understand spaces W 1;3(M;S2) where dimM = 4. We discover some new

phenomena. Examples in x2.5 show that now the bubbled object can possibly have in�nite
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one dimensional mass and that the singularities that appear in weak limits of sequences

of smooth maps may possibly not bound any �nite mass current. We de�ne in x2 a new

object, a scan, which generalizes a current but still occurs naturally in bubbling while

automatically providing the topological connection between the singularities of the limit

map. The bubbled scans, which are found in x6 via a new compactness theorem, again

enjoy a representation in x7 using a �nite measure 1 recti�able set and an integer density

function which is now however only L3=4 integrable (rather than L1 integrable).

Background.

With the target manifold N viewed as isometrically embedded in a Euclidean space

Rk, one may de�ne, for positive numbers p and s, with p � 1, the Sobolev space

W s;p(M;N) = fu 2W s;p(M;Rk) : u(x) 2 N for a:e: x 2Mg ;

where the vector space W s;p(M;Rk) is obtained from W s;p
loc (R

dimM ;Rk) using local

coordinate charts for M .

In contrast to the vector-space case N = Rk, some Sobolev maps u 2 W s;p(M;N)

do not admit approximation by a sequence of smooth maps un 2 C1(M;N) in the strong

or even in the weak W s;p(M;N) topologies. Questions about density of C1(M;N) in

W s;p(M;N) arise naturally for example from the study of variational problems among

manifolds such as with harmonic maps, etc. [SU], [W1], [W2], [HL1], [BZ], [Be1], [BCL],

[BBC], [GMS2]. Recently the path-connectness of W 1;p(M;N) has been studied in [BL]

and [HaL].

As a �rst approach to the notion of topological singularity, withM being the open unit

ballBm inRm, we may de�ne the topological singular set of a map u 2W s;p(Bm; N) as the

largest open subet ofBm on which u isW s;p strongly approximable. The obstruction to the

strong approximation is characterized by the appearance, locally around the singularities

of u, of nonzero elements of �k(N) where k = [sp], the integer part of sp. For example,

the fact [SU] that the map u : B3 ! S2, u(x) = x=jxj, is not strongly approximable in

W 1;p(B3;S2) (for 2 � p � 3) by regular maps is due to the realization of a nonzero element

of �2(S
2) on spheres surrounding the singularity 0. More generally, one has, for s = 1,

Theorem 0.1. [SU], [BZ], [Be1] The space C1(Bm; N) is strongly dense in W 1;p(Bm; N)

if and only if

p � m or �[p](N) = 0 :

As recently observed by F. Hang and F.H.Lin [HgL], this suÆcient condition for strong

density does not extend to an arbitrary domain. The map v from CP 3 to CP 2 ,

de�ned in homogeneous coordinates by v
�
[z1; z2; z3; z4]

�
= [z1; z2; z3], has a singularity

at a = [0; 0; 0; 1] and admits no global strong approximation by smooth maps. While

the above theorem gives the existence of local obstructions due only to �[p](N), this
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counterexample illustrates global obstruction. Here the singularity is delocalized in the

sense that one may very well approximate the above v strongly in W 1;3(CP 3;CP 2) by

maps smooth in a �xed neighborhood of a because, one may, with arbitrarily small energy,

\order the globally essential singularity to reappear somewhere else." By contrast, the local

obstructions are �xed in space: it is impossible to strongly approximate u(x) = x=jxj in

W 1;2(B3;S2) by a sequence of maps smooth in a �xed neighborhood of the limit singularity

0. This is the phenomenon that we wish to study here, and we will thus restrict especially

to the domain M = Bm. We also restrict to the case s = 1 although certain results below

extend to fractional Sobolev spaces (see [Be3], Ri2]).

Whenever �[p](N) 6= 0, C1(M;N) is too small to \cover by strong density" all of

W 1;p(Bm; N), and one uses the following larger space

R1;p(Bm; N) = fu 2 C1(Bm nA;N) \W 1;p : A is an n� [p]� 1 dimensional

submanifold of Bm and [ujSxK] 6= 0 in �[p](N) for all x 2 Ag

where SA is a normal sphere bundle of A embedded in a small neighborhood of A in Bm

and ujSxA is the restriction of u to the ([p] dimensional) sphere over x. One then has the

following:

Theorem 0.2. [Be1] For [p] > 1; R1;p(Bm; N)
W 1;p

= W 1;p(Bm; N).

For example, R1;2(B3;S2) consists of maps u 2 W 1;2(B3;S2) that are smooth away

from a �nite set A and whose restriction to any small spheres about a point of K has

nonzero degree. In particular, u(x) = x=jxj 2 R1;2(B3;S2) n C1(B3;S2)
W 1;p

.

De�nition. For u 2 R1;p(Bm; N) one de�nes the topological singularity of u, Singtop u as

the 
at �[p](N) chain obtained from the singular set K by assigning to each point x 2 K

the multiplicity [ujSxK] in �[p](N). Flat G chains are de�ned in [Fl] (see also [F], [GMS2],

[W3]. For example the topological singularity of an element of R1;1(B3;RP 2) is a sum of

disjoint unoriented curves in B3 because �1(RP
2) = Z2.

The general question motivating the present paper is the following: Being given

a sequence un in R1;p(Bm; N), converging strongly in W 1;p(Bm) to a limit u, may

one experience some convergence of the 
at �[p](N) chains Singtop un to a limit \object

Singtop u" which will depend only on u and will characterize the approximability of u by

smooth maps in W 1;p
�
in particular, if Singtop u = 0, then u 2 C1(Bm; N)

W 1;p�
.

As we will see below, the understanding of the behavior of the topological singularities

of maps strongly convergent in W 1;p is linked to the problem of weak sequential density.

A Well-Understood Case: �p(S
p).

One may consider W 1;p(Bm;Sp) where m > p are positive integers. For simplicity we

treat the speci�c case p = 2;m = 3, keeping in mind that the set of results below extends

to the general case.
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So consider un 2 R1;2(B3; S2) strongly convergent in W 1;2 to u 2 W 1;2(B3;S2).

Then Singtop un is simply a �nite sum of integer multiples of point masses
P
a2An

mn;a[[a]].

It isn't diÆcult to see that these distributions are characterized by the formula

X
a2An

mn;a[[a]] = �d u#n
�!S2
2�

)

where !S2 is the volume form of S2. From the strong W 1;2 convergence of un one deduces

without diÆculty the convergence

Singtop un = �d u#n
�!S2
2�

�
! �d u#

�!S2
2�

�
in D0(B3) ;

independent of un, which is the desired topological singularity of u. On has also the

Theorem 0.3. [Be2] d u#!S2 = 0 () u 2 C1(B3;S2)
W 1;2

.

The relation between the topological singularities and the weak convergence of smooth

maps is understood by means of the following

Theorem 0.4. [Be2], [BCL], [GMS2] For u 2 W 1;2(B3;S2), there exists a 1 dimensional

recti�able current such that @I = �d(u#!S2) and

8�M(I) �

Z
B3

jruj2

where M(I) is the mass (or length) of I.

In order to approximate a map u having d(u#!) 6= 0 weakly by smooth maps, it suÆces

to \withdraw" the topological singularities using a �nite amount of W 1;2 energy. This is

accomplished (see [Be2]) by inserting some coverings of S2 along I which, by the above

estimate, costs exactly 8�M(I) + � (with � being arbitrarily small). One thus obtains the

sequential weak density:

Theorem 0.5. [Be2] For any u in W 1;2(B3;S2) there exists un in C1(B3;S2) which

converge weakly to u in W 1;2.

Finally there is another elegant method of characterizing the topological singularity

of a map in W 1;2(B3;S2), constant on @B3, as being the \holes" of its graph:

Theorem 0.6. [GMS1] For any sequence of maps un 2 C1(B3;S2) that is W 1;2 weakly

convergent to u 2 W 1;2(B3;S2), there exists a subsequence un0 and a one dimensional

recti�able current I, so that one has the weak convergence of the three dimensional

recti�able currents

Graph (un0) ! Graph (u) + I � [[S2]] :

Moreover,

@Graph (u) = @I � [[S2]] with @I = �d u#
�!S2
2�

) :
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An Example of a More Complex Case: �3(S
2).

This is the �rst case of an in�nite homotopy group of spheres which is di�erent from

�p(S
p). Thus in the present paper we take N = S2, m = 4 and p = 3 and work

with the Sobolev space W 1;3(B4;S2). The space R1;3(B4;S2) which now consists of

maps in W 1;3(B4;S2) which are smooth outside a �nite set of points and realize the

nontrivial elements of �3(S
3) ' Z on suÆciently small spheres centered at these points.

Once again the topological singularity is identi�ed with a �nite atomic measures having

integer multiplicities. Also R1;3(B4;S2) is again strongly dense in W 1;3(B4;S2) [Be1].

Criteria for a given map in W 1;3(B4;S2) to be strongly approximable by smooth maps

have been obtained by Zhou [Z] and Isobe [I1] who also considered [I2] gap phenomena

[HL1] for this space. Being given a sequence un of elements of R1;3(B4;S2) strongly

convergent to a map u in W 1;3(B4;S2) one again poses the question about the limit of the

topological singularities Sing topun. Recall that the homotopy class in �3(S
2) of a regular

map  : S3 ! S2 is given by the Hopf degree of  , which is topologically the linking

number of the inverse images of two regular values of  and is analytically given by the

integral

Hopf degree ( ) =
1

4�2

Z
� ^  #!S2

where � is any 1-form on S3 verifying d� =  #!S2 . A simple integration by parts then

shows us that, similar to the case of R1;2(B3;S2), the topological singularity of the map

un 2 R1;3(B4;S2) may be written

Singtop un =
X
a2An

mn;a[[a]] = �d
�
�n ^ u

#
n

�!S2
2�

��

where �n is any 1-form on B4 n An verifying d�n = u#n !S2 . Our principal preoccupation

is then to study a possible convergence of �d
�
�n ^ u#n !S2

�
and for example to verify

whether, as in the case of W 1;2(B3;S2), or not there exists a sequence of 1 dimensional

currents In having @In =
P
a2An

mn;a[[a]] and having uniformly bounded masses (i.e.

k
P
a2An

mn;a[[a]]kW�1;1 � C independent of n). However, such an attempt runs into the

basic problem of the actualfailure of suitable bounds for these convergences.

To see this failure, one starts with u 2W 1;3(B4;S2) and �rst proves without diÆculty

that du#!S2 = 0 and that the 1-form � verifying d� = u#!S2 of \maximal" regularity is

a priori the Coulomb guage which is the solution of

d� = u#!S2 in D2(B4)

d�� = 0 in D1(B4)

�#@B4� = 0

where �@B4 is the inclusion of @B4 into R4. Since the form u#!S2 is only in L3=2(B4),

the solution � of this problem is in L12=5(B4) �� L3(B4), thus a priori � ^ u# is not in
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L1loc(B
4), and it seems diÆcult to give this a meaning even in D0(B4). In [R1] the second

author showed in fact that the above small calculation is optimal in establishing that

log inff

Z
S3
j j3 dH3 :  : S3 ! S3; Hopf degree ( ) = dg �

3

4
log d (0:2)

as d ! 1. This 3
4 , which replaces the 1 that occurs in minimizing p-energy among

(topological) degree d maps from Sp to Sp, appears when one expresses the Hopf degree

by means of the above Coulomb guage. One shows that it is optimal by using maps whose

inverse images are self-linked (see [R1]). This is the source of all the diÆculties encountered

below in this paper. Using the argument of x2.5, this 3
4 estimate allows us to construct a

sequence un 2 R1;3(B4;S2) such that

un ! u strongly in W 1;3

but

inffM(In) : @In = Singtop ung ! +1 ;

and one does not see a priori how Singtop un may converge in D0(B4). It is necessary to

envision some convergences in larger spaces for some objects whose masses may tend to

in�nity.

Introduction of \Scans".

In face of the impossibility of getting convergence in D0(B4) of our topological

singularities of maps un 2 R1;3(B4;S2) strongly convergent to a u 2 W 1;3(B4;S2), we

will adapt the approach that Giaquinta, Modica, and Soucek [GMS1], [GMS2] used for the

case �p(S
p), and we will be interested in a possible convergence of a sequence of graphs of

smooth maps in C1(B4;S2).

Therefore let un 2 C
1(B4;S2) converge W 1;3 weakly to u 2 W 1;3(B4;S2). One will

suppose for simplicity that un and u are constant on @B4 (see x2.3). It is not diÆcult to

see that, for all u 2W 1;3(B4;S2), the graph of u is a recti�able current satisfying

@Graph (u) = 0 in B4 :

In fact u may be approximated strongly by a map v 2 R1;3(B4;S2) and the 3 dimensional


at current @Graph (v), being supported in B4 in the 2 dimensional set sing (v)�S2, must

vanish [F],4.1.21.

The boundary of the graph thus does not characterize, in this case, the failure of the

strong approximability by smooth maps. On the other hand, one can prove, from the

vanishing of �1
�
B4 n Singtop (v)

�
, the existence of a Hopf lifting ~v of v for the Hopf map

� : S3 ! S2 (i.e. ~v : B4 ! S3 and � Æ ~v = v). For such a v one has that

@Graph (~v) = Singtop v � [[S2]]
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so that the boundary of the graphs of Hopf lifts do characterize the topological singularities.

One is therefore led to take a smooth Hopf lifting ~un of the map un and study the possible

convergence of Graph ~un to a limit object in the form \Graph ~u + I � [[S3]]" where I

will be a \reasonable" object connecting the topological singularities of u. There exist a

lifting operation for the Hopf �bration which is associated (x2.1) with the extraction of the

Coulomb guage described above. Let ~un denote such a Coulomb lift for which one then

has control in W 1;5=12 but not in W 1;3 as seen by the example of x2.5. While Example 2.5

shows the possibility that M
�
Graph (~un)

�
!1, we nevertheless establish in x2.4 an L3=4

bound for the mass of hyperplanar slices.

More precisely, for each unit vector v 2 S3 and t 2 R, we have the corresponding

hyperplane h(v; t) = fx 2 R4 : x � v = tg oriented by the normal vector v. Intersecting

the 4 dimensional current Graph (~un) by h(v; t)�[[S3]], or equivalently slicing [F],4.3, by the

projection (x; y) 7! x � v, gives the 3 dimensional current Graph
�
~unjh(v; t)

�
corresponding

to restricting ~un to the hyperplane h(v; t). We show

sup
v2S3

Z 1

�1

M3=4
�
Graph

�
~unjh(v; t) \B

4
��
dt � C

�
1 +

Z
B4

jruj3 dx
�
: (0:1)

Such control on the integral of the masses of the slices to a power less than 1 suggest

characterizing an object as a collection of all (or almost all) its slices. This is the notion

of a scan which we will de�ne below.

As motivation, consider the following simpli�ed problem where one is given a sequence

of unions of immersed oriented closed curves �n = [k�kn in the closed unit ball in R2

satisfying the bound

sup
v2S1

Z 1

�1

Card �
�
�n \ L(v; t)

�
dt � C independent of n : (0:2)

where L(v; t) denotes the line fx 2 R2 : x � v = tg. If � = 1, then this bound gives

us control on the mass (or total length) of the 1 dimensional current �n, independent of

n. Knowing that @�n = 0, one is then in position to apply the Compactness Theorem of

Federer-Fleming and deduce that, after passing to a subsequence, the �n converge to a

limit recti�able current �.

When � < 1, (0.2) does not guarantee control of the total length M(�n), and there

is no reasoning that allows us to deduce some convergence of the �n as distributions.

One thus introduces a map �n from the space of oriented lines S1 � R to the space

M of atomic measures on R2 which at almost every (v; t) associates the 0 dimensional

intersection current

�n(v; t) = �n \ L(v; t)

7



which is a sum of point masses with integer multiplicities. Being given a reference frame

fe1; e2g of R2, one equips M with the following metric

d(�; �0) = inffM�(S) +
2X
j=1

Z 1

�1

M�
�
�n \ L(ej ; s)

�
ds : �� �0 = S + @Tg ;

and one veri�es that the above �n is a measurable function from S1 �R to M equipped

with the topology induced from the metric d.

The current equation @�n = 0 translates to a new boundary zero condition for the

corresponding scan �n (see x1) which is a compatibility condition allowing one to see that

�n is the scan of an underlying closed object in the plane. Also estimate (0.2) and this

boundary zero condition imply the following regularity estimate:

d
�
�n(v; t); �

0
n(v; t

0)
�
� Fn(t)jt� t0j�

for all v 2 S1 and some Fn in L1=�(R)weak = L
1
� ;1 with

kFnk
L

1
�
;1 � C sup

v2S1

Z 1

�1

M�
�
�n \ L(v; s)

�
ds :

Such uniform control of this regularity permits us then to establish, after passing to a

subsequence, convergence a.e. of �n to a scan limit �, a limiting object at least which,

though a priori strange, is convenient to study in the particular cases we consider. When

� = 1, we recover the characterization by Ambrosio and Kirscheim of recti�able objects

by means of a weakly BV maps with values in metric spaces. See also White's recti�ability

proof [W3].

Returning now to the original problem of the sequence un of maps in C1(B4;S2)

converging weakly in W 1;3 to u. To each un one may associate the scan of its Coulomb lift

G~un : S2 �R ! R3(B
4 � S2) ; G~un(v; t) = Graph

�
~unjh(v; t)

�
;

the space R3(B
4 � S2) denoting the 3 dimensional recti�able currents in B4 � S2. On

R3(B
4 � S2) one considers the distance

de(P;Q) = inf
�
M(S) +

4X
j=1

Z
M
�
T \ h(ej ; t)

�3=4
dt : P �Q = S + @T

	
:

where e = (e1; e2; e3; e4) is a �xed frame of R4. This time the control of (0.1) translates

to a regularity for the scan G~un :

d
�
G~un(v; t);G~un(v; t

0)
�
� Fn(t)jt� t0j

3
4
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for all v 2 S3 and some Fn in L
4
3 ;1 with

kFnk
L
4
3
;1 � C

�
1 +

Z
B4

jrunj
3 dx

�
:

Rather than referring to general properties of the space L
4
3 ;1, we prove in x9, for the

reader's convenience, the appropriate precise compactness statement needed. With this,

we then establish the following result which is the analogue for W 1;3(B4;S2) of Theorem

0.6.

Theorems 6.1, 7.2. Suppose that un 2 C
1(B4;S2) converge weakly in W 1;3 to u. Then,

after passing to a subsequence, one has the convergence almost everywhere of scans of

Coulomb lifts

G~un ! G~u + I � [[S3]]

where I � [[S3]] is the scan of a recti�able set R� S3 in B4 � S3 equipped with an integer

multiplicity �, measurable on �, such that

Z
R

j�j
3
4 dH1 < 1 :

In the sense of scans,

@
�
G~u + I � [[S3]]

�
= 0 in B4 :

While it is still unknown whether an arbitrary map u 2 W 1;3(B4;S2) is such a weak

limit of smooth maps, we can nevertheless still use the scan G~u of the graph of its Coulomb

lift to express the strong approximability criterium

Lemma 2.7.

u 2 C1(B4;S2)
W 1;3

() @G~u = 0 in B4 :

In any case, this scan boundary may again be capped o� by a vertical scan:

Theorem 8.1.

@
�
G~u + I � [[S3]]

�
= 0 in B4

where, for all v 2 S3 and a.e. t 2 R,

�
I � [[S3]]

��
h(v; t)

�
=

X
a2Av;t

mv;t[[a]]� [[S3]] ;

for some �nite subset Av;t of h(v; t) and non-zero integers mv;t with

Z
R

� X
a2Av;t

mv;t

�3=4
dt � C

�
1 +

Z
jruj3 dx

�
:
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We can use this estimate to show only that the I of Theorem 8.1 is carried by a set of �nite

H4=3 measure, and not, as in the case of Theorem 7.2, carried by a 1 recti�able set. In fact

the optimal structure of such an I seems related to the question of the weak sequential

density of C1(B4;S2) in W 1;3(B4;S2). For general Sobolev spaces of mappings, strong

approximability by smooth maps has been well-studied (see [Be1] and HgL]), but the same

problems for the weak topology are still largely open. (see [PR]).

As we have argued, the scans de�ned and used in this work allow one to study Sobolev

mappings via their graphs by exploiting estimates valid on restriction to hyperplanar

subspaces. Approximation properties characterized by restricting to lower dimensional

subspaces also occurs in the work [M] of Mucci. Our limiting objects however are

no longer currents, and the scans we introduce thus strictly extend and generalize the

Cartesian currents of [GMS2]. General recti�able currents (not necessarily related to

smooth mappings) have also been understood and well-studied through slicing [AK], [W3].

So general scans (as in the motivating example (0.2)) should provide a useful extension of

various classes of currents. The second author and T. DePauw [HD] have studied some

compactness, recti�ability, and variational problems for such scans.

Recently we have also realized another argument for W 1;3(B4;S2) for producing the

key connecting \bubbled" scan I which avoids the passage to lifted maps into S3. One

such approach, whose description is beyond the scope of this paper, allows us then to

envision, in the general case of an arbitrary manifold N , similarly identifying connections

of topological singularities issuing from the in�nite part of �p(N); �p(N)
Q, given through

the Novikov integral expressions [Nov] by means of scans. The scans seem to be necessary

to expedite such an approach. One expects, in fact, because of considerations which led to

the above 3
4 and to the exponents of Gromov [Gr], that this power should be replaced by

other powers strictly less than 1 (except in the simple case �p(S
p) described above) and

that therefore the masses of these connections I should again be in�nite.

x1. Hyperplanes in R4 and Scans.

We identify S3 � R with the space H of oriented hyperplanes in R4 by associating

with each pair (v; t) 2 S3 �R the hyperplane

h(v; t) � fx 2 R4 : x � v = t g

oriented by the normal vector v. Thus H is equipped with the standard metric of S3 �R

and the 4 dimensional Hausdor� measure (H3jS3)�H1, that is, dh(v; t) = dH3v dt.

We also occasionally let h = h(v; t) denote the corresponding 3 dimensional current

(See [F], [S], [GMS2] for notations.) that is the boundary of the standardly-oriented half-

space,

h = @ [[fx 2 R4 : x � v < t g]]

10



The orientation is described by either the constant tangent 3 vector ~h or by the dual normal

1 vector ~h � = v.

We will study a smooth map w 2 C1(R4;S3) in terms of its restrictions to

hyperplanes. In particular, for any h 2 H, we consider the oriented graph of w restricted

to H as the 3 dimensional current

Gw#h = where Gw(x) =
�
x;w(x)

�
:

Thus, Gw#h 2 R3;loc where we here use the abbreviations

Ri = Ri(R
4 � S3) ; Ri;loc = Ri;loc(R

4 � S3) ;

for the groups of i dimensional integer-multiplicity recti�able and locally recti�able currents

in R4 � S3 ([F], [S], [GMS2]).

We also need various projections:

p : R4 � S3 ! R4 ; p(x; y) = x ;

q : R4 � S3 ! S3 ; q(x; y) = y ;

�v : R4 ! R ; �v(x) = v � x ;

pv = �v Æ p : R4 � S3 ! R ; pv(x; y) = v � x ;

for x 2 R4; y 2 S3, and v 2 S3.

In terms of boundary or slicing (see [F],4.3 or [S],),

Gw#h(v; t) = @
�
Gw#[[�

�1
v (�1; t)]]

�
= < Gw#[[R

4]]; pv; t > :

Note that

@Gw#h = Gw#@h = 0 ;

p#Gw#h = h ; q#Gw#h = w#h :

Moreover, for any two hyperplanes h; h0 2 H, we have the compatibility property

that �
Gw#h

�
\
�
h0 � [[S3]]

�
=
�
Gw#h

0
�
\
�
h� [[S3]]

�
because �

Gw#h(v; t)
�
\
�
h(v0; t0)� [[S3]]

�
= << Gw#[[R

4]]; pv; t >; pv0 ; t
0 >

= << Gw#[[R
4]]; pv0 ; t

0 >; pv; t >

=
�
Gw#h(v

0; t0)
�
\
�
h(v; t)� [[S3]]

�
:

In general, we de�ne a scan to be any function

S : H ! R3

11



satisfying

S(h) \
�
h0 � [[S3]]

�
= S(h0) \

�
h� [[S3]]

�
for almost every pair h; h0 2 H. The special scan S = Gw# is called the scan of the map

w 2 C1(B4;S3). More generally, for any current T 2 R4 with p#T = [[R4]], there is an

associated scan, ScanT , de�ned by the hyperplanar intersection

(ScanT )(h) � T \
�
h� [[S3]]

�
for a:e: h 2 H;

so that, in terms of slicing, (ScanT )
�
h(v; t)) =< T; pv; t > for a.e. t 2 R.

Thus a scan may be considered as a generalization of a Cartesian current ([GMS2]).

The compatibility condition indicates that scans may be determined by their values

on a smaller family of hyperplanes, for example, the coordinate hyperplanes associated

with some orthonormal frame. This will be �rst illustrated in x6 where use of standard

coordinate hyperplanes will be suÆcient to establish the convergence of a sequence of

scans of smooth maps. Actually, our limiting scan will only be determined at almost every

h 2 H, but will nevertheless inherit some properties from the scans of recti�able currents.

In particular, we may de�ne the notion of a scan cycle, that is, what it means for a

general scan to have zero boundary. For the scan of a smooth map w 2 C1(R4;S3) and

any subset U of R4 of locally �nite perimeter

@Gw#@[[U ]] = Gw#@@[[U ]] = 0 and Gw#@[[U ]]
�
q#!S3

�
= Gw#[[U ]]

�
q#d!S3

�
= 0 :

A de�nition suitable for general scans may be made by using polyhedral domains.

A polyhedral frontier is a current @[[U ]] where U is an open polyhedral domain in R4.

For a polyhedral domain U with k distinct 3-dimensional faces, we may represent

@[[U ]] =
kX
i=1

hi @U

where each hi is supported by the hyperplane containing some 3-face of @U and ~hi
�
is the

outward unit normal of this face. We now say that

@ S = 0

(or that S is a span cycle) if, for almost all polyhedral frontiers @[[U ]] =
Pk
i=1 hi @U

as above, the recti�able current

S@U �
kX
i=1

S(hi) p�1(@U)
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satis�es the two conditions

@
�
S@U

�
= 0 and S@U

�
q#!S3

�
= 0 :

Here, \almost all" means that an exceptional set Z of polyhedral frontiers has measure

zero in the sense that

f(h1; h2; : : : ; hn) 2 H
n : @[[U ]] 2 Z for some component U of R4 n [ni=1hig

has measure zero in Hn for all n. The necessity of the second condition in the de�nition

is shown by the oriented graph of x
jxj , which is a current in R4 with nonzero boundary

[[0]]� [[S3]] whose corresponding scan satis�es the �rst, but not the second condition. In

fact, as we will see later, the graph of any map inW 1;3(R4;S3) satis�es the �rst condition.

For the scan of a recti�able current, we have the following:

Lemma 1.1. If T 2 R4;loc and M(@T ) <1, then @T = 0 if and only if @(ScanT ) = 0.

Proof. For almost all polyhedral domains U as above, [F],4.3 gives the formula

(ScanT )@U = @
�
T p�1(U)

�
�
�
@T
�

p�1(U)) :

Thus if @T = 0 , then @
�
(ScanT )@U

�
= @@

�
T p�1(U)

�
= 0 and

(ScanT )@U
�
q#!S3

�
= @

�
T p�1(U)

��
q#!S3

�
=
�
T p�1(U)

��
q#d!S3

�
= 0 :

Conversely, suppose @(ScanT ) = 0. Then, for almost all h(v; t) 2 H,

< @T; pv; t >= 0

because, we may, for any form � 2 D2(R4�S3), choose a large polyhedral domain U with

@U \ spt� = h(v; t) \ spt�, hence, < @T; pv; t > (�) = @
�
(ScanT )@U

�
(�) = 0.

It follows that, for k@Tk almost all points z, the approximate tangent 3 plane Lz
associated with

�!
@T (z) has p(Lz) = 0. In fact, if p(Lz) contained a line, then pvjLz would

have rank one for a.e. v 2 S3. By [F],4.3, this would give

z 2 spt < @T; pv; pv(z) >

for k@Tk almost all such z, contradicting the vanishing of < @T; pv; t > for a.e. t.

Thus
�!
@T (z) = �

�
0 ;
���!
[[S3]]

�
q(z)

��
for k@Tk almost all z, and, since @@T = 0, an

elementary argument [H],Th.1, shows that

@T =
X
a2A

ma[[a]]� [[S3]]

for some �nite subset A of R4 and some integers ma. Using now the second condition

of @
�
ScanT ) = 0 with almost any polyhedral domain U with U \ A = fag = U \ A, we

deduce that

ma =
�
(@T ) p�1(U)

��
q#!S3

�
=
�
(Scan T )@U + @(T p�1(U)

��
q#!S3

�
= 0+0 :

Thus @T = 0.
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x2. The Hopf Map and Coulomb Lifting.

Recall that the Hopf map

� : S3 ! S2 :

may be described explicitly by the formula �(z; w) = z=w where we identify the domain

S3 with

f(x1 + ix2; x3 + ix4) 2 C
2 : jx1j

2 + jx2j
2 + jx3j

2 + jx4j
2 = 1g

and the range S2 with the extended complex plane Ĉ via the usual stereographic projection.

One readily checks that

�(z; w) = �(z0; w0) if and only if (z; w) = ei�(z0; w0) for some � 2 R :

Also, pulling back the volume form !S2 via � gives

�#!S2 = 4(dx1 dx2 + dx3 dx4) = 2d�

where � = x1 dx2 � x2 dx1 + x3 dx4 � x4 dx3.

Let M = S3; R3; R4 (or any oriented simply 2-connected Riemannian manifold). For

any smooth map u :M ! S2, a smooth map û :M ! S3 satisfying

� Æ û = u

is called a Hopf lift of u and a smooth 1 form � on M satisfying

d� = u#!S2

is called a guage for u. For a Hopf lift û of u, the formula

� = 2û#�

clearly de�nes a guage for u. Conversely,

Lemma 2.1. Any guage � for u 2 C1(M;S2) equals 2û#� for some Hopf lift û of u. The

lift û for � is unique up to multiplication by ei� for some constant � 2 R, and

jrûj2 =
1

4
j�j2 + jruj2 :

Proof. First note that the u pull-back of the bundle � : S3 ! S2 is a trivial S1 bundle

over M . Using a trivializing map, we readily �nd some smooth Hopf lift �u of. For a Hopf

lift û of u, the formula

� = 2û#�

clearly de�nes a guage for u. Conversely,
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Lemma 2.1. Any guage � for u 2 C1(M;S2) equals 2û#� for some Hopf lift û of u. The

lift û for � is unique up to multiplication by ei� for some constant � 2 R, and

jrûj2 =
1

4
j�j2 + jruj2 :

Proof. First note that the u pull-back of the bundle � : S3 ! S2 is a trivial S1 bundle

over M . Using a trivializing map, we readily �nd some smooth Hopf lift �u of u. Since

d
�
2�u#� � �

�
= 0 ;

�u#� � 1
2
� = d� for some smooth � : R4 ! R. Then we readily verify that

û � e�i��u

is a Hopf lift of u satisfying

2û#� =
�
e�i��u

�#
� = 2

�
�u#� � d�

�
= � :

Also if ^̂u is another Hopf lift of u, then

^̂u = e�i�û

for some smooth � :M ! R because M is simply connected. Assuming in addition that

2 ^̂u#� = � ;

we compute, as above, that

d� = û#� � e�i�û#� =
1

2
� � ^̂u#� = 0 ;

so that � is a constant.

For the Hopf map � : S3 ! S2, observe that the restriction of D� to the orthogonal

complement of the tangent space of any �ber is an isometry. Since � orients every �ber,

we �nd that, for each a 2M and unit tangent vector v at a,

jD~ua[v]j
2 = j�~u(a)

�
D~ua[v]

�
j2 + jD�~u(a)

�
D~ua[v]

�
j2

= j(~u#�)a[v]
�
j2 + jDua[v]j

2

= j
1

2
�a[v] j

2 + jDua[v]
�
j2 ;

and the Lemma follows.

15



For a smooth u : S3 ! S2, the Hopf degree of u is the integer

1

2�2

Z
S3
� ^ d� = degree (~u) =

1

2�2

Z
S3

~u#!S3 =
1

2�2
G~u#[[S

3]]
�
q#!S3

�

for any any guage � of u or Hopf lift ~u of u. Incidentally, the normalizing constant here,

H3(S3) = 2�2 ;

will be frequently used.

For a smooth u from R3 (respectively, R4) to S2 which is constant near in�nity, we

can use the special Coulomb guage [R1]

~� � d�
�
�

1

8�jxj
� u#!S2

� �
respectively ; d�

�
�

1

4�2jxj2
� u#!S2

��
(2:1)

which, besides being a guage for u, has the additional properties that

d�~� = 0 and jr~�j = jd~�j = ju�!S2 j : (2:2)

A Hopf lift ~u corresponding to the Coulomb guage ~� will be called a Coulomb lift of u.

Also for a smooth map u : S3 ! S2, using stereographic projection from S3 n f(0; 0; 0; 1)g

to R3 readily gives a corresponding Coulomb guage and Coulomb lift.

For a map u : S3 ! S2 that is only W 1;3, the Hopf degree is still well-de�ned as

the degree of a W 1;3 lifting [R1] or via the associated guage. It can also be given by

approximation since smooth maps are strongly dense in W 1;3(S3;S2) [Be1]. Under this

strong approximation, the corresponding Coulomb guages converge strongly in W 1;1 to a

Coulomb guage of u (as de�ned by 2.1) and the Coulomb lifts converge strongly in W 1;3

to a lift ~u of u that satis�es (2.2) weakly and hence pointwise a.e. in R3.

We need the following important lower bound [R1]:

Lemma 2.2.

Æ0 � inff

Z
S3
jruj3 dH3 : u 2W 1;3(S3;S2); Hopf deg (u) 6= 0g > 0 :

Proof. We assume u 2 C1(S3;S2) with Coulomb lift û : S3 ! S3 and with 3 energyR
S3
jruj3 dH3 � 1. By Lemma 2.1, Sobolev embedding, and H�older's inequality,

�
2�2

�1=3
�
�� Z

S3
~u#!S3

��1=3 � kr~ukL3

� k
1

2
~�kL3 + krukL3

� ckr~�kL3=2(h) + krukL3

= cku#!S2kL3=2 + krukL3 � (c+ 1)krukL3 ;

for some absolute constant c.
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Now we turn to maps from a 4 dimensional domain to S2. It will be notationally

simpler to work with mappings de�ned on all of R4, that are constant near in�nity. The

next extension lemma indicates how we may reduce to this situation.

Suppose 
0 is a bounded C1 domain in R4. We may construct C1 domains 
t so that


s � 
t for �1 � s < t � 1 along with a retraction map � : 
1 n 
�1 ! @
0 so that the

induced map sending x 2 @
t to
�
�(x); t

�
gives a C1 correspondence between the tubular

neighborhood 
1 n 
�1 and @
0 � [�1; 1].

Lemma 2.3.(compare [He],p.146) Any u 2 C1(
0;S
2) admits an extension Uu 2

C1(R4;S2) such that Uu � (0; 0; 1) on R4 n 
1 and

Z
R4

jrUuj
3 dx � C
0

�
1 +

Z

0

jruj3 dx
�

where C
0
depends only on 
0 .

Proof. Letting c1; c2; : : : denote constants depending only on 
0, we �rst choose, by Fubini's

Theorem, a number r 2 (0; 1] so that

krukL3(@
�r) � c1krukL3(
0) ;

and, for x 2 
t with t 2 [0; r] de�ne v(x) = u(�x) where �x 2 @
�t and �(�x) = �(x). Then

krvkL3(
rn
0) � c2krukL3(
0) ;

and

krvkL3(@
r) � c3krukL3(@
�r) :

By Sobolev embedding and the bound jvj � 1, we have

kvk
W

3
4
;4(@
r)

� c4kvkW 1;3(@
r) � c4
�
1 + krvkL3(@
r)

�

Since u
��
�r is continuous, deg (vj@
r) = deg (uj@
�r) = 0, and the class

W =
�
w 2W 1;4

�

1 n 
r

�
: w = v on @
r; w � (0; 0; 1) on @
1

	

is nonempty. Thus we may �nd w 2 W of minimum 4-energy,

Z

1n
r

jrwj4 dx ;

which is, by [HL2], bounded by

c4kvk
4
W 3=4;4(@
r)

:
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H�older's inequality then gives

krwkL3(
1n
r)
� c6krwkL4(
1n
r)

:

Letting 8><
>:
� = u on 
0

� = v on 
r n 
0

� = w on 
1 n 
r
� = (0; 0; 1) on R4 n 
1

we deduce from the above inequalities that

k�kL3(R4) �
�
1 + c2 + c6c

1=4
5 c4c3c1

�
krukL3(
0) + c6c

1=4
5 c3 :

Qualitatively, we deduce from the interior and boundary regularity of 4-energy minimizers

[HL2] that � is continuous on R4. Letting �� denote a standard R
4-valued smoothing of �

on the closed region 
1 n 
0, preserving boundary data, so that, in particular,

kr��kL3 ! kr�kL3 and j��j ! 1 uniformly as �! 0 ;

we may complete the proof by taking Uu = ��=j�ej for � suÆciently small.

For the remainder of the paper, we will, for simplicity, restrict to mappings that are

constant outside of a �xed compact set.

For map u 2 W 1;3(R4;S2), constant near in�nity, one again has the notion of a

Coulomb guage ~h 2 W 1;1 de�ned by (2.1) which may alternately be obtained using the

strong W 1;3 approximation [Be1] of u by maps smooth away from a �nite singuar set

and homogeneous near each singularity. The complement of each �nite set being simply-

connected, we readily obtain corresponding Coulomb lifts that converge strongly inW 1;12=5

to a Coulomb lift ~u satisfying (2.2) a.e. Our main estimate for Coulomb lifts on R4 is the

following:

Lemma 2.4. Suppose u 2 W 1;3(R4;S2), and u is constant outside of a compact set

K � R4. Then there is a constant cK depending only on K so that any Coulomb lift ~u of

u satis�es

kr~uk
L
12
5 (R4)

� cK
�
1 +

Z
jruj3 dx

� 2
3 ;

kr(~ujh)kL3(h) � cK
�
1 +

Z
h

jruj3 dH3
� 2
3 for each h 2 H ;

M
�
G~u#[h K]

�
� cK

�
1 +

Z
h

jruj3 dH3
� 4
3 for each h 2 H ;

Z 1

�1

� Z
h(v;t)

jr
�
~ujh(v; t)

�
j3 dH3

� 1
2 dt � cK

�
1 +

Z
jruj3 dx

�
for each v 2 S3 ;

Z 1

�1

M
�
G~u#[h(v; t) K]

�3
4 dt � cK

�
1 +

Z
jruj3 dx

�
for each v 2 S3 :
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Proof. By Lemma 2.1, Sobolev embedding in R4, and H�older's inequality,

kr~ukL12=5(R4) � k
1

2
~�kL12=5 + krukL12=5 � c1kr~�kL3=2 + c2krukL3

= c1ku
#!S2kL3=2 + c2krukL3 � c3

�
1 +

Z
jruj3 dx

� 2
3 ;

for some constants c1; c2; c3, depending only on K.

Similarly Lemma 2.1, Sobolev embedding in the 3 dimensional h, and H�older's

inequality imply

kr~ukL3(h) � k
1

2
~�kL3(h) + krukL3(h) � c4kr~�kL3=2(h) + krukL3(h)

= c4ku
#!S2kL3=2(h) + krukL3(h) � c5

�
1 +

Z
h

jruj3 dH3
� 2
3 ;

for some constants c4; c5, depending only on K.

To prove the third conclusion, observe �rst that

M
�
G~u#[h K]

�
= H3

�
G~u(h \K)

�
=

Z
h\K

JG~ujh dH
3 ;

where JG~ujh is the 3 dimensional Jacobian k�3DG~ujhk. Also, in the expansion of jJG~ujhj
2

on h, the only term involving the square of the product of 3 derivatives of ~u is the square

of
jJ(~ujh)j � j(J ~u)j = j~u#!S3 j = j~u#

�
� ^�#!S2

�
j

= j~u#� ^ ~u#�#!S2 j =
1

2
j~� ^ u#!S2 j :

Thus we may use Sobolev embedding in h and H�older's inequality several times to estimate

M
�
G~u#[h K]

�
� c6

Z
h\K

�
j~� ^ u#!S2 j + jr~uj2 + jr~uj + 1

�
dH3

� c6
� Z

h\K

j~�j3 dH3
� 1
3 (

Z
h\K

ju#!S2 j
3
2 dH3

� 2
3 + c7 + c8

Z
h\K

jr~uj2 dH3

� c6
� Z

h\K

jr~�j
3
2 dH3

� 2
3 (

Z
h\K

ju#!S2 j
3
2 dH3

� 2
3 + c7 + c8

Z
h\K

�
j~�j2 + jruj2

�
dH3

� c6
� Z

h\K

ju#!S2 j
3
2 dH3

� 4
3 + c9 + c10

� Z
h\K

j~�j3 dH3
� 2
3 + c11

� Z
h\K

jruj3 dH3
� 1
3

� c6
� Z

h\K

jruj3 dH3
� 4
3 + c12 + c13

� Z
h\K

jr~�j
3
2 dH3

� 4
3 + c11

� Z
h\K

jruj3 dH3
� 4
3

� c14
� Z

h\K

jruj3 dH3
� 4
3 + c12 ;

where c6; : : : ; c14 depend only on K.

Finally, taking h = h(v; t), raising the second and third inequalities to the 3
2 and 4

3

powers, integrating with respect to t, and noting thatZ 1

�1

Z
h(v;t)\K

jruj3 dH3dt =

Z
K

jruj3dx

gives the fourth and �fth conclusions.
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Example 2.5. One cannot improve 12
5 to 3 in the above estimate for ~u. In fact, we here

describe a sequence of smooth maps un 2 C1(R4;S2), constant outside of B1, so that

sup
n

Z
jrunj

3 dx < 1 ;

but

lim
n!1

inff

Z
jr~unj

3 dx : ~un is a Hopf lift of ung = 1 :

We obtain the un by a suitable dipole construction. First consider in R4 the oriented

intervals

Ij = [(0; 0; 0;
1

2j
); (0; 0;

1

2j2
;
1

2j
)]

for j = 1; 2; : : : There is a map un 2 C1(R4;S2) which is a constant (0; 0; 1) outside of

small disjoint closed tubular neighborhoods of I1; I2; : : : ; In and which, has on each 3

dimensional perpendicular slice Dt
j of the neighborhood of Ij , Hopf degree j (as a map

from (Dt
j ; @D

t
j) to (S2; f(0; 0; 1)g)), for j = 1; 2; : : : ; n. Using the crucial observation of

[R1] that

inff

Z
S3
jrgj2 dH3 : g 2 C1(S3;S2); Hopf deg g = jg � cj

3
4 ;

we see that we may obtain such a un with 3 energies uniformly boundedZ
R4

jrunj
3 dx � c

nX
j=1

j
3
4 length (Ij) � c

1X
j=1

j
3
4 (

1

2j2
) < 1:

On the other hand, for any smooth Hopf lift ~un of un the restriction of ~un to each

3 dimensional slice Dt
j has (as in x2) topological degree j, when viewed as a map from

(Dt
j ; @D

t
j) to (S

2; f(0; 0; 1)g). Thus we have the lower energy bound [R1] on each sliceZ
Dt
j

jr(~unjD
t
j)j

3 dH3 � 33=24�2j ;

Integrating over all such slices we �nd thatZ
R4

jr~unj
3 dx � 33=24�2

nX
j=1

j � length (Ij) � 33=24�2
nX
j=1

j(
1

2j2
) ! 1 as n!1 :

Similarly, concerning the graphs G~un(R
4) � R4 � S3, we �nd that, for each slice,

H3
�
G~un(D

t
j)
�
�

Z
S3
H0
�
Dt
j \ ~u�1n fyg

�
dH3y �

4

3
�j ;

and integrating over all the slices gives

H4
�
G~un(B4)

�
�

4

3
�

nX
j=1

j(
1

2j2
) ! 1 as n!1 ;

so that these graphs do not converge as Cartesian currents [GMS2].
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Remark 2.6. For any �xed 3 dimensional oriented hyperplane h � R4 and (not necessarily

smooth) map  in W 1;3(h;S3), the graph of  , G (h), is still a countably 3 recti�able

subset of h � S3 whose approximate tangent planes project onto h and are thus oriented

by the orientation ~h of h. We will use the notation G for the resulting locally recti�able

current de�ned by

G (�) =

Z
G (h)

< �3DG (x)~h; �(x; y) > dH3(x; y)

for � 2 D3(R4�S3). Note thatG = G #h in case  is smooth. Inasmuch as smooth maps

are strongly dense in W 1;3(h;S3) [Be1], say  = lim�!0  � with  � 2 W 1;3(h;S3) \ C1,

we readily verify that

@G = lim
�!0

@G � = lim
�!0

@G �#h = lim
�!0

G �#@h = 0 :

Similarly, for any Lipschitz domain 
 � R4 and  2W 1;3(@
;S3) one may de�ne G and

verify that @G = 0.

For u 2 W 1;3(R4;S2), constant near in�nity, we infer from Lemma 2.4 that the

function sending

h 2 H !G~ujh 2 R3;loc

is a scan which we denote G~u.

This scan may be used to give another criteria [Z], [I1] for the strong W 1;3 approx-

imability by smooth maps.

Lemma 2.7. A map u 2W 1;3(R4;S2), constant near 1, is in the strong W 1;3 sequential

closure of C1(R4;S2) if and only if @G~u = 0 for some lift ~u of u.

Proof. Suppose that un 2 C1(R4;S2) converges strongly in W 1;3 to u with un � (0; 0; 1)

near in�nity. Consider corresponding Coulomb guages ~�n and Coulomb lifts ~un with

~un � (0; 0; 0; 1) near in�nity. Passing to a subsequence, we obtain from Lemma 2.4 a

pointwise a.e. limit

~u = lim
n!1

~un 2W
1; 512 (R4;S3) :

For all v 2 S3, Fatou's Lemma and Fubini's Theorem,Z 1

�1

lim inf
n!1

Z
h(v;t)

jr(un0 � u)j3 dH3 dt � lim inf
n!1

Z
R4

jr(un0 � u)j3 dx = 0 ;

then give, for a.e. t 2 R, strong convergence in W 1;3
�
h(v; t)

�
of a subsequence (de-

pending on t) un0 jh(v; t) to ujh(v; t). Then the Coulomb guages ~�n0 converge strongly

in W 1;1
�
h(v; t)

�
and the Coulomb lifts ~un0 converge strongly in W

1;3
�
h(v; t)

�
. The graphs

then converge weakly as currents

lim
n!1

G~un0#h(v; t) = lim
n!1

G~un0 jh(v;t)
= G~ujh(v;t) :
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Slicing theory [F],4.3, then gives, for almost all polyhedral domains U � R4, the current

convergence of G~un0#@[[U ]] to the recti�able current
�
G~u

�
@U

. We thus deduce the

vanishing of @
��
G~u

�
@U

�
,
�
G~u

�
@U

�
q#!S3

�
, and hence @G~u.

The converse follows essentially from arguments of [Be1]. In the proof of [Be1],

Theorem 2 (with n=4, p = 3), the singularities of the approximating map only arise

in making a homogeneous extension on some 4 dimensional cubes C where the 3 energy

on @C is controlled. But now second condition of the of @G~u = 0 implies that the Hopf

invariant on @C is zero so that one may, with arbitrarily small extra energy, remove the

singularity by modifying this homogeneous extension in a very small ball about the center.

To e�ectively use Lemma 2.4 to get information about the span G~u, we require a new

topology on R3, which we now describe.

x3. The de metric on R3.

For any orthonormal frame e = (e1; e2; e3; e4) ofR
4, and P;Q 2 R3;loc with spt (P�Q)

compact, we now de�ne

de(P;Q) = inf
�
M(S)+

4X
j=1

Z
M < T; pej ; t >

3=4 dt : P �Q = S+@T; S 2 R3; T 2 R4

	
:

This should be compared to the 
at distance where one uses instead the quantity

M(S) +M(T ) while noting that

M(T ) �
4X
j=1

Z
M < T; pej ; t > dt � 4M(T ) :

Lemma 3.1. de is a metric on R3.

Proof. The function de clearly satis�es the conditions de(P;Q) = de(Q;P ), de(P; P ) = 0,

and the triangular inequality because (A+ B)3=4 � A3=4 + B3=4.

It remains to prove that the assumption

de(P;Q) = 0 implies P = Q :

For this we �rst �nd Si 2 R3 and Ti 2 R4, so that

P �Q = Si + @TI

and

M(Si) +
4X
j=1

Z
M < Ti; pej ; t >

3=4 dt ! 0 as i!1 :
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For each j 2 f1; 2; 3; 4g, Fatou's Lemma implies that

Z
lim inf
i!1

M < Ti; pej ; t >
3=4 dt = 0 :

Thus, for almost every t 2 R, there is a subsequence i0 (depending on j; t) so that

M < Ti0 ; pej ; t > ! 0 as i0 !1 :

Since M(P � Q � @Ti0) ! 0, we �nd from [F],4.3 that, for such j; t, and any 2 form

� 2 D2(R4 � S3),

< P �Q; pej ; t > (�) = lim
i0!1

< @Ti0 ; pej ; t > (�) = � lim
i0!1

@ < Ti0 ; pej ; t > (�) = 0 :

It follows that, for kP � Qk almost all z, the approximate tangent 3 plane Lz associated

with
����!
P �Q(z) has p(Lz) = 0. In fact, otherwise pej jLz would have rank one for some

j 2 f1; 2; 3; 4g which would, as in the proof of Corollary 1.1, contradict the vanishing of

< P �Q; pej ; t > for a.e. t.

We deduce again, as in the proof of Corollary 1.1, that

P �Q =
X
a2A

ma[[a]]� [[S3]]

for some �nite subset A of BR and some nonzero integers ma.

If A 6= ;, we may �x one point b 2 A, a positive Æ � 1 so that

BÆ(b) \ (A [ @BR) = fbg ;

and i suÆciently large so that

M(Si) +
4X
j=1

Z
M < Ti; pej ; t >

3=4 dt <
��2
8

�3=4
Æ cos(

3�

8
) : (�)

Since
R
S3
M < Si; q; v > dH3v � M(Si) by [F],4.3 and < Si; q; v > is an integer-

multiplicity 0 chain for H3 almost all v 2 S3, we �rst note that

V = fv 2 S3 : < Si; q; v >= 0g = fv 2 S3 : M < Si; q; v > < 1g

has H3(V ) � �2 = 1
2H

3(S3).

For H3 almost all v 2 V ,

�@ < Ti; q; v > = < P �Q; q; v > =
X
a2A

ma[[(a; v)]] ;
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and < Ti; q; v > contains an oriented integer-multiplicity curve �v in R4 � fvg joining

(b; v) to (av; v) for some point av 2 (A n fbg) [ @BR. Then the corresponding direction

b� av
jb� avj

� �vejv � cos(
3�

8
)

for some integers �v 2 f�1; 1g, jv 2 f1; 2; 3; 4g. The current pejv#�v is a nonzero integer

multiple of the projected interval Iv = pejv
�
[(b; v); (av; v)]

�
which has length at least Æ. So,

using Fubini's tTheorem and [F],4.3, we see that, for H3 almost all v 2 V and H1 almost

all t 2 Iv,

M << Ti; pejv ; t >; q; v > = M << Ti; q; v > pejv ; t > � 1 :

Now we simply chose � 2 f�1; 1g and j 2 f1; 2; 3; 4g so that

W = fv 2 V : �v = � and jv = jg

has H3(W ) � 1
8H

3(V ) � �2

8 . Then the interval I joining ej � b and ej � b+ �vÆ is contained

in each Iv for all v 2W , and we may use [F],4.3 to deduce that

4X
j=1

Z
M < Ti; pej ; t >

3=4 dt �
4X
j=1

Z � Z
W

M << Ti; pej ; t >; q; v > dv
�3=4

dt

=

Z
I

� Z
W

M << Ti; q; v > pev ; t > dv
�3=4

dt

�
�
H3(W )

�3=4
Æ �

��2
8

�3=4
Æ ;

which contradicts (*). Thus, A = ;, and (P �Q) p�1(BR) = 0.

As in [F], let N(T ) =M(T ) +M(@T ) for a current T .

Lemma 3.2. For each R > 0, N is, with respect to the de metric, lower semi-continuous

on

RR = fP 2 R3 : sptP � BR(0)� S3g :

For each � > 0, fP 2 RR :N(P ) � �g is de sequentially compact.

Proof. By the Federer-Fleming compactness theorem [F],4.2.16, any N bounded sequence

in RR has a subsequence Pi that is convergent to some P 2 RR in the F
BR(0)�S3

norm,

that is, Pi � P = Si + @Ti of some recti�able currents Si; Ti with supports in BR(0)� S3

so that

M(Si) + M(Ti) ! 0 as i!1 :
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This 
at convergence implies the weak (current) convergence of Pi to P and @Pi to @P so

that

N(P ) = M(P ) +M(@P ) � lim inf
i!1

M(Pi) + lim inf
i!1

M(@Pi)

� lim inf
i!1

�
M(Pi) +M(@Pi)

�
= lim inf

i!1
N(Pi) :

But the 
at convergence also implies the de convergence of Pi to P because H�older's

inequality and [F],4.3 show that, for each j 2 f1; 2; 3; 4g,Z
M < Ti; pej ; t >

3=4 dt �
� Z

M < Ti; pej ; t > dt
�3=4

(2R)1=4

� M(Ti)
3=4(2R)1=4 ! 0 as i!1 :

This establishes the desired compactness.

Moreover, to show the lower-semicontinuity that N(P ) � lim infi!1N(Pi) for any de
convergent sequence Pi ! P in RR, we may assume �rst that the righthand side is �nite

and second, by passing to a subsequence that limi!1N(Pi) <1. Then as above we �nd

the 
at (and hence weak current) convergence of a subsequence Pi0 ! Q. But then this

implies de convergence so that Q = P and

N(P ) = N(Q) � lim inf
i!1

N(Pi0) � lim inf
i!1

N(Pi) :

4. Energy Concentration Associated with Bubbles in 3 Dimensions.

For a general W 1;3 weakly convergent sequences of maps in C1(R3;S3), the graphs

may subconverge to a current that includes not only the graph of the limit but additional

terms, called \bubbles". These are studied in the work [GMS2] of Giaquinta, Modica, and

Soucek on Cartesian Currents, which shows the following:

Lemma 4.1. (3d Bubbling) For any sequence of maps  n 2 C1(R3;S3) which are

constant (0; 0; 0; 1) outside of a �xed bounded subset of R3 and have a uniform 3-energy

bound

sup
n

Z
R3

jr nj
3 dH3 < 1 ;

the oriented graphs G n locally have uniformly bounded masses, and a subsequence of them

converges weakly to a locally recti�able cycle. Assuming that the mappings  n *  weakly

in W 1;3, any such limiting current has the form

G +
X
a2A

m(a)
�
[[a]]� [[S3]]

�

for some �nite subset A of R3 and nonzero integers m(a) for a 2 A. Moreover,

lim
r!0

lim inf
n!1

Z
Br(a)

jr nj
3 dx � 2 � 33=2�2jm(a)j

for all a 2 A.
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Thus the �nite supporting set A of the \bubbles" is contained in the 3-energy

concentration set,

fa 2 R3 : lim
r!0

lim inf
n!1

Z
Br(a)

jr nj
3 dx > 0g ;

of the sequence  n.

We are here interested in these phenomena for Hopf lifts of given maps from R3 or

from R4 to S2. Of course, each map  n : h ! S3 above can be viewed as a Hopf lift of

the map

� Æ  n : h! S2 :

It is important that the supporting set A of bubbles for the sequence  n is actually con-

tained in the 3-energy concentration set of this \downstairs" sequence �Æ n. Speci�cally,

under the hypotheses of Lemma 4.1,

lim
r!0

lim inf
n!1

Z
h\Br(a)

jr(� Æ  n)j
3 dH3 � "0

for all a 2 A and some absolute positive constant "0. This will follow from Lemma 4.2

below, which is actually a stronger result because it has no hypotheses concerning uniform

energy bounds.

The reason we will need this stronger version is that, in our application, we start with

a 3-energy bounded sequence of maps fromR4 to S2. This sequence may unfortunately not

have a single subsequence with Hopf lifts of bounded 3 energy on almost all hyperplanes.

In fact, any single subsequence may itself fail to have bounded 3 energy on almost all

hyperplanes, despite Fatou's Lemma which only guarantees bounded energy subsequences

depending on the hyperplane. Nevertheless, we will �nd, in x6, a single subsequence of

graphs of Coulomb lifts that is de convergent on almost all hyperplanes, thus giving the

desired limiting scan. The next lemma, which is crucial for proving the recti�ability of this

limit in x7, shows that the appearence of a bubble under this weak de convergence (even

in the absence of energy or mass bounds) is enough to guarantee energy concentration.

Lemma 4.2. Suppose h is a �xed hyperplane in R4 and un = �Æ ~un where ~un 2 C1(h;S3)

and the ~un are constant (0; 0; 0; 1) outside of some �xed bounded subset of h. If

(de) lim
n!1

G~un = G~u +
X
a2A

m(a)
�
[[a]]� [[S3]]

�

for some ~u 2 W 1;3(h;S3), some �nite subset A of h, and some nonzero integers m(a),

then

lim
r!0

lim inf
n!1

Z
h\Br(a)

jrunj
3 dH3 � "0

for all a 2 A for some absolute positive constant "0.
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Proof. We begin by deriving the desired constant "0.

First, on the unit 3 dimensional ball B = h \ B1(0), any smooth map v : B ! S2

has a local Coulomb lift v̂ : B! S3 obtained from an associated guage (as in x2) �̂ which

satis�es 8<
:
d�̂ = v̂#!S2 on B
d��̂ = 0 on B
�#@B�̂ = 0 where �@B is the inclusion map of @B.

Arguing as in x2.2, using a Poincar�e instead of Sobolev inequality, we �nd constants c1; c2
so that

krv̂kL3(B) � k
1

2
�̂kL3(B) + krvkL3(B)

� c1kr�̂kL3=2(B) + krvkL3(B)

= c1kv
#!S2kL3=2(B) + krvkL3(B) � c2krvkL3(B)

assuming
R
B
jrvj3 dH3 � 1.

Second, since ��1fyg is a great circle in S3 for every y 2 S2, we readily �nd a positive

constant �0 so that

H3
�
��1

�
B�0(y) \ S

2
��

< �2 =
1

2
H3(S3) : (4:1)

Third, on any convex 2-dimensional region 
 � R2 with B2
1
8

� 
 � B2
4, a function

f 2 W 1;3(
;R4) is, by Sobolev embedding, H�older continuous, and there is a positive

constant "1 small enough so that

Z



jrf j3 dH2 � �1 implies f
�

) � B�0=3(y) (4:2)

for some y 2 R4. Now we choose

"0 = minf1;
1

6
"1;

2�2

4(c32 + 6)
g : (4:3)

Assuming for contradiction that the lemma is false with this "0 , we �nd (by passing

to a subsequence without changing notation) ~un; ~u; A; m(a) satisfying the hypothesis, a

point a 2 A, and a positive r so that

Z
h\Br(a)

jrunj
3 dH3 < "0

for all n. Since A is discrete and ~u 2W 1;3, we may also assume that r is small enough to

insure that A \Br(a) = fag and

Z
h\Br(a)

jr~uj3 dH3 < "0 :
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For convenience, we now rescale from Br(a) to B � h \B1(0) by de�ning

vn(x) = un(a+ rx) ; ~vn(x) = ~un(a+ rx) ; ~v(x) = ~u(a+ rx) ;

and noting that
Z
B

jrvnj
3 dH3 =

Z
h\Br(a)

jrunj
3 dH3 � "0 ; (4:4)

Z
B

jr~vj3 dH3 =

Z
h\Br(a)

jr~uj3 dH3 � "0 ; (4:5)

While the given sequence of lifts ~vn of vn may have unbounded 3-energy on the ball B,

the local Coulomb lifts v̂n described above satisfy
Z
B

jrv̂nj
3 dH3 � c32

Z
B

jrvnj
3 dH3 � c32"0 : (4:6)

We may homologically connect the graphs of the two lifts v̂n and ~vnjB because they

are homotopic through lifts. Speci�cally, each circle �ber ��1fyg of the Hopf map

is oriented (by the 1 form �). Let �(�; 0) : [0; 1] ! h � S3 be the unique shortest

constant-speed, positively-oriented curve in the circle f0g���1fvn(0)g from f
�
0; v̂n(0)

�
g

to f
�
0; ~vn(0)

�
g. By the simple- connectedness of B, there is a unique smooth extension

� : [0; 1] � B ! h � S3 so that, for all x 2 B, �(�; x) is a constant-speed, positively-

oriented curve in fxg � ��1fvn(x)g from f
�
x; v̂n(x)

�
g to f

�
x; ~vn(x)

�
g. The current

T̂ � �#
�
[[0; 1]]� [[B]]

�
then gives the homology

@T̂n = G~vnjB � Gv̂n � �#
�
[[0; 1]]� @[[B]]

�
; (4:7)

with the last term having support in p�1(@B). This current may have high multiplicity at

various points, and we have no control on the M(T̂n) as n!1.

Next, using the de convergence, we may write

G~v +
X
b2A

m(b)
�
[[
b� a

r
]]� [[S3]]

�
� G~vn = ~Sn + @ ~Tn ; (4:8)

for some ~Sn 2 R3 and ~Tn 2 R4 such that

M( ~Sn) +
4X
j=1

Z
M < ~Tn; pej ; t >

3=4 dt ! 0 as n!1 :

We now �x an integer n suÆciently large to guarantee that

M( ~Sn) +
4X
j=1

Z
M < ~Tn; pej ; t >

3=4 dt � �0 : (4:9)
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To use this estimate we need to choose polyhedral regions whose boundaries lie in

such hyperplanes. For our �xed frame e = (e1; e2; e3; e4) of R
4, we note that the angle

between the hyperplane h and three of the ei, say e1; e2; e3, is at most �
4 . So using the

norm

�(x) = maxfe1 � x; e2 � x; e3 � xg

on h, we �nd that, for 1
2 � t � 1, the open parallellopiped 
t � fx 2 h : �(x) < tg has

h \B 1
8
(0) � 
t � h \B4(0) :

Each of the six 2 dimensional faces of @
t,

fx 2 @
t : x � ej = �tg

similarly satisfy this interior-exterior ball property.

Since p�1
�
@
t

�
� [3j=1p

�1
ej
f�t; tg and

Z 1

0

� Z
@
t

jrvnj
3 dH2 +

4X
j=1

�
M < ~Tn; pej ;�t >

3
4 + M < ~Tn; pej ; t >

3
4

��
dt � 3"0

by (4.4) and (4.9), we may now �x a number t 2 [ 12 ; 1] so thatZ
@
t

jrvnj
3 dH2 � 6"0 ; (4:10)

and the slice ~Rn �< ~Tn; � Æ p; t > has

M( ~Rn) � 6"0 : (4:11)

Also since T̂n is constructed by a homotopy through liftings, one deduces from (4.2), (4.3),

and (4.10) that the other slice R̂n �< T̂n; � Æ p; t > has

spt R̂n � @
t � ��1vn(@
t) � @
t � ��1
�
S2 \B�0(y)

�
(4:12)

for some y 2 S2.

Combining (4.7) and (4.8) with usual slicing formulas, we now have the equation of

recti�able currents

@
�
~Tn p�1
t + T̂n p�1
t

�
= G~vj
t + m(a)

�
[[0]]� [[S3]]

�
�Gv̂nj
t �

~Sn p�1
t + ~Rn + R̂n : (4:13)

We may apply q# to project onto S3 and then restrict to the region,

U � S3 n��1
�
S2 \B�0(y)

�
: (4:14)

and compute the resulting masses. Checking each term using (4.1), (4.3), (4.5), (4.4),

(4.6), (4.9), (4.11), (4.12), and (4.14),
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Mq#@
�
~Tn p�1
t + T̂n p�1
t

�
U � M

�
@q#(4 dimensional current )

�
= 0 ;

M
�
q#m(a)

�
[[0]]� [[S3]]

�
U
�
= jm(a)jH3(U) � H3(U) > �2 ;

M(q#G~vj
t U) �

Z
B

jr~vj3 dH3 � "0 �
�2

24
;

M(q#Gv̂nj
t U) �

Z
B

jrv̂nj
3 dH3 � c32"0 �

�2

4
;

M
�
q#( ~Sn p�1
t) U

�
� M( ~Sn) � "0 �

�2

24
;

M
�
q#( ~Rn) U

�
� M( ~Rn) � 6"0 �

�2

4
;

M
�
q#R̂n U

�
= 0

which gives the desired contradiction and completes the proof.

x5 A Fractional Maximal Function Estimate for the Scan of a Smooth Map.

In this section we assume w is a smooth map from R4 to S3 which is constant outside

of a �xed ball BR = BR(0). We �rst note that the corresponding scan

Gw# : H !R3 is continuous; and hence; measurable ;

with respect to the de metric on R3. In fact, for oriented hyperplanes h; k 2 H, we may

use a geodesic path from h to k in H = S3�R to de�ne a 4 dimensional locally recti�able

current T 2 R4 with @T = h� k and M(T BR) � CR3jh� kj, hence,

Gw#h � Gw#k = @Gw#T

M(Gw#(T BR)) � C(w)R3jh� kj :

Thus Gw# is a continuous map from H into R3, with the locally 
at, and hence (as in x3),

de topology.

Theorem 5.1. Suppose that w 2 C1(R4;S3), and w is constant outside of BR. If

e = (e1; e2; e3; e4) is an orthonormal frame for R4, 0 < � < 1, v 2 S3, and I is a

subinterval of [�R;R], then the fractional maximal function

MI(t) � esssup t6=s2I
de
�
Gw#h(v; s) ; Gw#h(v; t)

�
js� tj�

for a:e: t 2 I ;

satis�es the weak-type measure estimate

��ft 2 I : M
1=�
I (t) > �g

�� � ��1�w(I)
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where

�w(I) = ��15
1
�

4X
j=1

� Z
M
�
Gw#[h(ej ; �) BR \ �

�1
v (I)]

��
d�
� 1
� :

Remark 5.2. Note that the quantity �w satis�es the super-additivity relation

�w(I) + �w(J) � �w(K)

whenever I; J are nonoverlapping subintervals of an interval K in [�R;R].

Proof of Theorem 5.1. For numbers s; t 2 [�R;R], let st denote the closed interval joining

s and t and observe that the 4 dimensional locally recti�able current

Ts;t = Gw#[[�
�1
v

�
st
�
]]

has

Gw#h(v; s) � Gw#h(v; t) = �@Ts;t

so that we may estimate

de
�
Gw#h(v; s) ; Gw#h(v; t)

�
�

4X
j=1

Z
M
�
< Ts;t; pej ; � > p�1(BR)

��
d�

=
4X
j=1

Z
M
�
Gw#[h(ej ; �) BR \ �

�1
v ( st )]

��
d� :

We can now use a covering argument to estimate the measure of

E� � ft 2 I : M1=�
I (t) > �g :

For each t 2 E�, we may choose a number st 6= t in I so that

�� jt� stj
� < de

�
Gw#h(st; v) ; Gw#h(v; t)

�

�
4X
j=1

Z
M
�
Gw#[h(ej ; �) BR \ �

�1
v ( stt )]

��
d� :

The (1 dimensional ) Besicovitch covering Lemma allows us to �nd, for i = 1; : : : ; 5 and

k = 1; 2; : : : , points ti;k 2 E� with corresponding closed intervals

Ii;k = sti;kti;k

that altogether cover E�,

E� � [5i=1 [
1
k=1 Ii;k ;
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while each of the �ve separate families

fIi;1; Ii;2; : : :g ;

corresponding to i 2 f1; : : : ; 5g, consists of disjoint intervals. In particular,

jE�j �
5X
i=1

1X
k=1

ri;k

where ri;k = jti;k � sti;k j.

For nonnegative Ai;k we have the elementary estimate

X
i;k

r1��i;k Ai;k �
�X
i;k

ri;k
�1���X

i;k

Ai;k
�
:

One may check this by reducing to the case
P

i;k Ai;k = 1 and noting that, on the simplex

f(x1;1; x1;2; x1;3; x1;4; x1;5; x2;1; x2;2; : : : ) 2 R
1 : xi;k � 0;

5X
i=1

1X
k=1

xi;k = 1g ;

the linear function
P
i;k r

1��
i;k xi;k is bounded by the number

�P
i;k ri;k

�1��
because it is

trivially bounded by this number at all the vertices (1; 0; : : :); (0; 1; 0; : : :); : : : .

Now taking

Ai;k =
4X
j=1

Z
M
�
Gw#[h(ej ; �) BR \ �

�1
v (Ii;k)]

��
d� ;

we see that Ai;k � ��r�i;k by the choice of sti;k , and, using the disjointness of each

fIi;1; Ii;2; : : : g, we conclude that

��jE�j
� � ��

�X
i;k

ri;k
��

=
�X
i;k

ri;k
���1�X

i;k

ri;k�
�
�

�
�X
i;k

ri;k
���1X

i;k

r1��i;k Ai;k �
X
i;k

Ai;k

=
5X
i=1

1X
k=1

4X
j=1

Z
M
�
Gw#[h(ej ; �) BR] p�1v (Ii;k)

��
d�

� 5
4X
j=1

Z
M
�
Gw#[h(ej ; �) BR] p�1v (I)

��
d� ;

and then raise to the 1
� power to complete the proof.
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x6. Limits of Scans of Coulomb Lifts of Weakly Convergent Smooth Maps.

Here we will prove our main existence theorem by using the estimates of x2-5 in the

general compactness lemma of the appendix x9.

Theorem 6.1. Suppose un 2 C1(R4;S2), un � (0; 0; 1) on R4 nB4
2, and

sup

Z
jrunj

3 dx < 1 :

If ~un : R
4 ! S3 is a Coulomb lifting of un as in x2, then there is a subsequence n0 of n, a

pointwise a.e. limit

~u = lim
n!1

~un0 2W
1; 512 (R4;S3) ;

and a scan cycle S so that, for all v 2 S3,

S
�
h(v; t)

�
= (d�) lim

n!1
G~un0#h(v; t)

for almost all t 2 R.

Proof. By Lemma 2.4, we may pass to a subsequence, without changing notations, to get

weak convergence in W 1; 125 (R4;S3) of the Coulomb lifts

~un * ~u 2W 1; 125 (R4;S3) :

This sequence converges pointwise a.e. on R4, and the limit ~u is a Hopf lift of

u � � Æ ~u 2 W 1;3(R4;S2) :

Turning now to the corresponding scans, we proceed in two steps.

STEP I. Convergence a.e. on one family of parallel hyperplanes.

Here we will show that

for each �xed direction v 2 S3, there is a a subsequence nv(i) (depending on v) so that,

for almost all t 2 R, each sequence

G~unv(i)#
h(v; t)

is de convergent as i!1.
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For this, we apply the Compactness Theorem 9.1 of the Appendix, with

� =
3

4
;

X = [�2; 2] ;

Y = fP 2 R3 : @P = 0; sptP � B2 � S3g ;

dist Y = de ;

N (P ) = N(P )
3
4 = M(P )

3
4 ;

fn(t) = G~un#

�
h(v; t) B2

�
:

�n(I) =
4

3
� 5

4
3

4X
j=1

� Z
M
�
G~un#[h(ej ; �) B2 \ �

�1
v (I)]

�3
4 d�

� 4
3 :

We have in hand all the necessary hypotheses. Note that the de lower semi-continuity of

N and de sequential compactness of N bounded sets is provided by Lemma 3.2 while the

uniform integral bound of M
�
G~un#

�
h(v; t) B2

��3=4
is given by Lemma 2.4. We thus

conclude the de convergence of a subsequence (depending on v) of G~un#h(v; t) for almost

every t 2 R, and Step I is complete.

STEP II. Convergence at a.e. coordinate hyperplane is suÆcient.

We �rst apply Step I four times with v equaling

(1; 0; 0; 0); (0; 1; 0; 0); (0; 0; 1; 0); (0; 0; 0; 1)

to �nd a subsequence n0 so that, for almost all s 2 R, one has the de convergences

lim
n!1

G~un0#h
1
s = P 1

s ; : : : ; lim
n!1

G~un0#h
4
s = P 4

s ;

at the coordinate hyperplanes

h1s � h
�
(1; 0; 0; 0); s

�
; : : : ; h4s � h

�
(0; 0; 0; 1); s

�
:

It only remains to show that for any other direction

v 2 S3 n f(1; 0; 0; 0); (0; 1; 0; 0); (0; 0; 1; 0); (0; 0; 0; 1)g

this convergence automatically implies de convergence of G~un0#h(v; t) for almost every

t 2 R (with the same subsequence n0).

Thanks to Step I, any subsequence of G~un0#h(�; v) contains a subsequence, that is

de convergent a.e. on R. It thus suÆces to show that any subsequence of G~un0#h(�; v)

contains a subsequence, having pointwise a.e. de limit P (�) that is uniquely determined by

the currents P is already obtained from the coordinate hyperplanes.
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By Fubini's Theorem, the exceptional set

Z �
�
t 2 R : H3fx 2 h(v; t) : lim

n!1
~un0(x) 6= ~u(x)g > 0

	

has measure zero. Moreover, Lemma 2.4 and Fatou's Lemma imply thatZ 1

�1

lim inf
n!1

� Z
h(v;t)

jr
�
~un0 jh(v; t)

�
j3 dH3

� 1
2 dt � sup

n
c
�
1 +

Z
jrun0 j

3 dx
�

so that the set

~Z � ft 2 R : lim inf
n!1

Z
h(v;t)

jr
�
~un0 jh(v; t)

�
j3 dH3v = 1g

also has measure zero.

Let P (�) be any pointwise a.e. de limit of a subsequence of G~un0#h(�; v). For

t 2 R n (Z [ ~Z), we see that the limiting map ~u jh(v; t) is a weak W 1;3 limit of some

subsequence of maps with bounded 3-energy while the limiting current P (t) is, by Lemma

2.4, the weak limit of some subsequence of locally M bounded smooth graphs. Thus, the

limiting map has �nite 3-energy,Z
h(v;t)

jr
�
~u jh(v; t)

�
j3 dH3 < 1 ;

and, by Lemma 4.1, the limiting current has the form

P (t) = G~ujh(v;t) +
X

a2h(v;t)

mv;t(a)
�
[[a]]� [[S3]]

�

for an integer-valued function mv;t supported in some �nite subset of h(v; t). We now only

need to show how, for almost all t, all the integer multiplicities mv;t(a), for a 2 h(v; t),

are uniquely determined by our coordinate hyperplane currents P is.

This will be accomplished by using, for each a 2 h(v; t) and almost all r > 0, the open

coordinate cube

Qr(a) �
4Y
i=1

(ai � r; ai + r) ;

and looking at the limit of the graph of the restriction of ~un0 to the boundary of the

half-cube

Qv
r(a) � fx 2 Qr(a) : x � v > tg :

Since a �v = t, one face of @Qv
r(a) lies in the hyperplane h(v; t) under present consideration

while the others lie in the 8 coordinate hyperplanes hia1�r; h
i
ai+r; : : : ; h

i
a4�r; h

i
a4+r. The

corresponding equation of currents is

@[[Qv
r(a)]] = �h(v; t) Qr(a) +

4X
i=1

�
hiai+r � hiai�r

�
fx 2 @Qv

r(a) : x � v > tg
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where � = sign (t� v � a).

As above, we have, for a.e. r > 0, pointwise a.e. convergence of ~un0 to ~u on the

hyperplanes hiai�r as well as

lim inf
n!1

Z
hi
ai�r

jr
�
~un0 jh

i
ai�r

�
j3 dH3v <1

for i = 1; 2; 3; 4. As before, we deduce that, for a.e. r > 0, each limiting map ~u jhiai�r is

a weak W 1;3 limit of some subsequence of maps with bounded 3-energy. Also by Lemma

2.4, for a.e. r > 0, any de limit of a subsequence of G~un0#h
i
ai�r the weak current limit of

some locally M bounded subsequence.

Next we recall one relevant consequence of slicing [F],4.3.1. If h is a hyperplane and

n� is a subsequence of n such that the currents G~un�#h are locally mass bounded and

converge weakly to a current T , then, for any direction v� 2 S3, not perpendicular to h,

one has, for a.e. s > 0, the current convergence of the restrictions

G~u
n#

#

�
h fx : x � v� > sg

�
to T f(x; y) : x � v� > sg :

Consider now any two subsequences n00 and n000 of n0. Passing to subsequences of

these, we may assume, by Lemma 4.1, that

lim
n!1

G~un00#h(v; t) = G~ujh(v;t) +
X

a2h(v;t)

m00(a)[[a]]� [[S3]]

lim
n!1

G~un000#h(v; t) = G~ujh(v;t) +
X

a2h(v;t)

m000(a)[[a]]� [[S3]]

for some integer-valued functions m00 and m000 supported in �nite subsets of h(v; t). We

now want to show that m00(a) = m000(a) for each point a 2 h(v; t). For this, �rst choose

ra small enough so that

Qra(a) \ (sptm00 [ sptm000) � fag :

The slicing remark implies that, for almost every t 2 R, we may, for almost every

0 < r < ra, pass to subsequences, without changing notations, to insure that

lim
n!1

G~un00#

�
h(v; t) Qr(a)

�
= G~ujh(v;t) p�1Qr(a) + m00(a)[[a]]� [[S3]]

lim
n!1

G~un000#

�
h(v; t) Qr(a)

�
= G~ujh(v;t) p�1Qr(a) + m000(a)[[a]]� [[S3]] ;

Similarly, cutting by fx : x � v > tg, we see that the the two current limits

lim
n!1

G~un00#

�
@[[Qv

r(a)]] fx : x � v > tg
�
;
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lim
n!1

G~un000#

�
@[[Qv

r(a)]] fx : x � v > tg
�

exist and equal the same current

Pr(a) �
4X
i=1

�
P iai+r � P iai�r

�
f(x; y) : x 2 @Qv

r(a); x � v > tg

because of the uniqueness of the 8 coordinate hyperplane limits P iai�r.

Finally concerning the total boundary, one has, by the smoothness of ~un on Qv
r(a),

that
G~un#@[[Q

v
r(a)]]

�
q#!S3

�
= q#@G~un#[[Q

v
r(a)]]

�
!S3

�
= @q#G~un#[[Q

v
r(a)]]

�
!S3

�
= 0

because q#G~un#[[Q
v
r(a)]] is a 4 dimensional current in S3. Thus,

2�2m00(a) + �
�
G~ujh(v;t) p�1@Qv

r(a)
��
q#!S3

�
+ Pr(a)

�
q#!S3

�
= lim

n!1
G~un00#

�
@[[Qv

r(a)]] h(v; t) + @[[Qv
r(a)]] fx : x � v > tg

��
q#!S3

�
= lim

n!1
G~un00#@[[Q

v
r(a)]]

�
q#!S3

�
= lim

n!1
0

= lim
n!1

G~un000#@[[Q
v
r(a)]]

�
q#!S3

�
= lim

n!1
G~un000#

�
@[[Qv

r(a)]] h(v; t) + @[[Qv
r(a)]] fx : x � v > tg

��
q#!S3

�
= 2�2m000(a) + �

�
G~ujh(v;t) p�1@Qv

r(a)
��
q#!S3

�
+ Pr(a)

�
q#!S3

�
;

hence,

m00(a) =m000(a) :

Arbitrary subsequences of G~un0#h(�; v) thus have subsequences de convergent to a

unique limit, determined by the coordinate hyperplane currents P is , and for the original

subsequence n0 (which was chosen independent of v) the currents G~un0#h(v; t) de converge

for a.e. t 2 R. >From Fubini's Theorem, we �nally conclude that, for a.e. hyperplane

h 2 H, the de limit

S(h) = lim
n!1

G~un0#h

exists.

To check that S is a scan cycle, we note that, for a.e. h 2 H, Lemma 2.4 and Fatou's

Lemma imply that

lim inf
n0!1

M
�
G~un0#(h B4

2)
�
< 1 ;

so that S(h) is the limit of a locallyM bounded, weakly convergent, subsequence G~un00#h.

In particular, using [F],x4.3.2,

S(h) \
�
h0 � [[S3]]

�
= ( lim

n!1
G~un00#h

�
\
�
h0 � [[S3]]

�
= lim

n!1

�
(G~un00#h) \ (h0 � [[S3]])

�
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for almost every h0 2 H. Moreover, x1 and the same argument show that, for almost every

h0 2 H,

lim
n!1

�
(G~un00#h) \ (h0 � [[S3]])

�
= lim
n!1

�
(G~un00#h

0) \ (h� [[S3]])
�
= S(h0) \

�
h� [[S3]]

�

for a.e. h 2 H. Also, for almost every polyhedral frontier @[[U ]] as in x1, one has, by the

previous slicing remark, that @
�
S@U

�
= limn!1 @G~un00#@[[U ]] = 0, and

�
S@U

��
q#!S3

�
= lim

n!1
G~un00#@[[U ]]

�
q#!S3

�
= lim

n!1
G~un00#[[U ]]

�
dq#!S3

�
= 0 ;

so that S is a scan cycle.

x7. Structure and Recti�ability of the Limiting Scan.

Here we will show that the limiting scan of Theorem 6.1 is carried by the graph of the

limiting map and a set RS�S3 for some 1 recti�able subset RS of an energy concentration

set of �nite measure. The measure estimate is provided by the elementary:

Lemma 7.1. For � > 0 and any sequence un 2 W 1;3(R4;S2) with L � supn
R
jrunj3 dx

being �nite, the � energy concentration set

E� = fx 2 R4 : lim
r!0

lim inf
n!1

1

r

Z
Br(x)

jrunj
3 dy � �g ;

has H1(E�) � 24��1L.

Proof. Let K be a compact subset of E�. For each Æ > 0 and point x 2 K, we may choose

a positive rx <
1
2Æ so that

lim inf
n!1

1

rx

Z
Brx (x)

jrunj
3 dy >

1

2
� :

By compactness and the Vitali covering theorem, we may choose a �nite subset A of K so

that the corresponding balls fBra(a) : a 2 Ag are disjoint while their triple enlargements

fB3ra(a) : a 2 Ag cover K. We may now choose a single integer n suÆciently large to

guarantee that
1

ra

Z
Bra (a)

jrunj
3 dy �

1

2
�

for all a 2 A. Thus,

H1
Æ(K) �

X
a2A

2(6ra) � 24��1
X
a2A

Z
Bra (a)

jrunj
3 dy � 24��1L :

Letting Æ # 0 and taking the supremum over such K completes the proof.

38



As motivation for our recti�ability Theorem 7.2, recall that a 1 dimensional, �nite

mass, integer-multiplicity recti�able current T in R4 is given by 3 things:

a 1 recti�able set RT of �nite measure,

an H1 measurable ~T : RT ! S3 orienting a.e. the approximate tangent of RT , and

an H1 integrable multiplicity function mT : RT ! Z+

so that

T (�) =

Z
RT

< ~T (x); �(x) >mT (x) dH
1x for � 2 D(R4) :

Each of these three may be determined, H1 a.e., by the 0 dimensional slices T \ h for a.e.

h 2 H. More, in fact, is true.

For any countably 1 recti�able set R � RT and v 2 S3, let

�R;v � fx 2 R : h(v; x � v) is not transverse to the approximate tangent line of R atxg

and observe that

VR � fv 2 S3 : H1(�R;v) > 0g

is at most countable because H1(�R;v \ �R;v0) > 0 if and only if v = �v0.

Now �xing a direction v 2 S3 n VR, one has, at a.e. point x 2 RT , that

mT (x) = mT\h(v;x�v)(x) > 0

and that the choice of orientation ~T (x) is determined by the slice condition

sgn
�
~T (x) � v

�
= sgn

��
T \ h(v; x � v)

��
�
B�(x)

��

for � > 0 small. Also, up to an H1 null set, the carrying set for T ,

RT = [t2Rfx : mT\h(v;t)(x) 6= 0g :

Thus, for such a generic v 2 S3 n VR, the recti�able current T is completely determined

just by its slices by almost all of the parallel hyperplanes fh(v; t) : t 2 Rg.

The bubble part of our limiting scan has a similar representation by a recti�able set,

orienting vector�eld, and multiplicity function, except the multiplicity function is only

L3=4 integrable:

Theorem 7.2. There is a positive constant "1 so that if un0 ; u; ~un0 ; ~u, and S =

limn!1G~un0# are as in Theorem 6.1, then, there exist an H1 measurable 1 recti�able

subset RS of the "1 energy concentration set E"1 for un, an H1 measurable ~S : RS ! S3
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orienting a.e. the approximate tangent line of RS, and a nonzero integer multiplicity

function mS with
R
RS

m
3=4
S dH1 <1 such that for almost every hyperplane h 2 H,

S(h) = G~ujh +
X

a2RS\h

sgn
�
~S(a) � ~h �

�
mS(a)[[a]]� [[S3]] :

Proof. First to choose "1, note that there is a uniform bilipschitz equivalence between each

half-cube Qv
r(a) (from the proof of Theorem 5.3) and the ball Br. Thus by Lemma 2.2

there is a positive �0 so that

inff

Z
@Qvr(a)

jr j3 dH3 :  2W 1;3(@Qv
r(a);S

2); Hopf deg ( ) 6= 0g > �0Æ0 :

Let

"1 =
1

6
minf"0; �0Æ0g :

Next recall [G], Th.2.2, that, for the W 1;3(R4) function ~u, the set of energy density

points

X � fx 2 R4 : lim sup
r!0

1

r

Z
Br(x)

jr~uj3 dy > 0g :

has H1(X) = 0.

By Lemma 4.1 and Theorem 6.1, we know that for any �xed direction v 2 S3, we have,

for t o� some measure zero subset Zv of R, that ~ujh(v; t) 2 W 1;3 and that the sequence

Gun0#h(v; t) is de convergent to

S
�
h(v; t)

�
= G~ujh(v;t) +

X
a2A(v;t)

mv;t(a)[[a]]� [[S3]]

for some �nite subset A(v; t) of h(v; t) and non-zero integers mv;t. We will next verify

that, for all such t 2 R n Zv,

A(v; t) n X � E"1 :

Assuming, for contradiction that a 2 A(v; t) n (X [ E"1), we choose a positive �

suÆciently small so that A(v; t) \B�(a) = fag and

Z
h(v;t)\B�(a)

jr~uj3 dH3 + ��1
Z
B�(a)

jr~uj3 dy + lim inf
n!1

��1
Z
B�(a)

jrunj
3 dy < 3"1 :

By Fatou's Lemma and Fubini's Theorem,

Z �=2

0

lim inf
n!1

Z
@Qr(a)

�
jr~uj3 + jrunj

3
�
dH3dr

� lim inf
n!1

Z
Q�=2(a)

�
jr~uj3 + jrunj

3
�
dy < 3"1�
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where, as before, Qr(a) =
Q4
i=1(ai� r; ai+ r) � B2r(a). Recalling now the proof of STEP

II of Theorem 5.3, we see that we may pass to a subsequence and �nd r 2 [0; �=2] so that,

for all n, Z
@Qr(a)

�
jr~uj3 + jrunj

3
�
dH3 < 6"1 ;

and so that, for each of the 8 hyperplanes hia�r determined by the faces of Qr(a),

~ujhia�r 2 W
1;3 and each sequence Gun0#h

i
a�r is locally M bounded and convergent as in

Lemma 4.1. As in the proof of Theorem 5.3, r can also be chosen so that these convergences

restrict to each face of the half-cube Qv
r(a). However, now, by Lemma 4.2 and the last

small energy estimate, no bubbles occur on any of the faces in the coordinate hyperplanes

hia�r, while, on the remaining face in h(v; t), exactly one bubble occurs at a because

A(v; t) \ @Qv
r(a) = fag. Also the small energy estimate

Z
@Qvr(a)

jruj3 dH3 < 6"1

implies �
G~uj@Qvr(a)

��
q#!S3

�
= 4�2Hopf deg

�
uj@Qv

r(a)
�
= 0 :

Summing over the faces in @Qv
r(a) now gives the desired contradiction

0 = lim
n!1

@ 0 = lim
n!1

@q#G~un0#[[Q
v
r(a)]]

�
!S3

�
= lim

n!1
G~un0#@[[Q

v
r(a)]]

�
q#!S3

�
= �2�2mv;t(a) +

�
G~uj@Qvr(a)

��
q#!S3

�
= �2�2mv;t(a) + 0 ;

and establishes the inclusion A(v; t) nX � E"1 .

By Lemma 7.1 and the Besicovitch Structure Theorem [F],3.3.13, the energy concen-

tration set E"1 contains an H1 measurable 1 recti�able set R so that the \unrecti�able

visibility" directions

Y � fv 2 S3 : H1
�
�v(E"1 nR)

�
> 0g

have H3 measure 0. Also, as before, the \non-generically transverse" directions

VR =
�
v 2 S3 : H1(�R;v) > 0

	

are at most countable.

Ignoring these exceptional directions, we now �x one direction v 2 S3 n (Y [ VR) and

let

RS �
[�

A(v; t) : t 2 R n
�
Zv [ �v

�
X [ (E"1 nR) [ �R;v

�� 	
:
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and, for a 2 RS , let

mS(a) � jmv;v�a(a)j ;

and ~S(a) be the unit vector orienting the approximate tangent line of R at a with

sgn
�
~S(a) � v

�
= sgn mv;v�a(a). These de�nitions automatically give the desired formula

for S(h) in case h = h(v; t) for almost all t 2 R.

We will now show that the formula continues to hold for hyperplanes in almost all

other directions; i.e. that these de�nitions are, up to an H1 null set, independent of our

choice of v 2 S3 n (Y [ VR). For this, we now �x a second direction v0 2 S3 n (Y [ VR).

Since RS � R and H1(�R;v0) = 0, the area formula applied to �v0 jR shows that

RS \ �
�1
v0

�
Zv0 [ �v0

�
X [ (E"1 nR) [ �R;v0

��

has H1 measure zero. It now suÆces for us to verify, at each of the remaining points

a 2 RS n �
�1
v0

�
Zv0 [ pv0

�
X [ (E"1 nR)[�R;v0

��
, that a 2 A(v0; v0 � a) and that the integer

multiplicity mv0;v0�a(a) is correct, that is,

jmv0;v0�a(a)j = jmS(a)j and sgn mv0;v0�a(a) = sgn
�
~S(a) � v0

�
:

We will argue as before by considering the behavior on the boundary of small half-cubes

Qv
r(a) � fx 2 Qr(a) : (x� a) � v > 0g ; Qv0

r (a) � fx 2 Qr(a) : (x� a) � v0 > 0g ;

To use this same notation, we assume (as can be achieved by rotating coordinates)

that none of the four coordinate directions (1; 0; 0; 0); :::; (0; 0; 0; 1) are in the exceptional

directions Y [ VR. We also suppose �rst, for convenience that

sgn
�
~S(a) � v

�
> 0 ; sgn

�
~S(a) � v0

�
> 0 :

Then the (aÆne) approximate tangent line fa + t~S(a) : t 2 Rg of R intersects the closed

conical region

C � fx :
�
x� a) � v � 0; (x� a) � v0 � 0g [ fx : (x� a) � v � 0; (x� a) � v0 � 0g

=
[
r>0

�
Qv
r(a) nQ

v0

r (a)
�
[
�
Qv0
r (a) nQ

v
r(a)

�

only at a and

lim sup
r!0

r�1H1
�
R \ C \Br(a)

�
= 0 ;

so that, by Fubini's Theorem,

J � fr > 0 : R \ C \ @Qr(a) 6= ;g;

42



has density 0 at 0. Also, since both restrictions ~ujh(v; v �a) and ~ujh(v0; v0 �a) are W 1;3 and

a =2 X, we may argue as before to choose a positive r =2 J so that

Br(a) \A(v; v � a) = fag ; Br(a) \ A(v
0; v0 � a) � fag ;

Z
h(v;v�a)\Br(a)

jr~uj3 dH3 +

Z
h(v0;v0�a)\Br(a)

jr~uj3 dH3 +

Z
@Qr(a)

jr~uj3 dH3 < "1 ;

a1 � r =2 Z(1;0;0;0) [ �(1;0;0;0)
�
X [ (E"1 nR) [ �R;(1;0;0;0)

�
; : : : ;

a4 � r =2 Z(0;0;0;1) [ �(0;0;0;1)
�
X [ (E"1 nR) [ �R;(0;0;0;1)

�
:

and so that, for a subsequence, there the weak convergence of currents

lim
n!1

G~un0#@[[Q
v
r(a)]] = G~uj@Qvr(a)

+
X
b2B

m(b)[[b]]� [[S3]] (7:1)

lim
n!1

G~un0#@[[Q
v0

r (a)]] = G~uj@Qv0r (a) +
X
b2B0

m0(b)[[b]]� [[S3]] (7:2)

for some �nite subsets B of @Qv
r(a), B

0 of @Qv0

r (a), and integer multiplicities m; m0. Then

B \ h(v; v � a) = fag ; m(a) = mv;v�a(a) ;

B0 \ h(v0; v0 � a) � fag ; m0(a) = mv0;v0�a(a) in case a 2 A(v0; v0 � a) :

For the remaining faces, we infer from Lemma 4.2 and our choice of r that

(B [B0) n fag �
�
R \ @Qv

r(a) n h(v; v � a)
�
[
�
R \ @Qv0

r (a) n h(v
0; v0 � a)

�
�
�
@Qv

r(a) n h(v; v � a)
�
[
�
@Qv0

r (a) n h(v
0; v0 � a)

�
n C

= @
�
Qv
r(a) \Q

v0

r (a)
�
n
�
h(v; v � a) [ h(v0; v0 � a)

�
:

So we may restrict our mappings to the latter set and pass to the limit to conclude

that

B n fag = B0 n fag and m(b) = m0(b) for b 2 B n fag :

As before, the smoothness of the un0 gives

G~un0#@[[Q
v
r(a)]]

�
q#!S3

�
= @G~un0#[[Q

v
r(a)]]

�
q#!S3

�
= 0 ;

G~un0#@[[Q
v0

r (a)]]
�
q#!S3

�
= @G~un0#[[Q

v0

r (a)]]
�
q#!S3

�
= 0 ;

while the small energy condition

Z
@Qvr(a)

jruj3 dH3 +

Z
@Qv

0

r (a)

jruj3 dH3 < 2"1

implies �
G~uj@Qvr(a)

��
q#!S3

�
= 0 =

�
G~uj@Qv0r (a)

��
q#!S3

�
:
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Plugging the form q#!S3 into (7.1) and (7.2) now gives

0 = 0 + 2�2m(a) +
X

b2Bnfag

2�2m(b)

= 0 + 2�2m(a) +
X

b2B0nfag

2�2m0(b)

= 0 +
X
b2B0

2�2m0(b) ;

and we conclude that Br(a) \A(v
0; v0 � a) = fag and mv0;v0�a = m0(a) = m(a), hence,

jmv0;v0�aj = jm(a)j = jmS(a)j ;

sgn mv0;v0�a(a) = sgn m(a) = sgn mv;v�a(a) = sgn
�
~S(a) � v

�
= sgn

�
~S(a) � v0

�
:

The remaining three cases where

�
sgn (~S(a) � v) ; sgn (~S(a) � v0)

�
= (�1;+1); (+1;�1); (�1;�1) ;

may be treated similarly, and we now have the desired representation formula for S
�
h(v0; t)

�
for a.e. t 2 R.

The set RS, being a subset of the 1 recti�able set R is itself 1 recti�able. To see that

it is also H1 measurable, it suÆces to show that

lim
r!0

r�1H1
�
Br(a) \RS

�
= 1 for a:e: a 2 RS ;

lim
r!0

r�1H1
�
Br(a) nRS

�
= 0 for a:e: a 2 R nRS :

Both of these may be veri�ed by arguing as before taking v 2 S3n(Y [VR) and forming the

limits of a subsequence of graphs restricted to a half-cube boundary @Qv
r(a) for a generic

point a 2 RnX and generic small positive r. Here R is H1 almost contained in a countable

union of C1 arcs �i , and one may insist that a be a point of density 1 for precisely one

�i and be of density 0 for all the others. So as before, r is chosen so that @Qv
r(a) hits

�i transversally at a and at preciesly one other point ar 2 @Qv
r(a). The limiting current

equation guarantees that this point ar 2 RS if and only if a 2 RS and in which case that

mS(ar) = mS(a) and that ~S(ar) and ~S(a) give the same orientation to �i. The set of

suitable positive r for both v and �v has density 1 at 0. For the point a, we conclude not

only the above density statements, but also the approximate continuity of bothmS and ~S.

Thus we verify the H1 measurabliity of the set RS as well as the H1 RS measurabliity

of the functions mS and ~S.

To establish the multiplicity estimate, we will prove, for a.e. h 2 H, the bound

X
a2RS\h

m
3=4
S (a) � C lim inf

n!1

Z
h

jrun0 j
3 dH3 : (7:3)
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This will do it because we may then choose a frame fv1; v2; v3; v4g � S3 n (Y [ VR) and

apply the coarea formula to each pvi jRS as well as Fatou's Lemma and Fubini's Theorem

to deduce that
Z
RS

m
3=4
S dH1 �

4X
i=1

Z
RS

m
3=4
S jvi � ~Sj dH

1 =
4X
i=1

Z 1

�1

X
a2RS\h(vi;t)

m
3=4
S (a) dt

� C
4X
i=1

Z 1

�1

lim inf
n!1

Z
h(vi;t)

jrun0 j
3 dH1 dt = 4C lim inf

n!1

Z
R4

jrun0 j
3 dx < 1 :

To verify (7.3) (by contradiction) we may pass to subsequences depending on h,

without changing notations. In particular, we may by Fatou's Lemma, assume that

supn0
R
h
jrun0 j

3 dH3 < 1 and that the graphs G~un0# converge to S(h), as in Lemma

4.1, weakly as currents. For each point a 2 RS \ h,

lim
r#0

Z
Br(a)\h

jruj3 dH3 = 0 ;

and we have, for a.e. r > 0, strongW 1;3 convergence of a subsequence on the 2 dimensional

sphere h\ @Br(a). So there is, for any � > 0, a small r > 0 so that B2r(a)\RS \ h = fag

and so that (for a subsequence) supn0
R
h\@Br(a)

jrun0 j3 dH2 < �. Then we may obtain

extensions  n0 : h! S2 of un0 j
�
h\Br(a)

�
so that  n0 is a constant yn0 on h nB2r(a) and

supn0
R
h\
�
B2r(a)nBr(a)

� jr n0 j3 dH3 < c�. It follows that the induced relative map

 n0 :
�
h \B2r(a); h \ @B2r(a)

�
!

�
S2; fyn0g

�
has a well-de�ned Hopf degree, which must, for n0 suÆciently large, be the multiplicity

mS(a), by the convergence of G~un0# and the formula for S(h). From the conformal

invariance of the 3 energy in 3 dimensions and the lower bound of [R1], we now conclude

that Z
h\Br(a)

jrun0 j
3 dx + c� �

Z
h\B2r(a)

jr n0 j
3 dx � C�1mS(a)

3=4 :

Summing over a 2 RS \ h and letting n0 ! 1 and � ! 0 now gives (7.3) and completes

the proof.

Remark 7.3. The vanishing of the second term in 7.2 (i.e. no \bubbling") does not

guarantee that the convergence is strong inW 1;3. In fact, it is easy to make a construction

as in x2.4 of a smooth map un : R
4 ! S2 which is constant (0; 0; 0; 1) outside the 1

4n tubular

neighborhoods of the two parallel intervals [(0; 0; 0; 0); (1; 0; 0; 0)], [(0; 1n ; 0; 0); (1;
1
n ; 0; 0)]

and which has Hopf degree +1 and �1 on the slices of these 2 tubular neighborhoods by

the hyperplane x2 = t for 1
n � t � 1� 1

n . One can insist that

��2 Æ0 �

Z
R4

jrunj
3 dx

�� � 1

n
:
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The weakW 1;3 limit is a constant map, but the energy drop is not detected by the limiting

scan, which is the constant [[R4
�
]� [[(0; 0; 0; 1)]] by cancellation. Note that here one may

have the energy concentration on an interval, with the convergence of the positive measures,

lim
n!1

jrunj
3 dx ! 2 � 2�2H1 [(0; 0; 0; 0); (1; 0; 0; 0)] ;

even though the \topological" part of this concentration vanishes.

x8. Connecting the Singularities of a General Finite Energy Map.

It is still unknown whether an arbitrary map u 2 W 1;3(R4;S2) is a weak W 1;3

sequential limit of smooth maps in C1(R4;S2) although some other cases of such weak

density have been established [Be1], [PR], [HgL]. In this section, we verify that we can

still (as in the conclusion of Theorems 6.1) cap o� the scan boundary of the graph of a

Coulomb lift of u by addition of an oriented vertical scan.

As motivation for our proof, consider a corresponding construction [GMS2],2.5, for

the simpler case of a map u 2W 1;2(R3;S2). Here one can �rst approximate u strongly in

W 1;2 by maps un 2 C1(R3 nAn) \W 1;2 with An a �nite set. Then as currrents

@Gun = @
�
In � [[S2]]

�

where In is a \minimal connection", a �nite sum of oriented intervals whose boundary

gives the points of An with multiplicities determined by the local degrees of un. Then local

mass bounds forGun and In�[[S
2]] along with the Federer-Fleming Compactness Theorem

provides subconvergence of the augmented graphsGun�In�[[S
2]] to an integer-multiplicity

recti�able current in the form Gu � I � [[S2]], in particular, @
�
Gu � I � [[S2]]

�
= 0.

In our situation, we need to work with the scan cycles of augmented graphs of

Coulomb lifts, replacing mass bounds by L
3
4 slice mass bounds and the Federer-Fleming

Compactness Theorem by a version of x6 upgraded to handle such augmented graphs.

Theorem 8.1. For any map u 2W 1;3(R4;S2) with u constant outside of B2 and Coulomb

lift ~u : R4 ! S3,

@
�
G~u � T

�
= 0

for some scan T such that, for all v 2 S3 and a.e. t 2 R,

T
�
h(v; t)

�
) =

X
a2Av;t

mv;t[[a]]� [[S3]] ;

for some �nite subset Av;t of h(v; t) and non-zero integers mv;t withZ
R

� X
a2Av;t

mv;t

�3=4
dt � C

�
1 +

Z
jruj3 dx

�
:
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Proof. We �rst recall from [Be1] that there is, for each positive integer n, a �nite subset

An of B1 and a map un 2 C1(R4 nAn) \W 1;3 with un � u outside of B2 and

lim
n!1

Z
jrun �ruj

3 dx = 0 :

In particular, by passing to a subsequence,

L � sup
n

Z
jrunj

3 dx � 2

Z
jruj3 dx < 1 :

We may also insist that near each point a 2 An, un is homogeneous with Hopf degree on

small spheres about a being �1. Consider now the Coulomb guage ~�n 2 E1(R4 nA) of un
de�ned by the formula of x2. By the simple-connectivity of R4 n A, this guage provides,

as in x2, a corresponding Coulomb lift ~un 2 C1(R4 nA;S3) \W 1;3 with

@G~un =
X
a2An

mn(a)[[a]]� [[S3]]

where mn(a) = deg
�
~unj@B�(a)

�
= Hopf deg

�
unj@B�(a)

�
for all suÆciently small � > 0.

As before, neither
R
jr~unj3 dx norM

�
G~un

�
is necessarily uniformly bounded independent

of n, but one still has all the integral estimates of Lemma 2.2 with u; ~u replaced by un; ~un.

With these, one veri�es that ~un converges weakly in W 1; 512 (also strongly in L1;
5
12 and

pointwise a.e.) to a Coulomb lift ~u of u.

While we cannot, by Example 2.5, hope to �nd a uniformly mass-bounded minimal

connection to cap o� @G~un , we can use a suitable level curve ~u�1n fyg.

To choose y, �rst note that the set �n of critical values of un has H3(�n) = 0. By

Jensen's inequality, the coarea formula, and the above estimate, we also �nd that, for each

v 2 S3,Z
S2

Z
R

card
�
~u�1n fyg \ ��1v ftg

� 3
4 dt dH3y �

Z
R

� Z
S2
card

�
~u�1n fyg \ ��1v ftg dH2y

� 3
4 dt

�

Z
R

� Z
��1v ftg

j~u#n !S3 j
� 3
4 dt

= c

Z
R

� Z
��1v ftg

j~�n ^ d~�nj
�3
4 dt

� c

Z
R

�
krunk

4
L3(��1v ftg)

� 3
4 dt

= c

Z
B4

jrunj
3 dx � c L :

In particular, integrating over v 2 S3, we see from Fatou's Lemma and Fubini's Theorem

that H3(�) = 0 where � = fy 2 S3 : H3(Wy) > 0g with

Wy = fv 2 S3 :

Z
R

lim inf
n!1

card
�
~u�1n fyg \ ��1v ftg

� 3
4 dt = 1g :
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Finally, to get a uniform bound for de estimates, we can now, �x a single point y 2

S3 n (� [ [1n=1�n) and pass to a subsequence so that

sup
n

Z
R

card
�
~u�1n fyg \ ��1ej ftg

� 3
4 dt � c L

for each j 2 f1; 2; 3; 4g.

Since y 2 S3 is a regular value for each ~un, the set

Rn � ~u�1n fyg

is a union of smooth curves that transversely intersect almost all of the hyperplanes

��1ej ftg. The set Rn is readily oriented to become a 1 dimensional recti�able current

In with @In =
P

a2An
mn(a)[[a]] so that

@
�
In � [[S3]]

�
= @G~un#[[R

4]] :

Then, in the language of scans,

@
�
G~un# � Tn

�
= 0

where Tn is the corresponding vertical scan de�ned by Tn(h) =
�
In \ h

�
� [[S3]] for a.e.

h 2 H.

We now discuss how to carry over essentially all the results of x5-x6 replacing the

former sequence of scan cycles of smooth functions G~un# by the present sequence of

augmented scans G~un# � Tn. Since, for a.e. t 2 R,

M
�
Tn[h(ej ; t)]

�
= 2�2card

�
Rn \ �

�1
ej ftg

�

we still have, from the new Lemma 2.2 estimate and the choice of y, the basic global bound

4X
j=1

Z �
M(G~un# � Tn)

�
h(ej ; �) B2

� � 3
4 d� � 4C

B2
(1 + L) + 32�2c L:

We need a new version of x5 in which the scan Gw# of a smooth map w 2 C1(R4;S3) is

replaced by an augmented scan Gw#�T corresponding to a map w 2 C1(R4nA;S3)\W 1;3

with A �nite and a recti�able vertical current T such that @T = @Gw#[[R
4]]. In the proof

of Theorem 5.1, one now uses, for almost all s; t 2 R, the recti�able current

Ts;t =
�
Gw#[[R

4]]� T
�

p�1v
�
st
�

to connect
�
Gw#�T

�
h(s; v) to

�
Gw#�T

�
h(t; v). The remainder of the proof carries over

to give a corresponding fractional maximal estimate for Gw#[[R
4]]� T .
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In STEP I of the proof of the new version of Theorem 6.1, we now just consider

directions v 2 S3 outside the measure zero set Wy. In the application of the appendix

Theorem 9.1, we simply take fn(t) =
�
G~un#�Tn

�
h(t; v) and keep everything else the same.

In STEP II, one considers, for a �xed v 2 S3 nWy, subsequences of
�
G~un# � Tn

�
h(t; v)

for almost all t 2 R. In addition to the measure zero sets Z; ~Z de�ned as before, one also

now avoids the set

Ẑ � �v(An) [ ft 2 R : lim inf
n!1

card
�
Rn \ �

�1
v ftg

�
=1g ;

which has measure 0 by Fatou's Lemma and the fact that v =2 Wy. Then, for t 2

Rn (Z [ ~Z [ Ẑ), a de limit P (t) of a subsequence of
�
G~un#�Tn

�
h(t; v) again has the form

P (t) = G~ujh(v;t) +
X

a2h(v;t)

mv;t(a)
�
[[a]]� [[S3]]

�

because P (t) is, by Fatou's Lemma, a weak limit of some uniformly mass bounded

subsequence

G~un00#h(t; v) �
�
In00 \ h(t; v)

�
� [[S3]]

with ~un00 jh(t; v) smooth and uniformly 3-energy bounded and In00 \h(t; v) uniformly mass

bounded. We also have the estimateZ
R

� X
a2Av;t

mv;t

�3=4
dt � C

�
1 +

Z
jruj3 dx

�
:

We again apply STEP I to obtain a subsequence de convergent at almost every coordinate

hyperplane. Then one veri�es the automatic convergence of this same subsequence on

hyperplanes h(v; t) for any other direction v 2 S3 n Wy and a.e. t 2 R by considering

currents lying over the boundary of a small half-cube Qv
r(a). For the total boundary, one

now uses the relation�
G~un#@[[Q

v
r(a)]] + (In \ @[[Q

v
r(a)]])� [[S3]]

��
q#!S3

�
= @q#

�
G~un#[[Q

v
r(a)]] � (In \ [[Qv

r(a)]])� [[S3]]
��
!S3

�
= @ 0

�
!S3

�
= 0 ;

which leads to

2�2m00(a) + �
�
G~ujh(v;t) p�1@Qv

r(a)
��
q#!S3

�
+ Pr(a)

�
q#!S3

�
= lim

n!1

�
G~un00#@[[Q

v
r(a)]] + (In00 \ @[[Q

v
r(a)]])� [[S3]]

��
q#!S3

�
= lim

n!1
0

= lim
n!1

�
G~un000#@[[Q

v
r(a)]] + (In000 \ @[[Q

v
r(a)]])� [[S3]]

��
q#!S3

�
= 2�2m000(a) + �

�
G~ujh(v;t) p�1@Qv

r(a)
��
q#!S3

�
+ Pr(a)

�
q#!S3

�
;

so that again m00(a) = m000(a). Thus we have de convergence of a subsequence of G~un0#

at a.e. h 2 H to a limiting scan S = G~un0#� T with T of the required form, and we again

verify that S is a scan cycle.
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Remark 8.2. It seems unlikely that the scan T obtained in the proof of x8.1 is 1 recti�able

in the sense of Theorem 7.2. One is tempted to replace the energy concentration set used

in Lemma 7.1 by the fractional mass slice concentration set

F� = fx 2 R4 : lim
r!0

lim inf
n!1

1

r
�n
�
Br(x)

�
> �g

de�ned with the super-additive function

�n(U) =
4X
j=1

� Z
card

�
U \ Rn \ �

�1
ej ftg

� 3
4 dt

� 4
3 for open U � R4 :

However the new Lemma 4.1 then only gives an estimate of H4=3(F�) rather than of

H1(F�). Following some of the proof of Theorem 7.2, one then only obtains an H4=3

measure estimate for the carrying set of the scan T . In future work we hope to consider a

more eÆcient scan connection for the topological singularities.

x9. Appendix. Compactness from a Fractional Maximal Function Bound.

Let 0 < � < 1, X be a closed interval, Y be a metric space, and N is a nonnegative,

lower semi-continuous function on Y such that fy 2 Y : N (y) � Rg is sequentially

compact for all R > 0. For any measurable f : X ! Y and subinterval I of X, let MIf

denote the associated �-maximal function,

(MIf)(x) � esssup x6=~x2I

dist
�
f(x); f(~x)

�
jx� ~xj�

for x 2 I.

Theorem 9.1. Suppose that for each n = 1; 2; : : :, fn : X ! Y is a measurable map

satisfying on each subinterval I of X, a (weak-type) measure estimate

sup
�>0

�
�� fx 2 I : (MIfn)

1=�(x) > �g
�� � �n(I) ; (9:1)

for some nonnegative function �n of subintervals of X that satis�es the superadditivity

�n(I) + �n(J) � �n(K) for nonoverlapping subintervals I; J of K :

If

L � sup
n

Z
X

N
�
fn(x)

�
dx <1 and sup

n
�n(X) < 1 ;

then fn contains a subsequence that converges pointwise almost everywhere. The limiting

function f : X ! Y satis�es similar boundsZ
X

N
�
f(x)

�
dx � L and �

�� fx 2 I : (MIf)
1=�(x) > �g

�� � sup
n
�n(I) :
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Proof. First we will show how to pass to a subsequence to replace (9.1) by an estimate

lim sup
n!1

sup
�>0

�
�� fx 2 I : (MIfn)

1=�(x) > �g
�� � �(I) (9:2)

involving one �xed superadditive �. To do this, we �rst observe that, for each positive �,

the set

A� = fa 2 X : lim
r!0

lim inf
n!1

�n
�
X \ [a� r; a+ r] > �

�
g

has cardA� � ��1 supn �n(X) because we may, for any �nite subset a1; a2; : : : ; aJ of

distinct points of A�, choose a small positive r and then n large so that f[aj � r; aj + r] :

j = 1; 2; : : : ; Jg are disjoint and �n
�
X \ [a� rj ; aj + r]

�
> �, hence,

J� �
JX
j=1

�n
�
X \ [a� r; a+ r]

�
� �n

�
X) :

It follows that the concentration set

A = fa 2 R : lim
r!0

lim inf
n!1

�n
�
X \ [a� r; a+ r]

�
> 0g = [1k=1A1=k

is countable. By Cantor diagonalization, we may again pass to a subsequence (without

changing notations) to insist that the limits

�
�
[a; b]

�
� lim

n!1
�n
�
[a; b]

�

exist for all endpoints a; b taken from the countable set A[(Q\X). Then � is a monotone

function of such intervals, and we may de�ne, for an arbitrary closed interval [s; t] � X,

�
�
[s; t]

�
= supf�

�
[a; b]

�
: s � a � b � t; a; b 2 A [ (Q \X)g :

For any � > 0 and interval I = [s; t], we may choose a; b 2 A[ (Q\X) with s � a � b � t

so that, for n suÆciently large

�
a = s in case s 2 A [ (Q \X)
�n
�
[s; a]

�
< �

4 in case s =2 A [ (Q \X)

and �
b = t in case t 2 A [ (Q \X)
�n
�
[b; t]

�
< �

4 in case t =2 A [ (Q \X).

In any case,

�n
�
I n [a; b]

�
<

�

2
;
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for all n suÆciently large, so that

�n(I) < �n
�
[a; b]

�
+

�

2

Also, for n suÆciently large,

�n
�
[a; b]

�
< �

�
[a; b]

�
+

�

2
;

hence,

�n(I) < �
�
[a; b]

�
+ � < �(I) + � :

Estimate (9.1) now gives (9.2) because

lim sup
n!1

sup
�>0

�
�� fx 2 I : (MIfn)

4
3 (x) > �g

�� � lim sup
n!1

�n(I) � �(I) + 2�;

and we may let �! 0. Moreover, for nonoverlapping subintervals I; J of K � [�2; 2] and

� > 0, we similarly choose closed subintervals I 0 � I; J 0 � J; I 0 [ J 0 � K 0 � K with

endpoints in A [Q, and then n suÆciently large so that

�(I)+�(J) � �(I 0)+�(J 0)+2� � �n(I
0)+�n(J

0)+4� � �n(K
0)+4� � �(K)+5� :

Letting �! 0 gives the desired super-additivity �(I) + �(J) � �(K).

Having established (9.2), we next observe that it suÆces to show

there is a subsequence fn0 that is pointwise a.e. Cauchy convergent.

In fact, for a.e. x 2 X, the sequence fn0(x) will then have, in the completion Ŷ of Y , a

unique limit f(x) a.e. Also, for a.e. x 2 X, Fatou's Lemma will provide a subsequence n00

of n0 (depending on x) so that

sup
n00!1

N
�
fn00(x)

�
< 1 :

The compactness assumption then will give a subsequence n000 of n00 so that fn000(x)

converges to a point of Y . Thus, f(x), being necessarily this limit point, will belong

to Y . Moreover, then, for a.e. x,

MIf(x) � lim inf
n0!1

MIfn0(x)

because
dist

�
f(x); f(~x)

�
= lim

n0!1
dist

�
fn0(x); fn0(~x)

�
� lim inf

n0!1
MIfn0(x)jx� ~xj� :
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The lower semi-continuity assumption on N and Fatou's Lemma givesZ
X

N
�
f(x)

�
dx �

Z
X

lim inf
n0!1

N
�
fn0(x)

�
dx � lim inf

n0!1

Z
X

N
�
fn0(x)

�
dx � L :

For the measure estimate, we note that

fx 2 I : (MIf)
1=�(x) > �g

is, except for a null set, contained in an increasing union of the sets

Dn = \1m=nfx 2 I : (MIfm)
1=�(x) > �g ;

so that��fx 2 I : (MIf)
1=�(x) > �g

�� = lim
n!1

jDnj

� lim inf
n!1

��fx 2 I : (MIfn)
1=�(x) > �g

�� � ��1�(I) :

We now construct the desired subsequence which is Cauchy convergent a.e. Starting

with the sequence n0(j) = j, we will choose, by inducton on k, a subsequence nk(j) of

nk�1(j) and some countable family Ik of closed subintervals of X along with distinguished

points cI 2 I for each I 2 Ik so that

Zk = X n
[
I2Ik

I

has measure 0, and, for every I 2 Ik,

fnk(j)(cI) is Cauchy convergent as j !1 and lim sup
j!1

(MIfnk(j))
1=�(cI) �

1

kjIj
:

This will do it because then the diagonal subsequence fnj(j) will be Cauchy convergent at

almost every point x 2 X. In fact, for almost every x 2 X n [1k=0Zk and for � > 0, we will

be able to choose:

�rst an integer k >
�
4
�

�1=�
,

second, an interval I 2 Ik containing x, and

third, an integer h � k so that

dist
�
fnk(i)(cI); fnk(j)(cI)

�
< �=3 and (MIfnk(j))(cI) <

4

3(k jIj)�

for i; j � h. Then, since ni(i) = nk(i
0) and nj(j) = nk(j

0) for some i0; j0 � h,

dist
�
fni(i)(cI); fnj(j)(cI)

�
< �=3

dist
�
fni(i)(x); fni(i)(cI)

�
� (MIfni(i))(cI)jx� cI j

�

� (MIfnk(i0))(cI)(jIj)
� <

4jIj�

3(kjIj)�
<

�

3
;

dist
�
fnj(j)(x); fnj(j)(cI)

�
� (MIfnj(j))(cI)jx� cI j

� <
�

3
;
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hence,

dist
�
fni(i)(x); fnj(j)(x)

�
<

�

3
+

�

3
+

�

3
= � :

Fixing k, we will inductively choose subsequences m1(j) of nk�1(j), m2(j) of m1(j),

m3(j) of m2(j), : : : as well as subintervals I1; I2; I3; : : : of X with points ci 2 Ii so that

nk(j) = mj(j) ; Ik = fI1; I2; : : :g ; cIi = ci

satisfy the desired conditions.

To do this, we �rst choose an integer

q > 2k�(X);

and let I be the decomposition of the interval X into 2q nonoverlapping subintervals of

equal length. Since X
I2I

�(I) � �(X) <
q

2k
;

we may choose q \good"intervals I1; I2; : : : ; Iq 2 I with

�(Ii) <
1

2k
:

Now, for each i = 1; 2; :::; q, we may use the weak-type bound with I = Ii and

� = 1=(kjIij) to see that each set

Em0(j) = fx 2 Ii : (MIifm0(j))
1=�(x) >

1

kjIij
g

has measure

jEm0(j)j � kjIij�(Ii) <
1

2
jIij

for all j suÆciently large. By Fatou's Lemma,

Z
Ii

lim inf
j!1

�
�Em0(j)

(x) +
jIij

3L
N (fm0(j)(x))

�
dx �

1

2
jIij +

jIij

3L
L =

5

6
jIij :

Thus we may choose a point ci 2 Ii and a subsequence m1(j) of m0(j) so that

�Em1(j)
(ci) +

jIij

3L
N (fm1(j)(ci)) < 1

for all j. In particular, ci 62 Em1(j), hence,

(MIifm1(j))
1=�(ci) �

1

kjIij
:
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Also since N (fm1(j)(ci)) is bounded in j , we may use another subsequence to assume that

fmi(j)(ci) is Cauchy convergent as j !1 :

We are still left with the remaining q (possibly \bad") subintervals

I n fI1; : : : ; Iqg = fJ1; : : : ; Jqg :

Scaling shows that we may repeat the above argument �rst with X;nk�1(j) replaced by

J1;mN (j) obtaining again q good subintervals Iq+1; : : : ; I2q of J1 and then, inductively,

points cq+1 2 Iq+1; : : : :; c2q 2 I2q and consecutive subsequences mq+1(j); : : : ;m2q(j) so

that

MIq+if
1=�
mq+i(j)

(cI+i) �
1

kjIq+ij
and fmq+i(j)(cq+i) is Cauchy convergent

for i = 1; : : : ; q. Similarly, we extract q good subintervals with distinguished points from

each of J2; : : : ; Jq. Then we repeat with the remaining, possibly bad, subintervals of

J1; J2; : : : ; Jq. Continuing, we �nally obtain consecutive subsequences mi(j), intervals Ii,

and points ci 2 Ii so that fmi(j)(ci) is Cauchy convergent as j !1.

It also follows that almost every x 2 X is eventually contained in some good

subinterval Ii, that is, ��X n [1i=1Ii
�� = 0

because, at each stage, the good subintervals cover at least 1
2 of the interval being

considered. For j � i, nk(j) = mj(j) is a subsequence of mi(j), hence, fnk(j)(ci) is

Cauchy convergent. Moreover, the estimate

MIif
1=�
nk(j)

(ci) �
1

kjIij

now holds for each i and all j � i, and the proof is complete.
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