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ABSTRACT. We identify a sufficiant condition for a sequence of Gibbs measures Pλ with the density Zλe−J0(v)−J1(v),
v ∈ Rn, defined on a state space of v′s, to converge weakly in a sense of measures to a Gibbs measure with a density
Zλe−J0(v), where the dominating measure for the density is the Hausdorff measure with an appropriate dimension. The
function J0 identifies an objective and J1 defines a constraint. The condition we introduce requires the Hessian of J1 to
be non-negative definite and to have a constant rank on each component of {v ∈ Rn | J1(v) = 0}. The result presented
shows that the probability measures Pλ concentrate on the highest dimensional stratum of J−1

1 (0). We apply this result
to a non-quasiconvex variational problem describing microstructural equilibria of a binary martensitic alloy. We show that
the Young’s measure describing, in general, non-attainable infimum of such a problem can be obtained as a ”push-forward”
measure induced by the probablity measure Pλ through a linear bounded operator Tλ : GM 7→ AY , where GM denotes
the space of Gibbs measures, and Y M denotes the space of Young’s measures defined as all probability measures generated
by gradients of bounded sequences in a suitable Sobolev space.

1. INTRODUCTION

We consider some measure theoretic problems within the context of simulated annealing with constraints. Simulated
annealing is a stochastic optimization algorithm that mimics the physical process of a system settling into the state of
minimal energy. It is usually considered in a discrete state space setting when the objective has multiple optima, but
continuous state space simulated annealing has found many applications ([2], [3], [7]). In a problem described below,
we consider a discrete state space simulated annealing with, possibly, complicated constraints. The constraints can be
expressed as the zero set of a nonnegative function, and then we can implement the algorithm through a relaxation
method wherein we add in a nonnegative multiple of the constraint function to the objective and let the multiplier go to
infinity. The results presented in this paper show that one must choose the constraint function carefully for otherwise
the relaxation will introduce spurious terms into the objective.

The basic idea of Simulated Annealing (SA) goes back to [8], although it was not given its name until 30 years
later [10]. Numerous advances in the general area of “Markov Chain Monte Carlo” (MCMC; see [12]) have lead to
extensions of the basic SA algorithm which greatly improve its performance and range of applicability. Suppose our
objective is to find

arg min
v
J0(v), v ∈ Rn.

Assume that J0 is a sufficiently regular function (e.g., continuous), bounded below, and J0 → ∞ as ‖v‖ → ∞
sufficiently fast that

Z−1 =
∫

Rn

e−J0(v) dv < ∞.
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Then, it is easy to construct Markov Chains so that the limiting (stationary) distribution of the chain will be the Borel
probability measure with Lebesgue density function

(1.1) f(v) = Ze−J0(v).

Here, the limiting probability distribution is known as a Gibbs measure. The MCMC methodology provides many
different approaches to obtain such chains with the Gibbs measure as limiting distribution. Now suppose that we wish
to constrain v to the set

(1.2) M = {v : J1(v) = 0} ,
where J1 ≥ 0 and also satisfies regularity conditions similarly to J0. A convenient approach to solving the constrained
minimization problem is to apply SA to the Gibbs measure with density

(1.3) f(v;λ) def= Zλe
−J0(v)−λJ1(v),

and then let λ → ∞. Here, Zλ is a normalizing constant so that
∫
f(v;λ)dv = 1. We conjecture that the resulting

limit would be the Gibbs measure with density (1.1) on M , where the dominating measure for the density would
be Hausdorff measure on M of an appropriate dimension. The main result of this paper shows that, with a suitable
condition on the second derivative of J1, this conjecture is true.

2. STATEMENT OF THE MAIN RESULT

We use weak convergence of probability measures. To define weak convergence of probability measures, suppose
〈Pt : t ∈ Z〉 is a sequence of probability measures and P is a fixed probability measure, all defined on the Borel sets
E of a given Polish space E. Weak convergence of Pn to P , denoted Pn ⇒ P , means

∫
φdPn →

∫
φdP,

for all bounded continuous real valued functions φ. The theory of weak convergence of measures is presented in [1].

For λ > 0 and nonnegative continuous functions J0, J1 on Rn with

Z−1
λ =

∫
Rn

e−(J0(x)+λJ1(x)) dx < ∞ ,

we have the probability density function

f(x;λ) = Zλe
−(J0(x)+λJ1(x))

and corresponding probability measure

Pλ(B) =
∫

B

f(x;λ) dx ,

defined for Lebesgue measurable subsets B of Rn. We will investigate the behavior of Pλ as λ→∞.

Theorem 2.1. Assume the following:

(A1) J0 ∈ C0(Rn) and J1 ∈ C3(Rn).
(A2) J0 ≥ 0 and J1 ≥ 0.
(A3) For some p > 0, J0(x) ≥ ‖x‖p and J1(x) ≥ ‖x‖p for all ‖x‖ sufficiently large, p > 2.
(A4) M = {x ∈ Rn : J1(x) = 0} is nonempty and bounded.
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(A5) There exist bounded disjoint open set U1, U2, · · · , Uj and integers 0 ≤ k1 < k2 < · · · < kj ≤ n satisfying:
(a) M ⊂ U = U1 ∪ U2 ∪ · · · ∪ Uj ,
(b) On each Ui, the Hessian D2J1 is nonnegative definite and has constant rank ki for i = 1, · · · , j,
(c) For some positive numbers C and α, D3J1 satisfies the uniform Hölder condition

‖D3J1(x)−D3J1(y)‖ ≤ C |x− y|α for x, y ∈ U .

Then each set Mi = M ∩Ui is a C2,α smooth n−ki dimensional manifold, and, as λ→∞, the probability measures
converge

Pλ ⇒ P ,

where, for any Borel set B ⊂ Rn,

(2.1) P (B) = Z

∫
M1∩B

e−J0(a) Λ(a)−1/2 dHn−k1a with Z−1 =
∫

M1

e−J0 Λ−1/2 dHn−k1 ,

Λ(a) is the product of the k1 positive eigenvalues ofD2J1(a), andHn−k1 is (n−k1)-dimensional Hausdorff measure.

We note that the probability measures Pλ concentrate only on the highest dimensional stratum M1 of M = J−1
1 {0}

and do not produce any lower dimensional measures on M2 ∪ · · · ∪Mj .

In Section 7, we discuss a generalization of the main result, first to the case where the ambient space Rn is replaced
by a compact Riemannian manifold and second to treat multiple limits

lim
λ1→∞

lim
λ2→∞

· · · lim
λj→∞

Pλ1λ2···λj

of probability measures in the form

Pλ1λ2···λj
= Zλ1λ2···λj

∫
Rn

e−W0(x)−λ1(x)W1(x)−λ2(x)W2(x)−···−λj(x)Wj(x) dx

Sections 3 through 5 gather material necessary to prove Theorem 2.1 in Section 6.

3. NEAREST POINT PROJECTION FOR A SUBMANIFOLD

Recall that, for any Borel set A ⊂ Rn and 0 ≤ k ≤ n, the k dimensional Hausdorff measure Hk(A) is defined [6],
2.10.2. It is normalized so that, for integer k, in Rk, Hk coincides with k dimensional Lebesgue measure. In a higher
dimensional Rn, the restriction of Hk to a k dimensional C1 submanifold M coincides with the Riemannian volume
measure on M for the metric induced from Rn. In particular, a k dimensional ball of radius r in Rk,

Bk
r (a) ≡ {x ∈ Rk : |x− a| < r} ,

has

(3.1) Hk(Bk
r (a)) = αkr

k

where αk is the k dimensional Lebesgue measure of the unit ball in Rk.

Our notation for an integral with respect to a (lower dimensional) Hausdorff measure will have the form∫
A

f(a) dHka or
∫

A

f dHk ,

while our integrals with respect to the (top dimensional) Lebesgue will keep the standard notation∫
U

f(x) dx rather than
∫

U

f(x) dHnx.

In particular, we have the polar coordinate formula for a Lebesgue integrable function f on the ball BR(0) ≡ Bn
R(0)∫

BR(0)

f(x) dx =
∫

Sn−1

∫ R

0

f(rω) rn−1 dr dHn−1ω ,
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where Sn−1 is the n− 1 dimensional unit sphere in Rn. One readily checks that

(3.2) Hn−1(Sn−1) = nαn

by differentiating (3.1).

For any vector subspace T of Rn, the orthogonal projection

ΠT : Rn → T

is the linear map which takes any point x ∈ Rn to the unique point ΠT (x) in T that is nearest to x.

Suppose that M is a compact m dimensional C2,α submanifold of Rn. Then the

m dimensional tangent space TaM and n−m dimensional normal space (TaM)⊥

are continuously differentiable functions of a ∈M . For the submanifold M there is also a nearest point map ΠM that
is well-defined in some “tubular” neighborhood of M . Its differential at a point x is close to the orthogonal projection
of Rn onto TΠM (x)M . Specifically, we have the

Lemma 3.1. There is a bounded open neighborhood U of M in Rn so that every point x ∈ U has a unique nearest
point ΠM (x) in M . Moreover, on some such U , the map ΠM is C1,α smooth, and there is a positive constant C so
that

‖DΠM (x) − ΠTΠM (x)M‖ ≤ C|ΠM (x)− x|α

for all x ∈ U .

Proof. As discussed for example in [5], the nearest point neighborhood property of a compact C2 submanifold M
depends on its curvature bound. It holds specifically for the open neighborhood

{x ∈ Rn : dist(x,M) < (max
a∈M

‖AM (a)‖)−1} ,

whereAM is the second fundamental form ofM . For a ∈M ,DΠM (a) = ΠTaM . Since, for a compactC2,α subman-
ifold M , the map ΠM is C1,α bounded in some compact neighborhood of M , the desired estimate of ‖DΠM (x) −
ΠTΠM (x)M‖ follows. �

Corollary 3.2. The m dimensional Jacobian JmΠM ≡ ‖ ∧m DΠM‖ =
√

det ((DΠM ) ◦ (DΠM )∗) (See [6] 3.2.22)
satisfies

| JmΠM (x) − 1 | ≤ C|ΠM (x)− x|α

on some such neighborhood U for some positive constant C.

Proof. The linear map ΠTΠ(x)M , being an orthogonal projection onto an m dimensional space, has m Jacobian 1.
Since

√
t is smooth near t = 1, the estimate follows from the formula for Jm and Lemma 3.1. �

For small U , each slice Π−1
M {a} is the graph of a C1 small function over an n−m dimensional normal disk

Nδ(a) ≡ Bδ(0) ∩ (TaM)⊥ .

More precisely,

Corollary 3.3. For some such U , there are positive δ and C and, for every point a ∈M , a C1,α function

ga : Nδ(a) −→ TaM

so that ga(0) = 0, ‖Dga(y)‖ ≤ C|y|α for y ∈ Nδ(a), and

Π−1
M {a} = Ga(Nδ(a)) where Ga(y) = a+ y + ga(y) .

It follows that Ga : Nδ(a) → Π−1
M {a} is a C1 diffeomorphism satisfying
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| Jn−mGa(y) − 1 | ≤ C|y|α ,

where Jn−mGa ≡ ‖ ∧n−m DGa‖ =
√

det ((DGa)∗ ◦ (DGa)).

For x ∈ U and a = ΠM (x), the inverse relation

x = Ga(y) ⇔ y = Π(TaM)⊥(x− a)

shows that

(3.3) |y| ≤ |x− a| ≤ |y| + C|y|1+α .

Proof. By Lemma 3.1, the rank of DΠM (x) equals m for x near M . By the rank theorem [4], 10.3, the set Π−1
M {a}

is a C1,α submanifold orthogonal to M at a, and hence the graph of a C1,α function over a ball in the normal space
to M at a. As a varies over the compact submanifold M , estimates on the size of this ball and the C1,α norm of this
function are all uniform, by the proof of the rank theorem. �

Integrals over such a tubular neighborhood may be computed using the above Jacobians:

Lemma 3.4. For any bounded continuous function ψ on Rn,∫
U

ψ(x) dx =
∫

M

(∫
Π−1

M {a}
ψ · (JmΠM )−1 dHn−m

)
dHma

=
∫

M

(∫
Nδ(a)

ψ(Ga(y)) · (JmΠM )−1(Ga(y)) · Jn−m(Ga(y)) dy

)
dHma .

Proof. For the first equality, we may apply the (coarea) change of variable formula [6], 3.2.22(3) for the map ΠM :
U →M , ∫

U

φ(x)(JmΠM )(x) dx =
∫

M

(∫
Π−1

M {a}
φdHn−m

)
dHma ,

with φ(x) = ψ(x) · (JmΠM )−1(x). For the second equality, we then apply the (area) change of variable formula [6],
3.2.5 for the map Ga : Nδ(a) → Π−1

M {a},∫
Nδ(a)

(φ(Ga(y)) · (Jn−mGa)(y) dy =
∫

Π−1
M {a}

φdHn−m

with φ = ψ · (JmΠM )−1. �

For use in Section 7, we next observe that:

All the results through Corollary 3.2 continue to hold in case the ambient space Rn is replaced by an n dimensional
Riemannian manifold N .

Concerning Lemma 3.4, one additional observation is required. In the Rn case, each set

(3.4) Π−1
M {a} = {x ∈ Rn : dist(x,M) < δ, ΠM (x) = a} = {a+ v : v ∈ (TM (a))⊥, |v| < δ}

is simply a flat n −m dimensional planar disk, while, in the general Riemannian case, it is a uniformly smooth (but
possibly curved) n−m dimensional disk in N .

More precisely, consider, for each a ∈M , the n−m dimensional planar disk in the normal space

Vδ(a) ≡ {v ∈ (TaM)⊥ : |v| < δ} ⊂ TaN .



6 DENNIS D. COX, ROBERT HARDT, AND PETR KLOUČEK

Lemma 3.5. There exist positive δ and C and, for every point a ∈M , a C1,α function Ga mapping Vδ(a) diffeomor-
phically onto Π−1

M {a} so that Ga(0) = a, DGa(0) is an isometry, and, for every y ∈ Vδ(a),

‖DGa(y)−DGa(0)‖ ≤ C|y|α;

hence,

(3.5) |y| ≤ dist(Ga(y), a) ≤ |y| + C|y|1+α ,

and
| Jn−mGa(y) − 1 | ≤ C|y|α ,

where Jn−mGa =
√

det ((DGa)∗ ◦ (DGa)).

Proof. In the general Riemannian case, the set Π−1
M {a} is a totally geodesic n −m dimensional disk in N that is or-

thogonal to M at a. The desired parameterizing map Ga is obtained by simply restricting the Riemannian exponential
map ExpN

a to the normal disk Vδ(a). The estimates all follow from properties of this exponential map. In particular,
as a varies over the compact submanifold M , all estimates are uniform because of the C0,α bound on the sectional
curvature of M . �

Lemma 3.4 is now replaced by:

Lemma 3.6. For any bounded continuous function ψ on N ,∫
U

ψ(x) dx =
∫

M

(∫
Π−1

M {a}
ψ · (JmΠM )−1 dHn−m

)
dHm(a)

=
∫

M

(∫
Vδ(a)

ψ(Ga(y)) · (JmΠM )−1(Ga(y)) · Jn−m(Ga(y)) dy

)
dHm(a) .

Proof. The first equality follows from [6], 3.2.22(3) as in the proof of 3.4. For the second equality, we then apply the
(area) change of variable formula [6], 3.2.5 for the map Ga : Vδ(a) → Π−1

M {a},∫
Vδ(a)

φ(Ga(y) · (Jn−mGa)(y) dy =
∫

Π−1
M {a}

φ dHn−m

with φ = ψ · (JmΠM )−1. �

4. THE ZERO SET OF A NONNEGATIVE FUNCTION OF FIXED NONDEGENERACY

Theorem 4.1. Suppose that F is a nonnegative, C3,α smooth function on Rn, m ∈ {0, · · · , n− 1}, M = F−1{0} is
compact, and rank ∂2F

∂xi∂xj
(x) ≡ n−m for all x in some neighborhood of M . Then, there are positive numbers δ and

C so that:

(1) For a ∈ M , gradF (a) vanishes, and the symmetric matrix ∂2F
∂xi∂xj

(a) has, counting multiplicities, m zero eigen-
values and n−m positive eigenvalues

λ1(a) ≤ λ2(a) ≤ · · · ≤ λn−m(a) ,

which are continuous in a with a positive minimum and a finite maximum.

(2) M is an m dimensional embedded C2,α smooth submanifold.

(3) For each a ∈M , there is an an orthogonal rotation Γa of Rn so that

Γa({0} × Rn−m) = (TaM)⊥
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and

|F (a+ Γa(x)) −
n∑

i=m+1

1
2
λi(a)(xi − ai)2| ≤ C( sup

Bδ(a)

‖D2F‖)|x− a|3

for all x ∈ Bδ(a).

Note that the numbers δ and C in Theorem 4.1 as well as the δ and C of Corollary 3.3 are all uniform, independent of
a ∈M .

Proof of 4.1. To verify (1), note that for each a ∈ M and each vector v ∈ Rn, the function Fv(t) = F (a + tv) has a
minimum at t = 0. So v·gradF (a) = dFv

dt |t=0 = 0, and

0 ≤ d2Fv

dt2
|t=0 =

d

dt
|t=0v · gradF (a+ tv) =

∑
i,j

vi
∂2F

∂xi∂xj
(a)vj .

Thus gradF (a) = 0, and all the eigenvalues of ∂2F
∂xi∂xj

(a) are nonnegative. In general, the full collection of eigenvalues
of a square matrix, being the complex roots of the characteristic polynomial, varies continuously as the matrix varies.
See e.g. [6] 4.3.??. Here, by assumption, for a ∈ M , the matrix ∂2F

∂xi∂xj
(a) has, counting multiplicities, precisely m

zero eigenvalues and precisely n−m, nonzero, hence positive, eigenvalues. So, under ordering by size, these positive
eigenvalues become continuous functions on M . By the compactness of M , λ1 has a positive minimum and λn−m a
finite maximum.

To verify (2), we first observe that, near each point a ∈ M , the set M̃ = (gradF )−1{(0, · · · , 0)} is a C2,α smooth
submanifold of dimension m. This follows from the general rank theorem [4], 10.3. So it suffices to show that, locally
near any such a, M coincides with M̃ . To see this, consider a connected coordinate neighborhood Ω of a in M̃ . For
b ∈ Ṽ , there is a C1 curve γ : [0, 1] → Ω. Since

F (b) = F (b)− F (a) =
∫ 1

0

(F ◦ γ)′(t) dt =
∫ 1

0

(gradF )(γ(t)) · γ′(t) dt =
∫ 1

0

0 dt = 0 ,

b belongs to M . Thus Ω ⊂M . We conclude that M ∩ M̃ is open, as well as closed, relative to M̃ so that, near M , M
coincides with M̃ .

For (3), we let v1, · · · , vn be orthonormal eigenvectors of the symmetric matrix ∂2F
∂xi∂xj

(a) corresponding to the eigen-
values 0, · · · , 0, λ1(a), · · · , λn−m(a), and choose the rotation Γa of Rn satisfying Γa(ei) = vi for i = 1, · · · , n.
With Ha(x) = a+ Γa(x), we deduce that

∂2(F ◦Ha)
∂xi∂xj

(0)[ei] =

{
0 for i = 1, · · · ,m
λi(a)ei for i = m+ 1, · · · , n .

Since also (F ◦Ha)(0) = 0, grad(F ◦Ha)(0) = 0, and ‖D2F‖ is bounded in some neighborhood of M , the second
order Taylor expansion for F ◦Ga now gives (3). �

5. SOME INTEGRALS.

Lemma 5.1. For k = 1, 2, · · · , ∫ ∞

0

e−λt2tk−1 dt = βkλ
− k

2

where

βk =

{
2−

k
2 (k − 2)(k − 4) · · · (2) for k even

2−
k−1
2 (k − 2)(k − 4) · · · (3) ·

√
π for k odd .

Proof. The substitution s =
√
λt gives the factor λ−

k
2 and reduces to the case λ = 1.
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Integration by parts gives∫ ∞

0

e−t2tk−1 dt =
−1
2

∫ ∞

0

tk−2 d(e−t2) =
k − 2

2

∫ ∞

0

e−t2tk−3 dt .

This may be applied with k replaced by k − 2, k − 4, · · · , finally giving the formula

∫ ∞

0

e−t2t2j dt =

{
2−

k−2
2 (k − 2)(k − 4) · · · (2) ·

∫∞
0
e−t2t dt for k even

2−
k−1
2 (k − 2)(k − 4) · · · (3) ·

∫∞
0
e−t2 dt for k odd .

Of course, substituting s = t2 gives
∫∞
0
e−t2t dt = 1

2 , and the last integral is found by the usual polar coordinate trick

(∫ ∞

0

e−t2 dt

)2

=
∫ ∞

0

∫ ∞

0

e−x2−y2
dx dy =

∫ 2π

0

∫ ∞

0

e−r2
r dr dθ =

2π
2

∫ ∞

0

e−u du = π .

�

Corollary 5.2.

(5.1) lim
λ→∞

λ
k
2

∫ ∞

0

e−λt2tj dt = 0 for any integer j > k − 1 ,

and

(5.2) lim
λ→∞

λ
k
2

∫ ∞

δ

e−λt2tk−1 dt = 0 for any δ > 0

Proof. Applying Lemma 5.1 with k = j + 1 gives the first conclusion because λ(−j+k−1)/2 → 0 as λ→∞. For the
second, we change variables s = λ1/2t to see that

λ
k
2

∫ ∞

δ

e−λt2tk−1 dt = λ
k
2 λ−

k−1
2 λ−1/2

∫ ∞

λ1/2δ

e−s2
sk−1 ds → 0 as λ→∞

because
∫∞
0
e−s2

sk−1 ds <∞. �

Corollary 5.3. For δ > 0 and 0 < λ1 ≤ λ2 ≤ · · · ≤ λk <∞,

lim
λ→∞

λ
k
2

∫
Bk

δ (0)

e−
1
2 λ(λ1y2

1+···+λky2
k) dy = 2k/2Λ−1/2kαkβk

where Λ = λ1 · · ·λk.

Proof. One can explicitly compute the integral over the k dimensional elliptical region

Ek
δ = { y ∈ Rk : λ1y

2
1 + · · ·+ λ1y

2
k < 2δ2 } ,

because Ek
δ = L(Bk

δ (0)) where

L(z1, · · · , zk) = ((2/λ1)1/2z1, · · · , (2/λk)1/2zk) for (z1, · · · , zk) ∈ Rk .

Using the change of variables y = L(z) with dy = (JkL) dz = 2k/2Λ−1/2dz, as well as polar coordinates, Lemma
5.1, and equation (5.2), we find that
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λ
k
2
∫

Ek
δ
e−

1
2 λ(λ1y2

1+···+λky2
k) dy = 2k/2Λ−1/2λ

k
2
∫

Bk
δ
e−λ|z|2 dz

= 2k/2Λ−1/2λ
k
2
∫

Sk−1

∫ δ

0
e−λr2

rk−1 dr dHk−1

= 2k/2Λ−1/2λ
k
2 kαk

∫ δ

0
e−λr2

rk−1 dr

= 2k/2Λ−1/2kαkλ
k
2 [
∫∞
0
e−λr2

rk−1 dr −
∫∞

δ
e−λr2

rk−1 dr ]

→ 2k/2Λ−1/2kαkβk − 0 as λ→∞ .

We get precisely the same limit with Ek
δ replaced by the ball Bk

δ (0) because we have the inclusions

Bk
γ(0) ⊂ Bk

δ (0) ⊂ Bk
ε (0) and Bk

γ(0) ⊂ Ek
δ (0) ⊂ Bk

ε (0)

with γ = min{δ, (2/λk)1/2δ} and ε = max{δ, (2/λ1)1/2δ} and we have

limλ→∞ λ
k
2
∫

Bk
ε (0)\Bk

γ(0)
e−

1
2 λ(λ1y2

1+···+λky2
k) dy ≤ limλ→∞ λ

k
2
∫

Bk
ε (0)\Bk

γ(0)
e−

1
2 λ(λ1|y|2) dy

≤ limλ→∞ kαkλ
k
2
∫∞

γ
e−

1
2 λ(λ1r2)rk−1 dr = 0

by equation (5.2). �

Lemma 5.4. Suppose 0 ≤ k ≤ n, F is a nonnegative continuous function on Rn, p > 0, and F (y) ≥ |y|p whenever
|y| is sufficiently large. Then, for any bounded open neighborhood U of F−1{0},

lim
λ→∞

λk/2

∫
Rn\U

e−λF (y) dy = 0 .

Proof. We may assume p < 2. Choose R > 0 so that U ⊂ BR(0) and F (y) ≥ |y|p whenever |y| ≥ R. On the
bounded region BR(0) \ U , F has a positive lower bound ε, and

λk/2e−λF (y) ≤ λk/2e−λε → 0

uniformly as λ→∞. Thus

lim
λ→∞

λk/2

∫
BR(0)\U

e−λF (y) dy = 0 .

For the remaining set Rk \ BR(0), we use polar coordinates and change variables s = λ1/pt to see that

λk/2

∫
Rn\BR(0)

e−λF (y) dy ≤ nαn−1λ
k/2

∫ ∞

R

e−λtp

tn−1 dt = nαn−1λ
k
2−

n−1
p − 1

p

∫ ∞

λ1/pR

e−sp

sn−1 ds → 0

as λ→∞ because k
2 −

n
p ≤ 0 and

∫∞
0
e−sp

sn−1 ds <∞. �

6. PROOF OF MAIN THEOREM.

First we treat the case j = 1 where the Hessian D2J1 has constant rank k = k1 in an open set U1 containing all of
M = J−1

1 {0} so that M is, by Theorem 4.1, an n− k dimensional submanifold of Rn.

Taking F = J1 and M = J−1
1 {0}, we choose δ and U ⊂ U1 small enough and C large enough to satisfy Lemma 3.1,

Corollary 3.2, Corollary 3.3, and Theorem 4.1 with m = n − k. In the remainder of the proof, we will occasionally
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enlarge C, finitely many times, without changing the notation. Nevertheless, the constant C will always just depend
on n and J1.

Let φ be a bounded continuous function on Rn and ε be any positive number satisfying

ε < min
{

1
2
,

1
2C

}
,

with C as in Corollary 3.2.

First we may assume that the tubular neighborhood U in Lemma 3.1, Corollary 3.2, and Corollary 3.3 (with the
corresponding δ from Corollary 3.3) is small enough so that, for any point x ∈ U and nearest point a = ΠM (x) ∈M ,
one has

(6.1) |x− a| < ε , |J0(x)− J0(a)| < ε , |φ(x)− φ(a)| < ε .

For λ sufficiently large, we have, by Lemma 5.4, that

(6.2) λ
k
2

∫
Rn\U

φ(x)e−J0(x)−λJ1(x) dx ≤ λ
k
2

∫
Rn\U

e−λJ1(x) dx < ε .

For the integral over U , we use Lemma 3.4 with ψ replaced by φe−J0−λJ1 to write

λ
k
2

∫
U

φ(x)e−J0(x)−λJ1(x) dx

= λ
k
2

∫
M

(∫
Nδ(a)

φ(Ga(y)) · e−J0(Ga(y)) · e−λJ1(Ga(y)) · (Jn−kΠM )−1(Ga(y)) · Jk(Ga(y)) dy

)
dHn−ka .

We may make upper estimates on each of these five terms in the integrand. Note that, by our choice of U and (3.3),
with x = Ga(y) ∈ U (hence a = ΠM (x)), one also has

|y| ≤ |x− a| < ε .

For the first term we use (6.1) to see that

φ((Ga(y)) ≤ φ(a) + ε .

For the second term we again use (6.1)

e−J1((Ga(y)) ≤ e−J1(a)+ε = e−J1(a)eε ≤ e−J1(a)(1 + 2ε) .

For the fourth term, we use Corollary 3.2 to infer that

(Jn−kΠM )−1(Ga(y)) ≤ (1− Cεα)−1 ≤ 1 + 2Cεα .

For the fifth term, we use Corollary 3.3 to obtain

Jk(Ga(y)) ≤ (1 + Cεα) .

Combining these and changing C, we now have the upper bound

λ
k
2

∫
U

φ(x)e−J0(x)−λJ1(x) dx ≤ λ
k
2 (1 + Cεα)

∫
M

(φ(a) + ε)e−J0(a)

∫
Nδ(a)

e−λJ1(Ga(y)) dy dHn−ka .(6.3)
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The remaining third term is in the integral over Nδ(a). To estimate this, we rotate coordinates as in Theorem 4.1(3)
with F = J1 and use (6), Corollary 5.3 with k = k, and (5.1) with k = k + 2 to deduce that

λ
k
2

∫
Nδ(a)

e−λJ1(Ga(y)) dy ≤ λ
k
2

∫
Nδ(a)

e−λ(
Pk

i=1
1
2 λi(a)y2

i )eCλ|y|3 dy

≤ λ
k
2

∫
Nδ(a)

e−λ(
Pk

i=1
1
2 λi(a)y2

i )(1 + 2Cλ|y|3) dy

≤ λ
k
2

∫
Nδ(a)

e−λ(
Pk

i=1
1
2 λi(a)y2

i ) dy + 2Cλ
k+2
2 kαk

∫ ∞

0

e−
1
2 λλ1(a)r2

r3+k−1 dr

−→ 2
k
2 Λ−1/2(a) kαkβk + 0 as λ→∞ ,

(6.4)

where Λ(a) = λ1(a) · · · · · λk(a). Taking the lim supλ→∞ in (6.3) along with (6.4), recalling (6.2), and then letting
ε ↓ 0, we conclude that

(6.5) lim sup
λ→∞

λ
k
2

∫
Rn

φ(x)e−J0(x)−λJ1(x) dx ≤ 2
k
2 kαkβk

∫
M

e−J0(a)Λ−1/2(a) dHn−ka .

Next, arguing in the same manner using lower bounds gives the inequality

(6.6) lim inf
λ→∞

λ
k
2

∫
Rn

φ(x)e−J0(x)−λJ1(x) dx ≥ 2
k
2 kαkβk

∫
M

e−J0(a)Λ−1/2(a) dHn−ka .

This essentially finishes the proof. For the normalization, we define, for λ > 1,

Yλ =
(
2

k
2 kαkβk

)−1

Zλ
k
2 ,

where

Z =
(∫

M

e−J0(a)Λ−1/2(a) dHn−ka

)−1

as before. We now apply (6.5) and (6.6) first with g ≡ 1 to see that

lim
λ→∞

Yλ

Zλ
= lim

λ→∞
Yλ

∫
Rn

e−J0(x)−λJ1(x) dx = 1 ,

and second with the general bounded continuous φ to obtain the conclusion

lim
λ→∞

Zλ

∫
Rn

φ(x)e−J0(x)−λJ1(x) dx

= lim
λ→∞

Yλ

∫
Rn

φ(x)e−J0(x)−λJ1(x) dx = Z

∫
M

φ(a)e−J0(a)Λ−1/2(a) dHn−ka .

which gives the desired convergence of measures Pλ ⇒ P .

Finally we consider the case j > 1 of the Main Theorem involving the extra disjoint regions U2, · · · , Uj on each of
which the Hessian D2J1 has constant rank strictly larger than k1, which is its rank on U1. Now each set

Mi = {x ∈ Ui : J1(x) = 0}
is, by Theorem 4.1(2), a compact n − ki dimensional submanifold. We will repeat most of the above arguments and
again use the factor λk1/2 to try to estimate

λ
k1
2

∫
Rn

φ(x)e−J0(x)−λJ1(x) dx .
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as λ → ∞. As before we may, by Lemma 5.4, restrict our integration to any fixed neighborhood U of M . We take
U = U1∪· · ·∪Uj where each Ui is, as before, a sufficiently small (depending on a given ε and test function φ) tubular
neighborhood of Mi.

For the region U1, we find, by estimating the upper and lower bounds just as before, that

(6.7) lim
λ→∞

λ
k1
2

∫
U1

φ(x)e−J0(x)−λJ1(x) dx = 2
k1
2 k1αk1βk1

∫
M1

e−J0(a)Λ−1/2(a) dHn−k1a

where Λ(a) is, as before, the product of the k1 positive eigenvalues of D2J1(a) for a ∈M1.

However, for any region Ui with i = 2, · · · , j, one finds that,with a ∈Mi, in place of (6.4), one has the upper estimate

λ
k1
2

∫
Nδ(a)

e−λJ1(Ga(y)) dy

≤ λ
k1
2

∫
Nδ(a)

e−
1
2 λλ1(a)|y|2)(1 + 2Cλ|y|3) dy

= λ
k1
2 kiαki

∫ ∞

0

e−
1
2 λλ1(a)r2

rki−1 dr + 2Cλ
k1+2

2 kiαki

∫ ∞

0

e−
1
2 λλ1(a)r2

r3+ki−1 dr

−→ 0 + 0 as λ→∞ ,

(6.8)

by (5.1), because ki > k1 and 3 + ki > k1 + 2. It follows that, for any bounded continuous φ on Rn,

(6.9) lim
λ→∞

λ
k1
2

∫
Ui

φ(x)e−J0(x)−λJ1(x) dx = 0

for i = 2, · · · , j. With

Yλ =
(
2

k1
2 k1αk1βk1

)−1

Zλ
k1
2 ,

we conclude from (5.1), (6.7), and (6.9) as before that, as λ→∞, Yλ/Zλ → 1 and

Zλ

∫
Rn

φ(x)e−J0(x)−λJ1(x) dx → Z

∫
M1

φ(a)e−J0(a)Λ−1/2(a) dHn−k1a ,

which completes the proof.

7. MULTIPLE LIMITS

Multiple constraints generated by functions J1, J2, · · · , Jj lead to consideration of Gibb’s measures obtained from
multiple limits limλ1→∞ limλ2→∞ · · · limλj→∞. With suitable nondegeneracy assumptions on the Hessians of the Ji,
one expects to obtain consecutively suitably weighted Hausdorrf measures on lower and lower dimensional submani-
folds. To inductively follow this procedure, one first needs to verify that:

The Main Theorem remains true if Rn is replaced by an n dimensional Riemannian manifold N .
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Proof. The proof follows exactly as in Section 6 until we need to apply Lemma 3.6 instead of Lemma 3.4 and replace
the righthand side of (6) by

(7.1) λ
k
2

∫
M

(∫
Vδ(a)

φ(Ga(y)) · e−J0(Ga(y)) · e−λJ1(Ga(y)) · (Jn−kΠM )−1(Ga(y)) · Jk(Ga(y)) dy

)
dHn−ka .

Note that, by our choice of U and (3.3), with x = Ga(y) ∈ U (hence a = ΠM (x)), one also has

|y| ≤ dist(x, a) < ε .

We estimate the first four factors of (7.1) as before in our estimate of (6). The new fifth factor is estimated using
Lemma 3.3 to obtain

Jk(Ga(y)) ≤ (1 + Cεα) .
Combining these and changing C, we now have the upper bound

λ
k
2
∫

U
φ(x)e−J0(x)−λJ1(x) dx

≤ λ
k
2 (1 + Cεα)

∫
M

(φ(a) + ε)e−J0(a)
∫

Vδ(a)
e−λJ1(Ga(y)) dy dHn−ka .

which corresponds to (6.3). The remainder of the proof now follows precisely as before in Section 6. �

Using this, we may now establish one result concerning multiple limits.

Theorem 7.1. Suppose that p > 0 and that, for i = 0, · · · , j, Ji is a nonnegative C3,α function on Rn satisfying
Ji(x) ≥ |x|p for |x| sufficiently large. Suppose also that the set

M = {x ∈ Rn : J1(x) = J2(x) = · · · Jj(x) = 0}
is nonempty and lies in a bounded open set U on which each HessianD2Ji is nonnegative definite with a constant rank
ki for i = 1, · · · , j. We assume that, for a ∈M , the total Hessian D2(J1 + · · ·+ Jj)(a) has rank k ≡ k1 + · · ·+ kj .
Hence M is a C2,α smooth n−k dimensional manifold. Finally we assume that the images of the individual Hessians
D2Ji(a) are orthogonal.

For λ1, · · · , λj ≥ 1, let Pλ1···λj be the probability measure on Rn, whose density is

Zλ1···λje
−J0(x)−λ1J1(x)−···−Jj(x)

with

Z−1
λ1···λj

=
∫

Rn

e−J0(x)−λ1J1(x)−λ2J2(x)−···−λjJj(x) dx.

Then
Pλ1···λj ⇒ P as λ1, · · · , λj →∞ , regardless of the order,

where, for any Borel set B ⊂ Rn,

P (B) = Z

∫
M∩B

e−J0(a) Λ1(a)−1/2 · · ·Λj(a)−1/2 dHn−k(a)

with

Z−1 =
∫

M

e−J0 Λ−1/2
1 · · ·Λ−1/2

j dHn−k ,

where Λi(a) is the product of the ki positive eigenvalues of D2Ji(a).

Proof. Following carefully the proof of the Main Theorem, we see that the only essential modification necessary for
treating the multiple limits is the step involved with finding, for fixed a ∈M , a rotation of coordinates, so that, on the
fiber, Π−1

W {a}, J1(x) now has the form

µ1y
2
1 + · · ·+ µk1y

2
k1

+ · · ·+ µk1+k2y
2
k1+k2

+ · · ·+ µky
2
k

where y = (y1, · · · , yn) = x − a. The point here is that because the Hessians D2J1(a), · · · , D2Jj(a) have images
that are completely orthogonal, they may be simultaneously diagonalized. �
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8. APPLICATION OF THEOREM 2.1 TO MICROSTRUCTURES OF A S BISTABLE MARTENSITIC ALLOY

The result proven in this communication pertains to computation of microstructure underlying effective properties
of functional materials. For the sake of clarity and simplicity we restrict ourselves to 2 × 2 vectorial situation of a
bistable martenstic alloy. Functional materials have multiple equilibrium configurations exhibiting microscale domain
patterns. Such patterns can be modeled using gradients of weakly differentiable maps u : R2 → R2 that, in some
appropriate sense, satisfy the first order differential inclusions of the form

∇u ∈
2⋃

i=1

SO(2)Ui, a.e. in Ω ⊂ R2,

{Ui | i = 1, 2, . . . , 2} = {RU1R
T |R∈P},

u(x) = g(x), x ∈ ∂Ω,

∇g ∈ Closure of the Interior of Rank-1 Convex Hull of
2⋃

i=1

SO(2)Ui.

(8.1)

P is a point group of rotation matrices that maps a referential configuration back to itself. The group SO(2) denotes
matrix rotations in R2. Namely, if Q ∈ SO(2) then

Q =
(

cos(α) sinα
− sinα cos(α)

)
for some angle α ∈ [0, 2π). The point group P is given by rotations that map any plane parallelopepid back to itself
in the case n = 2 considered here. The variants Ui ∈ M 2×2 are assumed to be symmetric and positive definite Bain
(transormation) matrices, describing the distortion of the atomic lattice.

In the framework of crystalline microstructures characterizing functional materials, minimizing stored energy often-
times means to deal with the lack of lower semicontinuity. This means that the weak limit of a minimizing sequence
does not minimize the associated stored energy. At the staring point let us assume that we are given a twice differen-
tiable function W : R2×2 7→ R1 such that, in view of (8.1),

(8.2)

{F ∈ R2×2 |W (F ) = 0} =
2⋃

i=1

SO(2)Ui, positive otherwise,

W (QF ) = W (F ), F ∈ R2×2, Q ∈ SO(2), frame indifference,

W (FR) = W (F ), F ∈ R2×2, R ∈ P, material symmetry.

Then we assign to each matrix F , representing the deformation gradient, a number I(u) – the strain energy, given by

I(u) def=
∫
Ω

W (∇u(x)) dx.(8.3)

The equilibria of I , i.e., the solutions of (8.1), are given by the variational problem

inf
{
I(u) |u ∈W 1,p(Ω), u− g ∈W 1,p

0 (Ω)
}
.(8.4)

Now, let uj be a minimizing sequence of (8.4). Starting with a state with finite energy, such a sequence will be bounded.
Then by Sobolev imbeddings, 2 < p < ∞ or by Alaoglu(-Banach-Bourbaki) theorem, p = ∞, this sequence will
posses either weak or weak-∗ limit u. By the Fundamental Theorem of the W 1,p- gradient Young’s measures, there
exists a Radon probability measure, µx, describing the microstructure representing (possibly) non-attainable infima of
I . Namely,

lim
j→∞

I(uj) =
∫
Ω

∫
M
W (A) dµx(A) dx,(8.5)

where M = M 2×2. This implies

W effective (x) =
∫
M
W (A) dµx(A).
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The dependence of W effective on the spatial variable x is, in general, due to possible non-uniformity of the Young
measure. Moreover, the effective stored energy, obtained by integration against the underlying Young’s measure,
coincides with the quasi-convexification of the crystalline density. The quasi-convexification is given by

I# def= inf

 1
meas Ω

∫
Ω

W (Du)(x) dx |u ∈W 1,p(Ω), u(x) = g(x), x ∈ ∂Ω


=
∫
Ω

W effective (x) dx.

There does not exist a general method for computing I# based on the above definition. Hence, the proposed sharpening
of the initial Gibbs measure, by taking the limits λi → +∞ and h → 0+, yields approximation strategy, in the
measure-theoretic framework, to identify I#.

The structure of the probability measure can be simple, if µx = δ∇u(x), or it can be profoundly complex. This depends
on the boundary data g. The measure can be unique or it can suffer from a massive lack of non-uniqueness due to the
complexity of the solutions to (8.1), [9]. Due to a possible lack of weak lower-semicontinuity, i.e., due to the possible
lack of functional minimizers of (8.4), let us define

I(µ) def=
∫
Ω

∫
M
W (A) dµx(A) dx,(8.6)

and let
YM

def= {µx | probability measures generated by the gradients of bounded sequances in A}

where A def=
{
u ∈W 1,p(Ω), u− g ∈W 1,p

0 (Ω)
}

. The generalized variational principle reads

inf {I(µ) |µ ∈ YM} .(8.7)

In the next sections, our goal is to show how the presented theory can be used to solve the generalized variational
problem (8.7).

8.1. REFORMULATION OF (8.4) USING LAGRANGE MULTIPLIERS WITHIN THE PRESENTED THEORY

We reformulate the variational problem (8.4) using Lagrange multipliers to separate the various requirements. Namely,
we have the following constraints

C1: ∇u ∈
⋃M

i=1 SO(2)Ui, for a. a. x ∈ Ω,
C2: continuity in view of the weak differentiability,
C3: attainment of the boundary condition.

Let us assume that each of the constraints admits a suitable “density”, which we denote Wi, i = 1, 2, 3. Consequently,
the global forms of the above constraints are given by Ji(u)

def=
∫
Ω
Wi(u(x)) dx. The densities are constructed in

Section 8.2 and Section 8.3.

In order to re-phrase this problem in terms of our theory, we proceed as follows. Let h > 0 be a discretization
parameter of any acceptable partitioning of Ω. We assume that the deformation u has a finite dimensional image
given by a Finite Element approximation uh that has coordinates {{U j

i }
N(h)
i=1 }2j=1 with respect to a suitable finite

element basis {ϕi}N(h)
i=1 . Let us denote the space of such functions by Vh, i.e., uh ∈ Vh has the representaion

uj
h(x) =

∑N(h)
i=1 U j

i ϕi(x), j = 1, 2, and dimVh = 2N(h). In what follows we will write uh, which is a function,

instead of the vector {Ui}2N(h)
i=1 =

{
{U j

i }
N(h)
i=1

}2

j=1
. Let

Mh
def= {uh ∈ Vh | J1(uh(x)) = 0, J2(uh(x)) = 0},

be a subset of Vh of those discrete functions that satisfy the gradient and continuity constraints in Ω.
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Remark 8.1. We note that for Mh to be non-empty an adaptive partitioning of Ω is required in order to align the
inter-element boundaries with the set of points at which the gradient of uh suffers a discontinuity. The reason is that
uh

ωh

∈ C∞(ωh). �

Then the finite dimensional version of the variational problem (8.4), may be written as a relaxed constrained optimiza-
tion problem in the following form

Argmin{J3(uh) |uh ∈Mh}.

We choose to replace the variational problem (8.4) in finite dimension with a relaxed (unconstrained) variational
problem

lim
λ2→+∞

lim
λ1→+∞

min
uh∈Vh

I(uh;λ1, λ2).

where

(8.8) I(uh;λ1, λ2)
def= λ1J1(uh) + λ2J2(uh) + J3(uh).

We prove the following Lemma before we proceed to application Theorem 7.1.

Lemma 8.2. The set Mh is a union of isolated orbits in R2N(h).

Proof. �

Let a Gibbs density f be given by

f (X;λ1, λ2)
def= Zλ1,λ2e

−I(X ;λ1,λ2),

X ∈ R2N(h), where Zλ1,λ2 is the normalizing constant, given by

Z−1
λ1,λ2

def=
∫

R2N(h)
e−I(X ;λ1,λ2) dX.

We note that the Gibbs measure is, in general, an asymptotic solution of the Fokker-Planck equation. In our particular
case, the standard variation σ2 appearing in the Fokker-Planck equation, and, consequently, in the definition of the
Gibbs measure, is set to be 2. Let us consider the Gibbs measure Pλ1,λ2,x,h given by

Pλ1,λ2,h(B) =
∫

B

f (uh(x);λ1, λ2) dU1, . . . , dU2N(h),(8.9)

where B ⊂ R2N(h) is a Lebesgue measurable set in the phase space Vh containing the coordinates of uh. Con-
sequently, the Gibbs measure is a measure on the discrete function space Vh. Assuming, for a moment, that the
assumptions of Theorem 7.1 are satisfied, we obtain weak convergence of the family of Gibbs’ probability measures
Pλ1,λ2,h to a Gibbs probability measure Ph, which is absolutely continuous with respect to a Hausdorff measure.
Namely,

Pλ1,λ2,h ⇒ Ph, as λ1 → +∞, λ2 → +∞.(8.10)

In addition, the order in which the limits are taken can be arbitrary for we assume that the images of the individual
Hessians of J1 and J2 are orthogonal when restricted to the relaxing orbits SO(2)U1 ∪ SO(2)U2. Next, we need to
identify the dimensionality of the Hausdorff measure. In view of (8.9), we consider the map{

{Uj}2N(h)
j=1

}
7→ J1(∇uh) + J2(uh).

The Hessian corresponding to this maping is 4N(h) × 4N(h) symmetric matrix. Let us assume that the rank of
the Hessian of J1 + J2 restricted to the relaxing orbits is equal to 2N(h), i.e., the Hessian has a zero eigenvalue of
multiplicity 2N(h) when evaluated at SO(2)U1 ∪ SO(2)U2. Theorem 7.1 identifies the dominating measure to be
(n− k)-dimensional Hausdorff measure. It follows from Lemma 8.2 that the dominating measure is supported on the
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union of orbits in R2N(h). Thus it has to be a one-dimensional Hausdorff measure. In our case, n = 2N(h), hence
k = 2N(h)− 1. For any Borel set B ⊂ R2N(h), the resulting Gibbs probability measure is thus given by

Ph(B) = Z

∫
Mh∩B

e−J3(vh)Λ1(vh)−1/2Λ2(vh)−1/2 dH1(vh),

Z−1 =
∫

Mh

e−J3(vh)Λ1(vh)−1/2Λ2(vh)−1/2 dH1(vh),

where, we recall, Λi are products, one for each relaxing orbit, of the 2N(h) positive eigenvalues of the second tensor
derivative of J1 + J2

vh∈Mh

, taken with respect to the coordinates {Uj}2N(h)
j=1 .

Let
Lh

def= lim
λ2→+∞

lim
λ1→+∞

Argmin
uh∈Vh

I(uh;λ1, λ2).

In words, we are collecting in Lh all continuous, discrete functions (more precisely their coordinates in Vh) with
gradients in SO(2)U1 ∪ SO(2)U2, upon suitable repartitioning of Ω, that minimize the L2(∂Ω)−distance to a given
boundary data (constraint) g. Now, suppose that we construct the Markov Chains of coordinates minimizing J3 as
λi → +∞, i = 1, 2. Then we have

Lemma 8.3. Let
M opt

h

def
= Argmin{J3(uh) |uh ∈ Vh, J1(uh(x)) = 0, J2(uh(x)) = 0}.

Then the set M opt
h is a union of isolated points, and

cardM opt
h ≤ .

Thus, in particular, the dominating measure for the limiting Gibbs measure Ph is the zero-dimensional Hausdorff
measure.

Proof. �

Applying Theorem 7.1 to Markov Chains of coordinates, which are optimal with respect to J3, we obtain a limiting
Gibbs measure, that, in view of Lemma 8.3, has now the representation

Ph(B) = Z−1
∑

v∗h∈Lh

q(v∗h)δv∗h(B), where q(v∗h) = e−J3(v
∗
h)Λ1(v∗h)−1/2Λ2(v∗h)−1/2,

Z−1
∑

v∗h∈Lh

q(v∗h) = 1.

Remark 8.4. We recall, that the convergence (8.10) takes place along the Markov Chains {Ui;λ1,λ2}
2N(h)
i=1 in Vh.

The Gibbs measure on the discrete function space Vh induces a measure on the physical domain Ω. Using these
coordinates, we construct maps x 7→ ∇uλ1,λ2,h(x). Consequently, we construct a family of Radon measures, µx,h,
parameterized by x ∈ Ω, characterizing volume fractions

λi,h(x0)
def
= lim

R→0+
lim

r→0+
{x ∈ BR(x0) | dist{∇uh(x), SO(2)Ui} < r} /meas(BR(x0)), i = 1, 2,(8.11)

for any x0 ∈ Ω. Hence, there exists a family of linear bounded operators Tx : Pλ1,λ2,h 7→ µλ1,λ2,x,R,r,h. Then, in
view of Theorem 7.1,

µλ1,λ2,x,R,r,h ⇒ µx,R,h, as λ1 → +∞, λ2 → +∞.

We note that the “volume averaging” (8.11) of the gradients of the induced sequences is not the only way to compute
the volume fractions. In terms of the Gibbs measure, it is more appropriate to compute the volume fractions as follows.

In this paper, we do not investigate the limit h→ 0+. Nonetheless, we expect

µx,R,h ⇒ µx as R, h→ 0+.

In connection with the generalized variational principle (8.7), we have in the sense of the weak convergence of mea-
sures, regardless of the order in which the limits are taken,

lim
h→0+

lim
λ2→+∞

lim
λ1→+∞

µλ1,λ2,x,h = Arginf {E(µ) |µ ∈ YM} .
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We will provide a communication of our attempts to prove these results in a separate exposition. �

The next two sections contain a particular construction of the densities for J1 and J2, which satisfy the assumptions
of Theorem 7.1 with ki = 2 for i = 1, 2.

8.2. A VECTORIAL GRADIENT CONSTRAINT DENSITY FOR A BINARY ALLOY

A proper gradient constraint density has to satisfy the constrains (A5) and (A6), in addition to the requirements (8.2),
appearing as the assumptions in Lemma 2.1, in order to avoid spurious states that could pollute the resulting measure
as the Lagrange multipliers approach infinity. We restrict ourselves to a two dimensional vectorial case for simplicity.

Let us consider the following two symmetric, positive definite, Bain (transformation) matrices

U1
def=
(
α γ
γ 1

)
and U2

def=
(
β γ
γ 1

)
,(8.12)

where α, β, γ ∈ R, α 6= β, α 6= γ2, β 6= γ2, are assumed to be given. We note that rank (U1 − U2) = 1. We have the
following

Lemma 8.5. Let ai ∈ R+, i = 1, . . . , 5, let ei, i = 1, 2 be canonical basis vectors in R2, e
def
= (1, 1)T , and let us

define a gradient constraint density by

W1(F )
def
= a1

(
detF −

(
α− γ2

))2 (
detF −

(
β − γ2

))2
+ a2

(
|Cof Fe2|2 −

(
α2 + γ2

))2 (
|Cof Fe2|2 −

(
β2 + γ2

))2

+ a3

(
|Fe1|2 − (α2 + γ2)

)2 (
|Fe1|2 − (β + γ2)

)2

+ a4

(
|Fe2|2 − (γ2 + 1)

)2

+ a5

(
|Fe|2 − (α+ γ)2 − (γ + 1)2)

)2 (
|Fe|2 − (β + γ)2 − (γ + 1)2

)2

.

(8.13)

Then for any ai ∈ R+, i = 1, . . . , 5, the strain density constraint W1 has the properties listed below.

(1) It satisfies the conditions (8.2).
(2) It satisfies the conditions (A5) of Theorem 2.1, with

rank
∫
Ω

D2W1(∇uh(x))
∇uh(x)∈SO(2)U1∪SO(2)U2

dx = 2Nh × 2Nh − bh,

where bh is the number of the “boundary degrees of freedom”. This number is defined below.
(3) It satisfies the condition (A6) of Theorem 2.1.

Proof. Verification of (8.2)b. This property follows immediately from the fact that det(QF ) = detF and, using
Cof F = detFF−T , 1 we obtain for any v ∈ R2

|Cof(QF )v|2 = (detF )2
(
QF−T v

)T
QF−T v = (detF )2 vTF−1F−T v = |Cof(F )v|2 .

The last three contributions in the definition (8.13) contain only the terms |Fei|2, i = 1, 2, 3, e3 = (1, 1)T , which are
unchanged by any unitary rotation.

Verification of (8.2)c. This can be proven identically to the previous step.

1Notice that det F = 1
n

F : (CofF )T for F ∈ Mn×n, where “:” denotes Frobenius matrix multiplication given for two compatible matrices
A abn B by A : B = Tr(AB).
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Verification of (8.2)a. Since W1(U1) = W1(U2) = 0, the above proof of the frame indifference, property (8.2b),
shows that any matrix F ∈ SO(2)U1

⋃
SO(2)U2 belongs to the null set of W1. It remains to verify the opposite

inclusion. Hence, let W1(F0) = 0, where

F0 =
(
a b
c d

)
.

Then we get the following set of equations

ad− b2 = α− γ2 or = β − γ2

a2 + b2 = α2 + γ2 or = β2 + γ2

a2 + c2 = α2 + γ2 or = β2 + γ2

b2 + d2 = γ2 + 1

(a− b)2 + (c− d)2 = (α− γ)2 + (γ − 1)2 or = (β − γ)2 + (γ − 1)2.

(8.14)

Solving with the right-hand sides given by α−γ2, α2 +γ2 and (α−γ)2 +(γ−1)2, we obtain two solutions to (8.14).
Namely,

(a, b, c, d) ∈ {(−α,−γ,−γ,−1), (α, γ, γ, 1)}.
These solutions are related by SO(2) rotations. Namely, by the Identity matrix, and by the negative Identity matrix,
which corresponds to the rotation matrix Q with α = π. Hence, we conclude that these two solutions are in SO(2)U1.
Similarly, solving (8.14) with the right-hand sides containing β, we obtain two solutions in SO(2)U2. If we intermix
the right-hand sides there is no solution to (8.14).

Verification of the condition (A5) of Theorem 2.1. Let us denote by d the tensor derivative with respect to the coor-
dinates {Ui}2N(h)

i=1 , and let us denote by D the tensor derivative with respect to the components of the deformation
gradient. First we observe that

∇uh(x) ∈ SO(2)U1 ∪ SO(2)U2 =⇒ − divDW1(∇uh(x)) = 0 for a.a. x ∈ Ω,(8.15)

which is the basic equation of elasticity since DW (·) is the stress tensor represented by a 2 × 2 matrix. We show
below that, dkl

def= ∂/∂U l
k,∫

Ω

d2W1(∇uh(x)) dx


kl

= dkl

∫
Ω

DW1(∇uh(x))∇ϕ(x) dx.(8.16)

Hence, using (8.15) and integration by parts, we obtain∫
Ω

d2W1(∇uh(x))
SO(2)U1∪SO(2)

dx


kl

=
∫

∂Ω

dklDW1(∇uh(x))
SO(2)U1∪SO(2)

· nϕ(x) dS.(8.17)

Now, we perform the d – tensor derivative of this equation. We obtain

−dkl divDW1(∇uh(x)) = −div dklDW1(∇uh(x)) = −div
2∑

p=1

2∑
q=1

∂pl∂qkW1(∇uh)
∂ϕp

l

∂xp

∂ϕk
l

∂xq
.(8.18)

�

8.2.1. A CONTINUITY CONSTRAINT DENSITY

Suppose that Ω is partitioned into ω1 ∪ ω2 ∪ . . . ∪ ωk. Let uh ∈ Vh. In order to impose the continuity across the
interelement boundaries, we define

W2(uh(x0))
def=

1
2

[[uh(x0)]]
2 def=

1
2

∥∥∥∥∥ lim
x→x0
x∈ωi

uh(x)− lim
x→x0
x∈ωj

uh(x)

∥∥∥∥∥
2

, x0 ∈ Ω.
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We note that W2(uh(x)) = 0 for any x in the interior of any ωi. Then

J2(uh) =
∑
i,j

∫
∂ωi∩∂ωj

W2(uh(s)) dS

vanishes if and only if the continuity constraint is satisfied, i.e., when the condition C2 holds. We note that the Hessian
ofW2 is the zero matrix, i.e., all entries inD2W are zero, when restricted toMh, since uh ∈Mh implies uh ∈ C0(Ω).
Consequently,

(1) rank
(
D2W1 +D2W2

)
Mh

= rank
(
D2W1

)
Mh

= 2N(h),

(2) Tr
((
D2W1

)T
D2W2

)
Mh

= 0,

(3) Consequently, it follows that Mh is a zero-dimensional submanifold of R4N(h)×4N(h). In other words, Mh

contains only isolated points, c. f. Lemma 8.2.

8.3. A BOUNDARY CONSTRAINT DENSITY

Taking W3(u(s)) = 1
2 ‖u(s)− g(s)‖2, s ∈ ∂Ω, we have that

J3(u) =
∫

∂Ω

W3(u(s)) dS

is minimized precisely when the boundary constraint holds, i.e., when the constraint C3 is satisfied.

9. CONCLUSIONS

We here propose some alternatives to the Markov Chain Monte Carlo approach of the previous section. One straight-
forward alternative is to perform the MCMC on a set of approximants which already satisfy one of the constraints.
The most obvious version of this approach is to only consider u which already satisfy the gradient constraint C3. It
is easy to generate random variates from probability distributions on SO(N) and to use the product of Haar measures
as the dominating measure for the proposal density r(v, w). It is also necessary to be able to jump between “wells”,
meaning the cossets SO(N)Ui, 1 ≤ i ≤M . This seems straightforward, but it will probably be necessary to introduce
further parameters, e.g., stay in the current well with probability q, and otherwise jump to random well with probability
(1− q)/(M − 1), selecting from SO(n) using the Haar probability measure. For movements within a well, we would
naturally use proposal distributions absolutely continuous with respect to Haar measure. We will look for distributions
which are easy to use and give good convergence properties.

It seems possible that we could enforce the continuity constraint, but this looks very difficult.

Another strategy which has some promise is the so-called Gibbs sampler version of MCMC [12]. The idea here is
to update each component of v one at a time in some sweep through the components. In order to keep the Gibbs
distribution as the stationary distribution of the Markov Chain, it is necessary to use the conditional distribution of
the component (say) vi given all the other components (v1, v2, . . . , vi−1, vi+1, . . . , vk). This is determined from the
(unnormalized) density for Gibbs distribution

exp
(
−I(v, λ)/(2σ2)

)
as a function of vi. Very efficient algorithms have been developed for sampling from general densities given in
exponential form (see [11]). There are numerous variants of this approach – e.g. instead of systematically sweeping
through the components vi, one can randomly sample them as well.
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