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Introduction

The implicit function theorem implies that the zero set of a smooth function,

the set where the function vanishes, is a smooth hypersurface away from the crit-

ical zero set. Hence to study zero sets it is important to understand the structure

of the critical zero sets. For solutions of the second order elliptic equations the

critical zero sets represent the singular parts of zero sets. They have the Haus-

dor� dimension not greater than n � 2. Hence sometimes they are called the

singular sets of solutions. This result is not true for higher order elliptic equa-

tions. For example the critical zero sets may occupy the whole zero sets for some

biharmonic polynomials. In order to study the zero sets of solutions of higher

order elliptic equations we need to identify their singular parts and study their

structure.

The singular sets of solutions to elliptic equations of the second order have

been studied by many people. In [19], Hardt and Simon proved that for classical

solutions with relatively high order derivatives singular sets are countable unions

of subsets of correspondingly smooth (n � 2)-dimensional submanifolds. Thus,

they are countably (n � 2)-recti�able. See also [5]. This result was generalized

to weak solutions in [14]. It is proved that for weak solutions, as long as they

do not vanish to in�nite order, the singular sets are countable unions of subsets

of C1;� (n � 2)-dimensional submanifolds, for some � 2 (0; 1). Hence they are

also countably (n � 2)-recti�able. Concerning the size of singular sets, M. and

T. Ho�mann-Ostenhof and N. Nadirashvili [20] showed that the singular sets of

smooth solutions in three dimensional space have locally �nite one dimensional

Hausdor� measure. It was generalized to arbitrary dimensions, independently by

one of the authors in [18] and M. and T. Ho�mann-Ostenhof and N. Nadirashvili
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[21]. In [16] we gave a uniform estimate on the measure of singular sets in terms

of frequency of solutions.

In the present paper, we will study the singular sets of solutions to elliptic

equations of arbitrary order. We will study solutions of �nite di�erentiability in

Euclidean spaces of arbitrary dimensions and give a uniform bound on the size

of singular sets in terms of the highest vanishing order. Our method is similar

to that in [16]. It avoids the complicated discussion of the complex dimension of

the complex critical sets of real harmonic polynomials, needed in [18], [20] and

[21].

Solutions to elliptic equations of the second order, having enough regular-

ity, can not vanish to in�nite order. This is the unique continuation property.

However it is not true even for smooth solutions to equations of the higher order.

Hence in order to study zero sets or singular sets we need to assume our solutions

cannot vanish to in�nite order.

Our main result is the following:

Main Theorem. Suppose that u is a nonconstant solution of an equation

2mX
j�j=0

a�(x)D
�u = 0; in B1(0)

where the coeÆcients a� are smooth in B1 for any j�j � 2m and the leading

coeÆcients satisfy the following assumption for some positive constant �,X
j�j=2m

a�(x)�
� � �; 8 � 2 S

n�1 � R
n ; x 2 B1(0):

If u does not vanish to in�nite order in B1(0), then the singular set

S(u) = fx 2 B1;D
�u(x) = 0; for any j�j � 2m� 1g

has locally �nite (n�2)-dimensional Hausdor� measure, i.e., Hn�2(S(u)\Br) <

1 for any r 2 (0; 1).

In the following we will see that the local measure can be estimated uniformly

in terms of the highest vanishing order and that the solution u is not necessarily

smooth. It is enough to assume that u is di�erentiable with degree depending

on the highest vanishing order. For the statement, see Theorem 3.2.
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The proof of the Main Theorem is based on two simple but important ob-

servations. First at almost all points in singular sets, the singular sets are ap-

proximated by (n� 2)-dimensional hyperplanes and solutions are approximated

by nonzero homogeneous polynomials of two variables by appropriate rotations.

These polynomials satisfy some linear homogeneous elliptic equations with con-

stant coeÆcients. Hence we need to focus only on those polynomials. The second

obseravation is based on some simple algebra. In the two dimensional space any

linear homogeneous elliptic operators of higher order with constant coeÆcients

can be decomposed as the product of linear homogeneous elliptic operators of

the second order with constants coeÆcients. This result is not true in the higher

dimensional Euclidean spaces. Note that linear homogeneous elliptic operators

of the second order with constants coeÆcients are essentially the Laplacian oper-

ator. Hence we are lead to the discussion of harmonic functions in the plane. An

important tool in the whole discussion is the Weierstrass-Malgrange Preparation

Theorem for �nitely di�erential functions. We use this theorem to estimate the

numbers of critical points of perturbations of harmonic functions in the plane.

We should emphasize that with the method in our paper we avoid the compli-

cated discussion of all homogeneous polynomials satisfying constant coeÆcient

elliptic equations of arbitrary order. It is not known that results in [18] or [21]

for homogeneous harmonic polynomials are still true for those polynomials.

The paper is written as follows. In the �rst section, we discuss the geomet-

ric structure of singular sets. We prove a decomposition result which plays an

important role in the proof of the Main Theorem. In section 2, we estimate the

measure of singular sets away form the lower dimensional subsets. It is based on

a perturbation argument. In section 3 we use the compactness argument to get

the desired estimates on the geometric measure of singular sets. We do this for

a certain class of operators and solutions which satisfy some nice compactness

property.

1. Geometric Structure of Singular Sets.

In this section we discuss the geometric structure of singular sets.

Suppose that L is a 2m-th order homogeneous elliptic linear operator in

B1(0) � Rn given by

(1.1) L �
2mX
j�j=0

a�(x)D
�
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where the coeÆcients verify the following assumption for some positive constant

�:

(1.2)
X

j�j=2m

a�(x)�
� � � 8 � 2 S

n�1 � R
n ; x 2 B1(0):

Suppose that u is a nonconstant smooth solution of Lu = 0 in B1(0):We assume

that u does not vanish to in�nite order in B1. Then for any p 2 B1 there exists

a homogeneous polynomial P of degree d such thatX
j�j=2m

a�(p)D
�P = 0 in R

n ;

and

u(x+ p)� P (x) = o(jxjd) as x! 0:

We call P the leading polynomial of u at p. In fact the above estimate is also

true for nonsmooth solutions. See [4] and [15].

We de�ne the singular set S(u) as

S(u) = fp 2 B1 ;D
�u(p) = 0 for any j�j � 2m� 1g :

Theorem 1.1. Suppose that L is an operator of the form (1.1) with smooth

coeÆcients and satisfying (1.2). If u satis�es Lu = 0 and does not vanish to

in�nite order in B1, then S(u) is countably (n � 2)-recti�able. Moreover for

Hn�2 almost all points in S(u) the leading polynomials of the solution u are

functions of two variables by an appropriate rotation.

The proof is similar to that in [14]. For completeness we include most part of

arguments with some improvement.

Proof. The proof consists of several steps.

Step 1. We �rst study the local behavior at each point.

For each integer d � 2m, de�ne the singular set of the d-th level

Sd(u) = fp 2 B1 ; D
iu(p) = 0; for any i = 0; 1; � � � ; d� 1;

Ddu(p) 6= 0g :

Since u does not vanish to in�nite order, Sd(u) = � for suÆciently large d.

Therefore

S(u) =
[

d�2m

Sd(u):
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Take any point y 2 B1(0) \ Sd(u). Suppose the leading polynomial of u at

y is given by the d-degree non-zero homogeneous polynomial P = Py. Then P

satis�es

(1.3)
X

j�j=2m

a�(y)D
�P = 0 in R

n :

As for u set

Sd(P ) = fp 2 B1 ; D
iP (p) = 0; for any i = 0; 1; � � � ; d� 1;

DdP (p) 6= 0g :

Since P is a d-degree non-zero homogeneous polynomial, we have 0 2 Sd(P ).

We claim that Sd(P ) is a linear subspace and

(1.4) P (x) = P (x+ z) for any x 2 R
n and z 2 Sd(P ) :

In fact for any z 2 Sd(P ), we have

D�P (z) = 0 for any j�j � d� 1 :

Assume

P (x) =
X
j�j=d

a�x
� :

Then we have

P (x) =
X
j�j=d

a�(x� z)� :

This implies (1.4). Now we may prove that Sd(P ) is a linear subspace easily.

Next, we prove that dim Sd(P ) � n� 2 for any d � 2m. In fact the formula

(1.4) implies P is a function of n-dim Sd(P ) variables. If dim Sd(P ) = n� 1; P

would be a d-degree monomial of one variable satisfying the equation (1.3). Hence

d < 2m. This is a contradiction.

Step 2. We de�ne for each j = 0; 1; 2; : : : ; n� 2;

Sjd(u) = fy 2 Sd(u); dimSd(Py) = jg:

We claim that Sjd(u) is on a countable union of j-dimensional C1 manifolds for

any d � 2m and j = 0; 1; 2; : : : ; n� 2. In fact we will prove that for any y 2 Sjd
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there exists an r = r(y) such that Sjd(u) \ Br(y) is contained in a (single piece

of) j-dimensional C1 manifold.

To show this we let `y be the j-dimensional linear subspace Sd(Py) for any

y 2 Sjd(u): For any fykg � Sjd(u) with yk ! y; we �rst prove that

(1.5) Angle < yyk; `y >! 0 :

To prove (1.5) we may assume y = 0 and �k = yk=jykj ! � 2 S1: Since P is the

leading polynomial of u at y = 0, there holds for i = 0; 1; � � � ; d� 1,

Di
�
u(x)� P (x)

�
= o(jxjd�i) as x! 0:

Evaluating at yk = jykj�k and taking the limit k ! 1, we conclude that

DiP (�) = 0 for any i = 0; 1; � � � ; d � 1. Since Py is a d-degree homogeneous

polynomial, then � 2 `y = Sd(Py): This implies (1.5).

By (1.5) we obtain that for any y 2 Sjd(u) and small " > 0 there exists an

r = r(y; ") such that

(1.6) Sjd \ Br(y) � Br(y) \ C"(`y)

or equivalently,

Sjd \ Br(y) \ (C"(`y))
C = �;

where

C"(`y) = fz 2 R
n ; dist(z; `y) � "jzjg:

Let Pk and P be the leading polynomials of u at yk and y = 0, respectively. By

smoothness of the solution u we have

Pk ! P uniformly in Cd(B1(0)):

This implies that

`yk ! `y as k!1

as subspaces in Rn . By an argument similar to above to prove (1.5) we may prove

that the constant r in (1.6) can be chosen uniformly for any point z 2 Sjd(u) in

a neighborhood of y. In other words we obtain that for any y 2 Sjd(u) and any

small " > 0 there exists an r = r("; y) such that

Sjd(u) \ Br(z) � Br(z) \ C"(`z) for any z 2 Sjd(u) \ Br(y):
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For " > 0 small enough this clearly implies that Sjd(u) \ Br(y) is contained in a

j-dimensional Lipschitz manifold. By (1.5) this manifold is C1.

We may de�ne

Sj(u) =
[

d�2m

Sjd(u) for j = 0; 1; � � � ; n� 2:

Then we have

S(u) =
n�2[
j=0

Sj(u):

Moreover each Sj(u) is on a countable union of j-dimensional C1 manifolds for

each j = 0; 1; � � � ; n� 2. Now we set

S?(u) =
n�3[
j=0

Sj(u)

S?(u) = Sn�2(u):

Then we have the desired decomposition

S(u) = S?(u) [ S?(u)

where S?(u) is countably (n � 3)-recti�able, S?(u) is on a countable union of

(n� 2)-dimensional C1 manifolds and for any y 2 S?(u) the leading polynomial

of u at y is a homogeneous polynomial of 2 variables. (Q.E.D.)

Remark. It is clear from the proof that Theorem 1.1 still holds if u is CN in B1,

with N as the largest vanishing order of u in B1. The positive integer N being

the largest vanishing order of u means for any p 2 B1 the leading polynomial of

u at p is a homogeneous polynomial of degree not exceeding N .

2. Geometric Measure of Good Parts in Singular Sets.

Suppose that L is a 2m-th order homogeneous elliptic linear operator in

B1(0) � Rn given by (1.1) with the property (1.2) and that u is a noncon-

stant smooth solution of Lu = 0 in B1(0). We assume that u does not vanish to

in�nite order in B1 and let N denote the largest vanishing order of u in B1. In

other words for any p 2 B1 the leading polynomial of u at p is a homogeneous

polynomial of degree not exceeding N .
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Theorem 2.1. Suppose that L is an elliptic operator given by (1.1) with C2N2

coeÆcients and (1.2) and that u is a solution Lu = 0 in B1, with kukL2(B1) =

1 and N as the largest vanishing order of u in B1. Then there exist positive

constants C(u) and "(u), depending on the solution u, and a �nite collection of

balls fBri(xi)g with ri � 1=8 and xi 2 S(u) such that for any v 2 C2N2+2m�1

with

ju� vjC2N2+2m�1(B1)
< "(u)

there hold

Hn�2
�
S(v) \ B1=2n [Bri(xi)

�
� C(u)

and X
rn�2i �

1

2n�1
;

where C(u) also depends on �; n and C2N2

-norms of all coeÆcients of L.

Proof. Let u be given as above. By Theorem 1.1 we have

S(u) = S?(u) [ S?(u)

where S?(u) has the Hausdor� dimension not exceeding n � 3, S?(u) is on a

countable union of (n� 2)-dimensional C1 manifolds and for any p 2 S?(u) the

leading polynomial of u at p is a homogeneous polynomial of 2 variables by an

appropriate rotation. In particular

Hn�2 (S?(u0)) = 0:

Then there exist at most countably many balls Bri(xi) with ri � 1=8 and xi 2

S?(u) such that

(2.1) S?(u) �
[
i

Bri(xi)

and

(2.2)
X

rn�2i �
1

2n�1
:

We claim for any y 2 S?(u) \ B3=4, there exist positive constants R =

R(y; u) < 1=8, r = r(y; u), � = �(y; u) and c = c(y; u), with r < R, such

that if the function v satis�es

(2.3) ju� vj�
C2N2+2m�1(BR(y))

< �
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then

(2.4) Hn�2 fS(v) \Br(y)g � crn�2:

Here we use k�k�CM (BR)
to denote,M as a positive integer, the CM -norm weighted

with the radius R, i.e., for w 2 CM (BR),

kwk�CM (BR)
=

MX
i=0

Ri sup
x2BR

jDiw(x)j:

We will postpone the proof of (2.4).

It is obvious that the collection of fBri(xi)g and fBr(y)(y)g, y 2 S
?(u), covers

S(u). By the compactness of S(u), there exist xi 2 S?(u), i = 1; � � � ; k = k(u),

and yj 2 S
?(u), j = 1; � � � ; l = l(u); such that

(2.5) S(u) \B3=4 �

 
k[
i=1

Bri(xi)

![0@ l[
j=1

Bsj (yj)

1A
with ri � 1=8, i = 1; � � � ; k, and sj � 1=8, j = 1; � � � ; l. Since S(u) is closed,

there exists a positive constant � = �(u) such that

(2.6)
�
x 2 B3=4 ; dist(x;S(u)) < �

	
�

 
k[
i=1

Bri(xi)

![0@ l[
j=1

Bsj (yj)

1A :

It is easy to see that for such a � there exists a positive constant Æ = Æ(u) such

that ju� vjC2m(B3=4) < Æ implies

(2.7) S(v) \B1=2 �
�
x 2 B3=4; dist(x;S(u)) < �

	
:

Denote

Bu = [ki=1Bri(xi); Gu = [lj=1Bsj (yj):

Now we take "(u) < Æ(u) small enough such that for any v 2 C2N2+2m�1 in B1

the condition

ju� vjC2N2+2m�1(B1)
< "(u)

implies that for each j = 1; � � � ; l = l(u);

ju� vj�
C2N2+2m�1(BR(yj))

< �(yj; u):
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Therefore there hold by (2.1), (2.2), (2.5)-(2.7),

S(v) \ B1=2 � (S(v) \ Bu) [ (S(v) \ Gu)

Hn�2 (S(v) \ Gu) � c
lX

j=1

sn�2j � C(u)

and

Bu = [ki=1Bri(xi); ri �
1

8
and

kX
i=1

rn�2i �
1

2n�1
:

Now we prove (2.4) under the assumption (2.3).

For any y 2 S?(u) \B3=4, there holds

u(x+ y) = P (x) +  (x)

where P is a nonzero d-degree homogeneous polynomial with 2m � d � N and

satis�es X
j�j=2m

a�(y)D
�P = 0 in R

n ;

and  (x) satis�es, by interior Schauder estimates, for some �xed � 2 (0; 1) and

any jxj < 1=8,

(2.8)
jDi (x)j � Cjxjd�i+� for i = 0; 1; � � � ; d

jDi (x)j � C for i = d+ 1; � � � ; 2N2 + 2m� 1;

where C is a positive constant depending only on N; �; �; n and C2N2

norms of

all coeÆcients a� . By an appropriate rotation P is a function of two variables.

Hence we may assume P is de�ned in R2 �f0g with Rn = R2 �Rn�2 . We abuse

the notation by saying that P is de�ned in R2 . The operator

Ly �
X

�1+�2=2m

a(�1;�2;0;��� ;0)(y)D
�1
x1D

�2
x2

is a linear elliptic operator with constant coeÆcients and no lower order terms

in R
2 . Elementary algebra asserts the following decomposition

Ly = L1 Æ � � � Æ Lm
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where each Li is a linear elliptic operator of the second order with constant

coeÆcients and no lower order terms in R
2 . Hence

L1 Æ � � � Æ LmP = 0 in R
2 :

If L2 Æ � � � Æ LmP is not identically zero, by letting Q = L2 Æ � � � Æ LmP we get

L1Q = 0. Otherwise

L2 Æ � � � Æ LmP = 0 in R
2 :

By repeating this process, we conclude that there exists a linear homogeneous

di�erential operator D of order not exceeding 2m � 2 such that Q = DP is a

nonzero homogeneous polynomial satisfying

LiQ = 0 in R
2

for some 1 � i � m. This implies Q is a nonzero homogeneous harmonic poly-

nomial by the change of coordinates if necessary. Hence we may apply Lemma

2.2 below to Q. Let "? and r? be the constants given in Lemma 2.2 for Q. By

(2.8) we may take a positive constant R = R(y; u) < 1=8 such that

k
1

Rd
 k�

C2N2+2m�1(BR)
<

1

2
"?:

Choose � small, depending on R and "?, such that (2.3) implies

k
1

Rd
(u� v)k�

C2N2+2m�1(BR(y))
<

1

2
"?:

Then there holds

k
1

Rd
(v � P (� � y)) k�

C2N2+2m�1(BR(y))
< "?:

By considering the transformation x 7! y +Rx, we have

k
1

Rd
v(y + R �)� PkC2N2+2m�1(B1)

< "?:

In particular there holds for the linear homogeneous di�erential operator D ob-

tained above, with the order l � 2m� 2,

k
1

Rd�l
Dv(y + R �)�QkC2N2+1(B1)

< "?:
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Note Q is a homogeneous harmonic polynomial of two variables and of degree

d � l � N . Hence we may apply Lemma 2.2 to Q. After transforming back to

BR(y) we get for some r � Rr?

Hn�2(jDDvj�1f0g \Br) � c(n)(d� 1)2rn�2:

Since DD is a di�erential operator of the order not exceeding 2m � 1, hence

S(v) � jDDvj�1f0g. Therefore we obtain (2.4). (Q.E.D.)

The following result is used in the proof of Theorem 2.1. It was proved in

[16]. We just point out some key steps.

Lemma 2.2. Let P be a homogeneous harmonic polynomial of degree d � 2 and

of two variables in R
n . Then there exist positive constants " and r, depending

on P , such that for any u 2 C2d2(B1) if

ju� P jC2d2(B1)
< "

then

Hn�2(jDuj�1f0g \ Br) � c(n)(d� 1)2rn�2:

The proof is based on the Weierstrass-Malgrange Preparation Theorem for

�nitely di�erentiable functions. First we recall some terminology. For any point

p 2 Rn we let C1
p (Rn) denote the ring of germs of smooth functions in a neigh-

borhood of p. For a smooth map f from a neighborhood of p into Rn with

f(p) = 0 we let (f) denote the ideal generated by f1; � � � ; fn, the components of

f . The local ring of f at p is the quotient ring

Rf (p) = C1
p (Rn )

Æ
(f):

It is easy to see that Rf (p) is a vector space over R, whose dimension is called

the multiplicity of f at p. Instead of C1
p (Rn ) in the above de�nition we may also

use P(Rn), the space of all polynomials in R
n , or C!

p (R
n ), the space of analytic

germs at p. See [AGV] or [GG]. The above notion can be de�ned for functions

in C n . The importance of multiplicity is its connection with zeroes of maps.

It can be shown that holomorphic maps, which maps zero to zero, have �nite

multiplicity at the origin if and only if the origin is the isolated zero point. This

result is not true in Rn , even for analytic maps.

The notion of local rings and multiplicities can also be de�ned for �nitely

di�erentiable functions.

The following result was proved in [2]. We assume that �, N and N 0 are all

positive integers with N � N 0.
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Lemma 2.3. Let D � R
n be a domain with 0 2 D. Let f : D ! R

n , with

f(0) = 0, be a function of smoothness �(N 0+1) with the multiplicity � at 0, and

let fe1; � � � ; e�g be a basis of its local ring consisting of functions of smoothness

�(N + 1). Then there exist neighborhoods U , V and Q of zero in Rn , for which

V � U � D and f(V ) � Q � f(U), and a positive constant " with the following

property: for any map g : D ! R
n of smoothness �(N 0 + 1), if

jf � gjC�(N0+1)(D) < "

there exists a bounded linear operator

Eg = (Eg
1 ; � � � ; E

g
�) : C

�(N+1)(U)! [CN (Q)]�;

such that for any function ' 2 CN (U) there holds

'jV =

�X
i=1

ei � (E
g
i ') Æ g:

Proof of Lemma 2.2. We �rst prove for n = 2. By using the polar coordinate

x1 = r cos � and x2 = r sin � in R2 = f(x1; x2)g we may assume P (x) = rd cos d�.

Direct calculation shows that

Dx1P = drd�1 cos(d� 1)�; Dx2P = �drd�1 sin(d� 1)�:

Therefore both Dx1P and Dx2P are products of d � 1 di�erent homogeneous

linear functions. We obtain that the map f = (Dx1P;Dx2P ) : R
2 ! R2 has the

origin as its only zero. In fact if f is viewed as a map from C 2 to C 2 , with x 2 R2

replaced by z 2 C 2 , the origin is also its only zero. Hence by Bezout's formula

([1], Corollary 1, P200) we conclude that

dimP(R2)
Æ
(f) � (d� 1)2;

where P(R2) is the space of all polynomials in R
2 .

We may apply Lemma 2.3 with N 0 = N = 1 and � = (d � 1)2. We obtain

that there exist neighborhoods U; V;Q of the origin in R
2 with V � U � B1

and f(V ) � Q and a positive constant " > 0 such that for any map g 2

C2(d�1)2(B1;R
2) with jg � f jC2(d�1)2(B1)

< " and any function a 2 C2(d�1)2(U)

there exist �1; � � � ; �� 2 C
1(Q) such that

(2.9) a(x) =

�X
i=1

ei(x)�i(g(x)) for x 2 V:
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Hence for such a map g we may prove for some positive constant r with Br � V

Card(g�1f0g \Br) � (d� 1)2:

The proof is a modi�cation of that for Lemma 2, P97, in [1].

Now consider u 2 C2d2(B1) with ju�P jC2d2(B1)
< ". Note 2(d�1)2+1 � 2d2

for any positive integer d. Hence with g = Du we have jg � f jC2(d�1)2(B1)
< ".

Therefore we conclude

Card(jDuj�1f0g \ Br) � (d� 1)2:

This �nishes the proof for n = 2.

Next we discuss the general dimension. For any p 2 R
n and any 1 � i < j � n

let Pij(p) denote the 2-dimensional hyperplane

f(p1; � � � ; pi�1; xi; pi+1; � � � ; pj�1; xj; pj+1; � � � ; pn)g

and simply write Pij(p) = f(xi; xj)g where there is no confusion. We also set

Pij = Pij(0).

Now let P be a homogeneous harmonic polynomial of degree d and of two

variables in R
n . With the explicit expression of P we may �nd a change of coor-

dinates with the following property. In the new coordinate system f(x1; � � � ; xn)g,

for any �xed 1 � i < j � n, the map fij = (DxiP;DxjP )
��Pij , viewed as a map

from R2 to R2 , has the origin as its only zero and each component of fij is the

product of d � 1 homogeneous linear polynomials. In fact if fij is viewed as

a map from C 2 to C 2 , with x 2 Rn replaced by z 2 C n , the origin is also its

only zero. As before there exist positive constants "ij and rij such that for any

g 2 C2(d�1)2(B2
1=2;R

2) with

(2.10) jg � fij jC2(d�1)2(B2
1=2

) < "ij ;

there holds

(2.11) card(g�1f0g \ B2
rij
) � (d� 1)2:

Here we use B2
r to denote the ball (centered at origin) with radius r in R2 .

Take

" =
1

2
min

1�i<j�n
"ij ; r = min

1�i<j�n
rij :

14



Consider any u 2 C2d2(B1) such that

ju� P jC2d2(B1)
< ":

For any p 2 R
n and any 1 � i < j � n, set fij = (DxiP;DxjP )

��Pij as before and
gij;p = (Dxiu;Dxju)

��Pij(p). We may take r smaller such that for any p 2 Br

there holds

jgij;p � fij jC2(d�1)2(B2
1=2

) < 2" � "ij :

Hence

card(g�1ij;pf0g \ B
2
r ) � (d� 1)2:

Obviously jDuj�1f0g \ Pij(p) � g�1ij;pf0g. If we set �ij as the projection

�ij(x1; � � � ; xn) = (x1; � � � ; xi�1; xi+1; � � � ; xj�1; xj+1; � � � ; xn) 2 R
n�2

then we have shown that for any q 2 Bn�2
r � Rn�2 and any 1 � i < j � n

card(jDuj�1f0g \ ��1ij (q) \Br) � (d� 1)2:

Hence the integral geometric formula [10], 3.2.22, implies

Hn�2(jDuj�1f0g \ Br)

�
X

1�i<j�n

Z
Bn�2
r

card(jDuj�1f0g \ ��1ij (q) \ Br)dH
n�2q

�c(n)(d� 2)2rn�2:

(Q.E.D.)

3. Compact classes of operators and solutions.

The proof of the Main Theorem is based on an iteration of Theorem 2.1.

In order to do this we need to introduce a class of elliptic operators which is

invariant under translation and scaling. For some constants �; � 2 (0; 1), K > 0

and some nonnegative integer M , we de�ne a class of linear elliptic operator of

order 2m, L(�;M; �;K), as follows. Let

(3.1) L �
2mX
j�j=0

a�(x)D
�

15



be an elliptic operator of order 2m de�ned on B1(0) � R
n . We say L 2

L(�;M; �;K) if those coeÆcients a� , j�j � 2m, satisfy the following conditions:X
j�j=2m

a�(x)�
� � �; 8 � 2 S

n�1 � R
n ; x 2 B1(0) ;

and
2mX
j�j=0

ka�kCM;�(B1) � K:

We note that if L 2 L(�;M; �;K) and u 2 W 2m;2(B1) satisfy Lu = 0 in B1,

then by the interior Schauder estimates there holds for any r 2 (0; 1),

(3.2) kukCM+2m;�(B1�r) � C(r)kukL2(B1);

where C(r) is a positive constant which also depends on �, M , �, K and the

dimension n.

Let L 2 L(�;M; �;K) and x0 2 B1, 0 < � � dist(x0; @B1), then the operator

Lx0;� de�ned by

(3.3) Lx0;� �
2mX
j�j=0

�2m�j�ja�(x0 + �x)D�

belongs to L(�;M; �;K). This translation and scaling invariant property of

L(�;M; �;K) turns out to be very useful.

Finially in order to control the vanishing order quantitatively we introduec

the doubling condition. Consider a positive integer N . A function u 2 L2(B1) is

said to belong to SN if

(3.4) �

Z
B2r(x0)

u2(x) dx � 4N �

Z
Br(x0)

u2(x) dx ;

for all x0 2 B2=3 and 0 < 2r < dist(x0; @B1). It is easy to check that nonzero

functions satisfying the doubling condition cannot vanish to in�nite order. In

fact for u 2 CN (B1) satisfying (3.4) the leading polynomial of u at any point

x0 2 B2=3 has the degree not exceeding N . The converse is also true, namely,

functions satisfy the doubling condition if they do not vanish to in�nite order.

In this case the constant N in the doubling condition is much larger than the

largest vanishing order.

We now de�ne SN (�;M; �;K) as the collection of all functions u in SN and

satifying Lu = 0 in B1 for some L 2 L(�;M; �;K).

The class SN (�;M; �;K) has the following important compactness property.
16



Lemma 3.1. For any �xed positive constants �, � < 1 and K and nonnegative

integers N and M , the collection

fu 2 SN (�;M; �;K);

Z
B1=2

u2(x)dx = 1g

is compact under the local L1-metric.

Proof. The proof is straightforward. Suppose uk 2 SN and Lk 2 L(�;M; �;K)

satisfy Lkuk = 0 in B1 with
R
B1=2

u2k(x) dx = 1. By (3.4) and some covering

argument there holds for any R 2 (0; 1)

kukkL2(BR) � c(N;R); k = 1; 2; � � � :

Interior Schauder estimates imply

kukkCM+2m;�(BR) � c(N;R); k = 1; 2; � � � :

Then there is a subsequence uk0 such that uk0 converges to u in CM+2m
loc (B1) with

Lu = 0 for some L 2 L(�;M; �;K). In (3.4) with u replaced with uk, we may

take the limit k ! 1. Hence (3.4) holds for u and then u 2 SN . It is obvious

that
R
B1=2

u2(x)dx = 1. (Q.E.D.)

Now we prove the following result.

Theorem 3.2. Let �; � and K be positive constants with �; � < 1 and N a

positive integer. Then there holds for any u 2 SN (�; 2N
2; �;K)

Hn�2
�
S(u) \B1=2

	
� C

where C is a positive constant depending on N , as well as �; �;K and n.

The Main Theorem follows readily from Theorem 3.2.

To prove Theorem 3.2 we need an improved version of Theorem 2.1.

Lemma 3.3. Suppose N; �; � and K are given positive constants with �; � < 1.

Then there exists a positive constant C, depending on N , as well as �; �;K and

n, such that for any u 2 SN (�; 2N
2; �;K) there exists a �nite collection of balls

fBri(xi)g, with ri � 1=4 and xi 2 S(u), such that

Hn�2
�
S(u) \ B1=2n [Bri(xi)

�
� C

17



and X
rn�2i �

1

2
:

Proof. With M = 2N2, we set

S1N = S1N (�;M; �;K) = fu 2 SN (�;M; �;K);

Z
B1=2

u2 = 1g:

Take an arbitrary solution u0 2 S1N . For any u 2 S1N , the condition ju0 �

ujL1(B7=8) < �0 implies by interior Schauder estimates

ju0 � ujCM+2m(B3=4) � c(�0)

where c(�0)! 0 as �0 ! 0. We take �0 = �0(u0) small such that

c(�0) � "(u0)

where "(u0) is the constant given in Theorem 2.1. Then by Theorem 2.1 there

exist a positive constant C(u0) and �nitely many balls fBri(xi)g, with xi 2 S(u0)

and ri � 1=8, such that for any u 2 S1N with ju0 � ujL1(B7=8) < �0, there hold

Hn�2
�
S(u) \ B 1

2
n [i�1 Bri(xi)

�
� C(u0)

and X
i�1

rn�2i �
1

2n�1
:

If S(u) \ Bri(xi) 6= �, we may take ~xi 2 S(u) \ Bri(xi). Obviously Bri(xi) �

B2ri(~xi). Therefore for such a u by renaming radii and centers we �nd a �nite

collection of balls fBri(xi)g, with xi 2 S(u) and ri � 1=4, such that

Hn�2
�
S(u) \B1=2n [Bri(xi)

�
� C(u0)

and X
i�1

rn�2i �
1

2
:

By Lemma 3.1, S1N is compact under local L1-metric. Hence there exist u1; � � � ,

up 2 S
1
N and �1 = �(u1); � � � ; �p = �(up) such that for any u 2 S1N there exists a

k with 1 � k � p with the property

ju� ukjL1(B7=8) � �k:
18



Denote

C = maxfC(u1); � � � ; C(up)g:

Such a constant C is �nite and depends on the class SN (�; 2N
2; �;K). This

�nishes the proof. (Q.E.D.)

Proof of Theorem 3.2. We use the standard iteration process to prove Theorem

3.2. To begin with, de�ne

�0 = fB1=2(0)g :

We claim that we may �nd �1; �2; � � � , each of which consists of a collection of

balls, such that for any ` � 1

rad(B) �
1

2
�
�1
2

�`
for any B 2 �`

X
B2�`

[rad(B)]n�2 �
�1
2

�`
and

Hn�2

0@S(u) \ [
B2�`�1

B �
[
B2�`

B

1A � C
�1
2

�`�1
;

where C is the positive constant given in Lemma 3.3. Observe that

S(u) \B1=2(0) �
1[
`=1

0@S(u) \ � [
B2�`�1

B �
[
B2�`

B
�1A

[
1\
`=0

0@S(u) \ 1[
j=`

[
B2�j

B

1A :

Hence we have

Hn�2
�
S(u) \B1=2(0)

�
� C

8<:X
`�1

(
1

2

�`�1
+ inf

`�1

1X
j=`

(
1

2

�j9=; � 2C:

To prove the claim we construct f�`g by induction. Note �0 = fB1=2g. Sup-

pose �0; �1; : : : ; �`�1 are already de�ned for some ` � 1. To construct �` we
19



take B = Br(y) 2 �`�1, with r � 1=2. Consider the transformation x 7! y+2rx:

Then, via Lu = 0 in B2r(y), we have

eL~u = 0 in B1(0) ;

where eL =
2mX
j�j=0

(2r)2m�j�ja�(y + 2rx)D�
x

and

~u(x) = u(y + 2rx) :

By the discussion in the beginning of the present section we get ~u 2 SN (�;M; �;K).

Hence we may apply Lemma 3.3 to ~u to obtain a collection of balls fBsi(zi)g,

with si � 1=4 and zi 2 S(~u) such that

Hn�2
�
S(~u) \ B1=2n [Bsi(zi)

�
� C

and X
sn�2i �

1

2
:

Now transform B1=2(0) back to Br(y) by x 7! (x � y)=2r. We obtain that for

B = Br(y) 2 �`�1, there exist �nitely many balls fBri(xi)g in B2r(y), with

ri � 1=2, such that

Hn�2

 
S(u) \Br(y)n

[
i

Bri(xi)

!
� Crn�2 ;

and X
i

rn�2i �
1

2
rn�2:

Then we set

�B` =
[
i

fBi(xi)g

and

�` =
[

B2�`�1

�B` :

20



Hence we obtain

Hn�2

0@S(u) \ [
B2�`�1

B �
[
B2�`

B

1A � C

0@ X
Bri (xi)2�`�1

rn�2i

1A
and by induction

ri �
1

2
�
�1
2

�`
;

X
Bri (xi)2�`

rn�2i �
�1
2

�`
for each ` � 1. This concludes the proof. (Q.E.D.)
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