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§0. Introduction.

§1. Preliminaries.

We will let c denote an absolute constant whose value may change from statement to
statement and which is usually easily estimable.

Let H : S3 → S2 be the standard Hopf map [HR], and SH : S4 → S3 be its suspension:

SH(x0, . . . , x4) =
(
x0 ,

√
1− x2

0 · Π(
x1√

x2
1 + . . . + x2

4

, . . . ,
x4√

x2
1 + . . . + x2

4

)
)

for (x0, . . . , x4) ∈ S5. The latter map generates the nonzero element of π4(S3) ' Z2. Also,
its homogeneous degree 0 extension

SH
( x

|x|
)
∈ W 2,2(B5,S3) .

Let R∞(B5,S3) denote the class of maps that are smooth except for finitely many
suspension Hopf singularities. That is,

u ∈ R∞(B5,S3) ⇐⇒

u ∈ C∞(B5 \ {a1, . . . , am},S3) and u(x) = SH
( x− ai

|x− ai|
)

on Bδ0(ai) \ {ai}

for some finite subset {a1, . . . , am} of B5 and some δ0 > 0.
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Lemma 1.1. R∞(B5,S3) is strongly dense in W 2,2(B5,S3).

(Proof to be written): For covers of the bad set, homogeneous extension is to be replaced
by the following:

Lemma 1.2. Given f ∈ W 2,2(∂B5,S3) and g ∈ W 1,2(∂B5,R4) with g · f = 0 a.e. on
∂B5, there exists v ∈ W 2,2(B5,S3) such that

v = f and
∂v

∂ν
= g on ∂B5 ,

‖ v ‖W 2,2 ≤ c
(
‖ f ‖W 2,2 + ‖ g ‖W 1,2

)
.

(Proof to be written): Replace B5 by the upper half-space in space-time R4 × R. Let
v = w

|w| where
w(x, t) = f(x) − t h(x, t)

with h being a solution of the heat equation ht = ∆h with h(x, 0) = g(x).

§2. Connecting Singularities with Controlled Length.

Suppose u ∈ R∞(B5,S3) with Sing u = {a1, a2, . . . , am} as above. Our goal in this
section is to connect the singular points ai in pairs by some union of curves whose total
length is bounded by a constant multiple of the Hessian energy∫

B5
|∇2u|2 dx .

These curves allow one to “topologically cancel” the singularities of u. Specifically
one may then slightly modify u in consecutively smaller tubular neighborhoods of these
curves to obtain a sequence of completely smooth maps which weakly approach u in W 2,2.
The extra Hessian energy required for this construction will be proportional to the total
length of the curves and hence to the Hessian energy of u. This construction, along with
Lemma 1.1, will establish the weak density of C∞(B5,S3) in W 2,2(B5,S3).

By the surjectivity of the Hopf map (and its suspension) each regular value p ∈
S3 \ {(−1, 0, 0, 0), (1, 0, 0, 0)} of u gives a level surface

Σ = u−1{p}

which necessarily contains all the singular points ai of u. Note that Σ = u−1{p} is
smoothly embedded away from the ai with standard orientation ωΣ ≡ ∗u#ωS3/|u#ωS3 |,
induced from u. Concerning the behavior near ai, the neighborhood

Σ ∩Bδ0(ai) \ {ai}
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is simply a truncated cone whose boundary

Γi = Σ ∩ ∂Bδ0(ai)

is a planar circle in the 3-sphere ∂Bδ0(ai) ∩
(
{p0} ×R4

)
where p = (p0, p1, p2, p3).

We will eventually choose the desired “topologically-cancelling” curves all to lie on
such a level surface Σ.

2.1 Estimates for Choosing the Surface Σ = u−1{p}.

We first recall the 3 Jacobian J3u = ‖ ∧3 Du‖ and apply the coarea formula to

|∇u|4 + |∇2u|2

J3u
,

we obtain the relation∫
S3

∫
u−1{p}

|∇u|4 + |∇2u|2

J3u
dH2 dH3p =

∫
B5
|∇u|4 + |∇2u|2 . (2.1)

Moreover, since ‖u‖L∞ = 1, we also have (see [MR]) the integral inequality∫
B5
|∇u|4 ≤ c

∫
B5
|∇2u|2 . (2.2)

In case u is constant on ∂B5, we verify this by computing∫
B5
|∇u|4 =

∫
B5

(
∇u · ∇u

)
|∇u|2

=
∫
B5

div
(
u∇u|∇u|2

)
− u ·∆u|∇u|2 − u∇u · ∇

(
|∇u|2

)
≤ 0 + 5

∫
B5
|∇2u||∇u|2 + 2

∫
B5
|∇2u||∇u|2

≤ 1
2

∫
B5
|∇u|4 +

49
2

∫
B5
|∇2u|2 .

In the general case we write u =
∑∞

i=1 λiu where {λi} is a partition of unity adapted to
a family of Whitney cubes for B5. See [MR]. (The above inequality is true even with the
constraint ‖u‖BMO ≤ 1 in place of ‖u‖L∞ ≤ 1 [MR].)

By (2.1) and (2.2) we may now choose a regular value p ∈ S3\{(−1, 0, 0, 0), (1, 0, 0, 0)}
of u so that ∫

u−1{p}

|∇u|4 + |∇2u|2

J3u
dH2 ≤ c

∫
B5
|∇2u|2 . (2.3)
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2.2 Pull-back Normal Framing for Σ = u−1{p}.

Suppose again that p = (p0, p1, p2, p3) ∈ S3 \ {(−1, 0, 0, 0), (1, 0, 0, 0)} is a regular
value of u. Then

η1 =
(
−

√
1− p2

0 ,
p0p1√
1− p2

0

,
p0p2√
1− p2

0

,
p0p3√
1− p2

0

)
is the unit vector tangent at p to the geodesic that runs from (1, 0, 0, 0) through p to
(−1, 0, 0, 0). We may choose two other vectors

η2 , η3 ∈ Tan
(
{p0} ×

√
1− p2

0 S2, p
)
⊂ Tan (S3, p)

so that η1, η2, η3 becomes an orthonormal basis for Tan (S3, p). Since p is a regular value for
u, these three vectors lift to three unique smooth linearly independent normal vectorfields
τ1, τ2, τ3 along Σ = u−1{p}. That is, at each point x ∈ Σ,

τj(x) ⊥ Σ at x and Du(x)
[
τj(x)

]
= ηj

for j = 1, 2, 3.
Near each singularity ai the lifted vectorfields τ1, τ2, τ3 are also orthonormal. In fact,

for x ∈ Σ ∩Bδ0(ai), x0−ai0
|x−ai| = p0, and

τ1(x) =
(
−

√
1− p2

0 ,
p0√

1− p2
0

x1 − ai1

|x− ai|
,

p0√
1− p2

0

x2 − ai2

|x− ai|
,

p0√
1− p2

0

x3 − ai3

|x− ai|
)

. (2.4)

Also τ1(x), τ2(x), τ3(x) are orthonormal for such x because the Hopf map is horizontally
orthogonal and the lifts τ2(x), τ3(x) are tangent to the 3 sphere {p0} ×

√
1− p2

0 S3.
On the remainder of the surface Σ\∪m

i=1Bδ0(ai), the linearly independent vectorfields
τ1, τ2, τ3 are not necessarily orthonormal, and we use their Gram-Schmidt orthonormaliza-
tions

τ̃1 =
τ1

|τ1|
,

τ̃2 =
τ2 − (τ̃1 · τ2)τ̃1

|τ2 − (τ̃1 · τ2)τ̃1|
=

τ2 − (τ̃1 · τ2)τ̃1

|τ̃1 ∧ τ2|
,

τ̃3 =
τ3 − (τ̃1 · τ3)τ̃1 − (τ̃2 · τ3)τ̃2

|τ3 − (τ̃1 · τ3)τ̃1 − (τ̃2 · τ3)τ̃2|
=

τ3 − (τ̃1 · τ3)τ̃1 − (τ̃2 · τ3)τ̃2

|τ̃1 ∧ τ̃2 ∧ τ3|

which provide an orthonormal framing for the unit normal bundle of Σ.
We need to estimate the total variation of these orthonormalizations. Noting that
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|∇
(

a
|a|

)
| ≤ 2 |∇a|

|a| for any differentiable a, we see that

|∇τ̃1| ≤ 2
|∇τ1|
|τ1|

≤ 2
|∇τ1||τ1||τ2||τ3|
|τ1||τ1 ∧ τ2 ∧ τ3|

= 2
|τ2||τ3||∇τ1|
|τ1 ∧ τ2 ∧ τ3|

,

|∇τ̃2| = 2
[τ2 − (τ̃1 · τ2)τ̃1

|τ̃1 ∧ τ2|
]
≤ 2

[2|∇τ2|+ 2|τ2||∇τ̃1|
|τ1 ∧ τ2||τ1|−1

]
≤ 8

[ |τ1‖∇τ2|+ |τ2||∇τ1|
|τ1 ∧ τ2|

· |τ1 ∧ τ2||τ3|
|τ1 ∧ τ2 ∧ τ3|

]
= 8

[ |τ2||τ3||∇τ1|+ |τ1||τ3||∇τ2|
|τ1 ∧ τ2 ∧ τ3|

]
,

|∇τ̃3| ≤ 2
[3|∇τ3|+ 2|τ3||∇τ̃1|+ 2|τ3||∇τ̃2|

|τ̃1 ∧ τ̃2 ∧ τ3|
]

≤ 32
[ |∇τ3|+ |τ3||τ1|−1|∇τ1|+ |τ3|

( |τ1‖∇τ2|+|τ2||∇τ1|
|τ1∧τ2|

)
| τ1
|τ1| ∧

(
τ2

||τ1|−1τ1∧τ2|
)
∧ τ3|

]
≤ 32

[ |τ1||τ2||∇τ3|+ |τ2||τ3||∇τ1|+ |τ1||τ3||∇τ2|
|τ1 ∧ τ2 ∧ τ3|

]
.

Inasmuch as

|τj | ≤ |∇u| , |∇τj | ≤ |∇2u| , |τ1 ∧ τ2 ∧ τ3| = J3u ,

we deduce the general pointwise estimate

|∇τ̃j | ≤ c
|∇u|2|∇2u|
|J3u|

≤ c
|∇u|4 + |∇2u|2

|J3u|
,

which we may integrate using (2.3) to obtain the variation estimate along Σ = u−1{p},∫
Σ

|∇τ̃j | dH2 ≤ c

∫
B5
|∇2u|2 dx . (2.5)

2.3 Twisting of the Normal Frame τ̃1, τ̃2, τ̃3 About Each Singularity ai.

First we recall from [M] that the Grassmannian

G̃2(R5)

of oriented 2 planes through the origin in R5 is a compact smooth manifold of dimension
6. It may be identified with the set of simple unit 2 vectors in R5,

{v ∧ w ∈ ∧2R5 : v ∈ S4, w ∈ S4, v · w = 0} .

We will use the distance |P −Q| on G̃2(R5) given by this embedding into ∧2R5 ≈ R10.
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For a fixed plane P ∈ G̃2(R5), the set of nontransverse 2 planes

QP = {Q ∈ G̃2(R5) : P ∩Q 6= {0}}

is a (Schubert) subvariety of dimension 1 + 3 = 4 because every Q ∈ QP \ {P} equals
v ∧w for some w ∈ S4 ∩ P and some v ∈ S4 ∩w⊥. These subvarieties are all orthogonally
isomorphic and, in particular, have the same finite 4 dimensional Hausdorff measure. Also

YP = {Q ∈ QP : P⊥ ∩Q 6= {0}}

is a closed subvariety of dimension 3, and QP \ YP is a smooth submanifold.
For each point x ∈ Σ \ {a1, . . . , am}, we abbreviate

Qx ≡ QTan (Σ,x) .

Then, near each singularity ai, the set of 2 planes nontransverse to the cone Σ∩Bδ0(ai) \
{ai},

W = ∪x∈Σ∩Bδ0 (ai)\{ai}Qx = ∪x∈ΓiQx ,

has dimension only 1 + 4 = 5 < 6 = dim G̃2(R5
)
. It also does not depend on i because u

has identical behavior near each ai.
We now describe explicitly how the framing τ̃1(x), τ̃2(x), τ̃3(x) twists once as x goes

around each circle Γi. The problem is that the vectors τ̃j(x) lie in the normal space
Nor (Σ, x) which also varies with x. To measure the rotation of the frame τ̃1(x), τ̃2(x), τ̃3(x),
as x traverses the circle Γi, it is necessary to use some reference frame for Nor (Σ, x).

We can induce such a frame from some fixed unit vectors in R5 as follows:. Consider a
fixed Q ∈ G̃2(R5)\W , and suppose Q = v∧w with v, w being an orthonormal basis for Q.
For each x ∈ Γi, the orthogonal projections of v, w onto Nor (Σ, x) are linearly independent;
let σ1(x), σ2(x) be their Gram-Schmidt orthonormalizations. We then get σ3(x) by using
the map u to pull-back the orientation of S3 to Nor (Σ, x) so that the resulting orienting
3 vector is σ1(x)∧ σ2(x)∧ σ3(x) for a unique unit vector σ3(x) ∈ Nor (Σ, x) orthogonal to
σ1(x), σ2(x). We view

σ1(x) , σ2(x) , σ3(x)

as the reference frame determined by the fixed vectors v, w. For each x ∈ Γi, there is then
a unique rotation γ(x) ∈ SO(3) so that

γ(x)
[
σj(x)

]
= τ̃j(x) for j = 1, 2, 3 .

In the next paragraph we will check that γ : Γi → SO(3) is a single geodesic circle in
SO(3). The twisting of the frame τ̃1, τ̃2, τ̃3 around the circle Γi is reflected in the fact that
such a circle induces the nonzero element in π1(SO(3)) ' Z2.
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In the special case v = (1, 0, 0, 0), the normalized orthogonal projection of v onto
Nor (Σ, x) is, by (2.4), simply

σ1(x) = τ̃1(x) .

So in this case, each orthogonal matrix γ(x) is a rotation about the first axis, and one
checks that, as x traverses the circle Γi once, these rotations complete a single geodesic
circle in SO(3). For another choice of v, the geodesic circle γ : Γi → SO(3) involves
a circle of rotations about a different axis combined with a single orthogonal change of
coordinates.

2.4 Reference Normal Framing for Σ = u−1{p}.

The above calculations near the ai suggest comparing on the whole surface u−1{p}
the pull-back normal framing τ̃1(x), τ̃2(x), τ̃3(x) with some reference normal framing
σ1(x), σ2(x), σ3(x) induced by two fixed vectors v, w. Unfortunately, there may not
exist fixed vectors v, w so that the corresponding reference framing σ1, σ2, σ3 is defined
everywhere on Σ. In this section we show that any orthonormal basis v, w of almost every
oriented 2 plane Q ∈ G̃2(R5) gives a reference framing on Σ which is well-defined and
smooth except at finitely many discontinuities

b1, b2, . . . , bn .

We will then need to connect the original singularities ai to the bj and, in §2.6, choose
other curves to connect the bj to each other, with all curves having total length bounded
by a multiple of

∫
B5 |∇2u|2 dx.

To find a suitable Q = v ∧w we will first rule out the exceptional planes that contain
some nonzero vector normal to Σ at some point x ∈ Σ. The really exceptional 2 planes
that lie completely in some normal space

X = ∪x∈ΣXx , Xx = {Q ∈ G̃2(R5) : Q ⊂ Nor (Σ, x)}

has dimension at most 2 + 2 = 4 < 6 = dim G̃2(R5) because dim Σ = 2 and dim G̃2(R3) =
2. The remaining exceptional planes

Y = ∪x∈ΣYx , Yx = {Q ∈ G̃2(R5) : dim
(
Q ∩Nor (Σ, x)

)
= 1}

has dimension at most 2 + 2 + 1 = 5 < 6 = dim G̃2(R5) because

Yx = {e ∧ w : e ∈ S4 ∩Nor (Σ, x) and w ∈ S4 ∩ Tan (Σ, x)} .

In terms of our previous notation, YTan (Σ,x) = Xx ∪ Yx.
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Any unit vector e /∈ Nor (Σ, x) has a nonzero orthogonal projection

eT (x)

onto Tan (Σ, x).
Normalizing

ẽT (x) =
eT (x)
|eT (x)|

,

we find a unique unit vector eΣ(x) ∈ Tan (Σ, x) orthogonal to eT (x) so that ẽT (x)∧ eΣ(x)
is the standard orientation of Tan (Σ, x). Then

e · eΣ(x) =
(
e− eT (x)

)
· eΣ(x) + eT (x) · eΣ(x) = 0 + 0

because e− eT (x) ∈ Nor (Σ, x). Thus,

ẽT (x), eΣ(x), τ̃1(x), τ̃2(x), τ̃3(x),

is an orthonormal basis for R5.
Away from the 4 dimensional unit normal bundle

NΣ = {(x, e) : x ∈ Σ, e ∈ S4 ∩Nor (Σ, x)} ,

we now define the basic map

Φ : (Σ× S4
)
\ NΣ → G2(R5) , Φ(x, e) = e ∧ eΣ(x) ,

to parameterize the planes nontransverse to Σ in G̃2(R5)\Y . Incidentally, these do include
the 2 dimensional family of tangent planes

Z = {Q ∈ G̃2(R5) : Q = Tan (Σ, x) for some x ∈ Σ} .

In terms of the notation at the beginning of this section, for any 2 plane Q /∈ Y ,

Q ∈ Qx = QTan (Σ,x) ⇐⇒ Q = Φ(x, e) for some e ∈ S4 \Nor (Σ, x) .

Note that Φ(x,−e) = Φ(x, e), and, in fact,

Φ(x, e′) = Φ(x, e) ∈ G̃2(R5) \ Y ⇐⇒ e′ = ± e .

It is also easy to describe the behavior of Φ at the singular set NΣ. A 2 plane Q

belongs to Y , that is, Q = v ∧ w for some v ∈ Nor (Σ, x) ∩ S4 and w ∈ Tan (Σ, x) ∩ S4, if
and only if Q = limn→∞ Φ(xn, vn) for some sequence (xn, vn) ∈ (Σ×S4

)
\NΣ approaching

(x, v). The map Φ essentially “blows-up” the 4 dimensional NΣ to the 5 dimensional Y ,
and, in particular, any smooth curve in G̃2(R5) transverse to Y lifts by Φ to a pair of
antipodal curves in Σ× S4 extending continuously transversally across NΣ.

We now choose and fix Q ∈ G2(R5) so that
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neither Q nor −Q belong to the 5 dimensional exceptional set W ∪X ∪Y ∪Z and both are
regular values of Φ.

In particular, since
dim (Σ× S4) = 6 = dim G̃2(R5) ,

Φ−1{Q,−Q} is a finite set, say

Φ−1{Q,−Q} = {(b1, e1), (b1,−e1), (b2, e2), (b2,−e2), . . . , (bn, en), (bn,−en)} .

We now see that the reference framing σ1(x), σ2(x), σ3(x) of Nor (Σ, x) corresponding to
any fixed orthonormal basis v, w of Q fails to exist precisely at the points b1, b2, . . . , bn. As
before, we now have the smooth mapping

γ : Σ \ {a1, . . . , am, b1, . . . , bn} → SO(3) ,

which is defined by the condition γ(x)
[
σj(x)

]
= τ̃j(x) for j = 1, 2, 3 or, in column-vector

notation,
γ =

[
σ1σ2σ3

]−1[
τ̃1τ̃2τ̃3

]
.

2.5 Asymptotic Behavior of γ Near the Singularities ai and bj .

As discussed in §3.1, the map u, the surface Σ = u−1{p}, the frames τ̃1, τ̃2, τ̃3 and
σ1, σ2, σ3, and the rotation field γ are all precisely known near a singularity ai in the
cone neighborhood Σ ∩ Bδ0(ai) \ {ai}. In particular, γ is homogeneous of degree 0 on
Σ ∩Bδ0(ai) \ {ai}; on its boundary γ|Γi is a constant-speed geodesic circle.

At each bj , the frame τ̃1, τ̃2, τ̃3 is smooth, but the frame σ1, σ2, σ3, and hence the
rotation γ, has an essential discontinuity. Nevertheless, we may deduce some of the
asymptotic behavior at bj because ±Q were chosen to be regular values of Φ. In fact,
we’ll verify:
The tangent map γj of γ at bj,

γj : Tan (Σ, bj) ∩B1(0) → SO(3) , γj(x) = lim
r→0

γ
[
expΣ

bj
(rx)

]
,

exists and is the homogeneous degree 0 extension of some reparameterization of a geodesic
circle in SO(3).
In particular, for small positive δ, γ |

(
Σ ∩ ∂Bδ(bj)

)
is an embedded circle inducing the

nonzero element of π1(SO(3)) ' Z2.
To check this, we use, as above, the more convenient orthonormal basis {ej , ejΣ} for

Q; that is,

ejΣ = ejΣ(bj) ∈ Tan (Σ, bj) and Q = ej ∧ ejΣ = Φ(bj ,±ej) .
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Then, for x ∈ Σ, let
eN
j (x) , e N

jΣ (x)

denote the orthogonal projections of the fixed vectors ej , ejΣ onto Nor (Σ, x), and

êN
j (x)

denote the cross-product of e N
jΣ (x) and eN

j (x) in Nor (Σ, x). These three vectorfields are
smooth near bj with

eN
j (bj) 6= 0 , e N

jΣ (bj) = 0 , êN
j (bj) = 0 .

Here our insistence that ±Q /∈ Z guarantees that Q is not tangent to Σ at bj . Let gj

denote the orthogonal projection of R5 onto the 2 plane

Pj = Nor (Σ, bj) ∩
[
eN
j (bj)

]⊥
.

Then Gj(x) = gj ◦ eN
j (x) defines a smooth map from a Σ neighborhood of bj to Pj ,

which has, by the regularity of Φ at (bj , ẽj), a simple, nondegenerate zero at bj (of degree
±1). It follows that as x circulates Σ ∩ ∂Bδ(bj) once, for δ small, Gj(x) and similarly
gj ◦ êN

j (x), circulate 0 once in Pj . Returning to the original basis v, w of Q, we now
check that, as x circulates Σ ∩ ∂Bδ(bj) once, the frame σ1(x), σ2(x), σ3(x) approximately,
and asymptotically as δ → 0, rotates once about the vector eN

j (bj). Since the frame
τ̃1(x), τ̃2(x), τ̃3(x) is smooth at bj , we see that the map γ has, at bj , a tangent map γj as
described above.

2.6 Connecting the Singularities ai to the bj .

Here we will find curves reaching all the ai and bj . Concerning the ai, we recall from
[B,§III,10] that SO(3) is isometric to RP 3 ' S3/{x ∼ −x}. Any geodesic circle Γ in
SO(3) generates π1(SO(3)) ' Z2 and lifts to a great circle Γ̃ in S3. The rotations at
maximal distance from Γ form another geodesic circle Γ⊥ and the nearest point retraction

ρΓ : SO(3) \ Γ → Γ⊥

is induced by the standard nearest point retraction

ρΓ̃ : S3 \ Γ̃ → Γ̃⊥ .

In particular,
|∇ρΓ(ζ)| ≤ c

dist (ζ, Γ)
for ζ ∈ SO(3) . (2.6)
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Any geodesic circle Γ′ in SO(3) that does not intersect Γ is mapped diffeomorphically by
ρΓ onto the circle Γ⊥. We deduce that if Γ is chosen to miss the asymptotic circles

γ(Γi) and γj

(
Tan (Σ, bj) ∩ S4

)
associated with the singularities ai and bj , then, on Σ, the composition ρΓ ◦ γ maps every
sufficiently small circle

Σ ∩ ∂Bδ(ai) and Σ ∩ ∂Bδ(bj)

diffeomorphically onto the circle Γ⊥.
Under the identification of SO(3) with RP 3, O(4) acts transitively by isometry on

G = {geodesic circles Γ ⊂ SO(3) } .

Then G is compact and admits a positive invariant measure µG . For µG almost every circle
Γ,

Γ ∩ γ(Γi) = ∅ for i = 1, . . . ,m , Γ ∩ γj

(
Tan (Σ, bj) ∩ S4

)
= ∅ for j = 1, . . . , n ,

and Γ is transverse to the map γ. In particular, γ−1(Γ) is a finite subset

{c1, c2, . . . , c`}

of Σ. For such a circle Γ and any regular value z ∈ Γ⊥ of

ρΓ ◦ γ : Σ \ {a1, . . . , am, b1, . . . , bn, c1, . . . , c`} → Γ⊥ ,

the fiber
A = (ρΓ ◦ γ)−1{z}

is a smooth embedded 1 dimensional submanifold with

A \A ⊂ {a1, . . . , am, b1, . . . , bn, c1, . . . , c`} .

We also can deduce the local behavior of A near each of the points ai, bj , ck. From
the above description of the asymptotic behavior of γ near ai and bj , we see that

A ∩Bδ0(ai)

is simply a single line segment with one endpoint ai while

A ∩Bδ(bj)
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is, for δ sufficiently small, a single smooth segment with one endpoint bj . On the other
hand,

A ∩Bδ(ck)

is, for δ sufficiently small, a single smooth segment with an interior point ck. To see this,
observe that, for the lifted map ρΓ̃ : S3 \ Γ̃ → Γ̃⊥ and any point z̃ ∈ Γ̃⊥, the fiber ρ−1

S̃
{z}

is an open great hemisphere, centered at z, with boundary Γ̃. It follows for the downstairs
map ρΓ that Ez = Clos

(
ρ−1
Γ {z}} is a full geodesic 2 sphere containing z and the circle Γ.

Since the surface γ(Σ) intersects the circle Γ transversely at a finite set, this sphere Ez

is also transverse to γ(Σ) near this set. Thus, for δ sufficiently small, A ∩ Bδ(ck), being
mapped diffeomorphically by γ onto the intersection Ez∩γ

(
Σ∩Bδ(ck)

)
, is an open smooth

segment containing ck in its interior.
Combining this boundary behavior with the interior smoothness of the 1 manifold A,

we now conclude that

A globally consists of finitely many disjoint smooth segments joining pairs of points
in {a1, . . . , am, b1, . . . , bn}, and each such point is joined by a unique segment to another
such point.

2.7 Estimating the Length of the Connecting Set A.

The definition of the A depends on many choices:

(1) the point p ∈ S3, which determines the surface Σ = u−1{p},
(2) the vectors η2, η2, η3 ∈ Tan (S3, p), which determine the pull-back normal framing

τ̃1, τ̃2, τ̃3,
(3) the vectors v, w ∈ S4, which determine the reference normal framing σ1, σ2, σ3 and

the rotation field γ =
[
σ1σ2σ3

]−1[
τ̃1τ̃2τ̃3

]
: Σ \ {b1, . . . , bm} → SO(3),

(4) the circle Γ ⊂ SO(3), which determines the retraction ρΓ : SO(3) \ Γ → Γ⊥, and
(5) the point z ∈ Γ⊥, which finally gives A = (ρΓ ◦ γ)−1{z}.

We need to make suitable choices of these to get the desired length estimate for A. In
§2.1, we already used one coarea formula to choose p ∈ S3 to give the basic estimate (2.3)∫

Σ

|∇u|4 + |∇2u|2

J3u
dH2 ≤ c

∫
B5
|∇2u|2 ,

and the pull-back frame estimate (2.5)∫
Σ

|∇τ̃j | dx ≤ c

∫
B5
|∇2u|2 ,

independent of the choice of η1, η2, η3, then followed.
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For the choice of z ∈ S⊥, we want to use another coarea formula,∫
Γ⊥
H1(ρΓ ◦ γ)−1{z} dz =

∫
Σ

|∇(ρΓ ◦ γ)| dH2 . (2.7)

To bound the righthand integral, we first use the chain rule and (2.6) for the pointwise
estimate

|∇(ρΓ ◦ γ)(x)| = |∇(ρΓ)
(
γ(x)

)
||∇γ(x)| ≤ c|∇γ(x)|

dist
(
γ(x),Γ

) . (2.8)

Next we observe the finiteness of the integral

C =
∫
G

1
dist (ζ, Γ)

dµGΓ < ∞ ,

independent of the point ζ ∈ SO(3). To verify this, we note that µG(G) < ∞ and choose
a smooth coordinate chart for SO(3) near ζ that maps ζ to 0 ∈ R3 and that transforms
circles into affine lines in R3. Distances are comparable, and an affine line in R3 \ {0} is
described by its nearest point a to the origin and a direction in the plane a⊥. Since

µG{Γ ∈ G : ζ ∈ Γ} = 0 ,

the finiteness of C now follows from the finiteness of the 3 dimensional integral∫
R3∩B1

|y|−1 dy .

We deduce from Fubini’s Theorem, (2.7), and (2.8) that∫
G

∫
Γ⊥
H1(ρΓ ◦ γ)−1{z} dz dµGΓ ≤ c

∫
Σ

|∇γ(x)|
∫
G

1
dist

(
γ(x),Γ

) dµGΓ dH2x

≤ cC

∫
Σ

|∇γ(x)| dH2x .

Thus there exists a Γ ∈ G and z ∈ Γ⊥ so that

H1(ρΓ ◦ γ)−1{z} ≤ c

∫
Σ

|∇γ(x)| dH2x . (2.9)

To estimate the righthand side, recall the matrix formula

γ =
[
σ1σ2σ3

]−1[
τ̃1τ̃2τ̃3

]
.

and use Cramer’s rule and the product and quotient rules to deduce the pointwise bound

|∇γ(x)| ≤ c
3∑

j=1

(
|∇σj(x)| + |∇τ̃j(x)|

)
. (2.10)
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In light of (2.5), it remains to bound each term
∫
Σ
|∇σj(x)| dH2x for j = 1, 2, 3.

For the first one, note that

|∇σ1| = |∇
( vN

|vN |
)
| ≤ 2

|∇vN |
|vN |

(2.11)

where vN (x) is the orthogonal projection of v onto the normal space Nor (Σ, x) for each
x ∈ Σ. The formula

vN =
3∑

j=1

(v · τ̃j)τ̃j

and the product rule give the pointwise estimate for the numerator,

|∇vN | ≤ c
3∑

j=1

|∇τ̃j | , (2.12)

independent of the choice of v ∈ S4.
To estimate the denominator, we let vL denote the orthogonal projection of v to any

fixed 3 dimensional subspace L of R5, and observe the finiteness

C1 =
∫
S4

1
|vL|

dH4v < ∞ ,

independent of L. To verify this, we note that the projection of S4 to L vanishes along a
great circle, and, near any point of this circle, the projection is bilipschitz equivalent to an
orthogonal projection of R4 to R3. So the finiteness of C1 again follows from the finiteness
of the 3 dimensional integral

∫
R3∩B1

|y|−1 dy.
By Fubini’s Theorem, (2.11), (2.12), and (2.5),∫

S4

∫
Σ

|∇σ1(x)| dH2x dH4v ≤ 2
∫

Σ

|∇vN (x)|
∫
S4

1
|vN (x)|

dH4v dH2x

≤ 2C1

∫
Σ

|∇vN (x)| dH2x

≤ c
3∑

j=1

∫
Σ

|∇τ̃j(x)| dH2x

≤ c

∫
B5
|∇2u|2 dx .

So there exists a v ∈ S4 giving the σ1 estimate∫
Σ

|∇σ1(x)| dH2x ≤ c

∫
B5
|∇2u|2 dx . (2.13)

14



Next we observe that σ2 = w2
|w2| where w2(x) is the orthogonal projection onto the 2

dimensional subspace Nor (Σ, x) ∩ σ⊥1 . We again find

|∇σ2| = |∇
( w2

|w2|
)
| ≤ 2

|∇w2|
|w2|

. (2.14)

Now the formula

w2 =
[ 3∑

j=1

(w · τ̃j)τ̃j

]
− (w · σ1)σ1 ,

and the product rule give the pointwise estimate for the numerator,

|∇w2| ≤ c
(
|∇σ1| +

3∑
j=1

|∇τ̃j |
)

, (2.15)

independent of the choice w ∈ S4.
To estimate the denominator, we let wM denote the orthogonal projection of w to any

fixed 2 dimensional subspace M of the hyperplane v⊥ = σ⊥1 , and observe the finiteness of
the integral

C2 =
∫
S4∩v⊥

1
|wM |

dH3w < ∞ ,

independent of the choices of v or M . To verify this, we note that the projection of the 3
sphere S4 ∩ v⊥ to M vanishes along a great circle, where it is now bilipschitz equivalent to
an orthogonal projection of R3 to R2. So the finiteness of C2 this time follows from the
finiteness of the 2 dimensional integral

∫
R2∩B1

|y|−1 dy.
By Fubini’s Theorem, (2.5), (2.12), (2.13), (2.14) and (2.15),∫

S4∩v⊥

∫
Σ

|∇σ2(x)| dH2x dH3w ≤ 2
∫

Σ

|∇w2(x)|
∫
S4∩v⊥

1
|w2(x)|

dH3w dH2x

≤ 2C2

∫
Σ

|∇w2(x)| dH2x

≤ c

∫
Σ

(
|∇σ1(x)| +

3∑
j=1

|∇τ̃j(x)|
)
dH2x

≤ c

∫
B5
|∇2u|2 dx .

So there exists a w ∈ S4 ∩ v⊥ giving the σ2 estimate∫
Σ

|∇σ2(x)| dH2x ≤ c

∫
B5
|∇2u|2 dx . (2.16)
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Finally we may use the product rule and the formula

σ3 =
[
(σ1 · τ̃2)(σ2 · τ̃3)− (σ1 · τ̃3)(σ2 · τ̃2)

]
τ̃1

+
[
(σ1 · τ̃3)(σ2 · τ̃1)− (σ1 · τ̃1)(σ2 · τ̃3)

]
τ̃2

+
[
(σ1 · τ̃1)(σ2 · τ̃2)− (σ1 · τ̃2)(σ2 · τ̃1)

]
τ̃3

along with (2.5), (2.13), and (2.16) to obtain the σ3 estimate∫
Σ

|∇σ3(x)| dH2x ≤ c

∫
B5
|∇2u|2 dx . (2.17)

Now we may combine (2.9), (2.10), (2.5), (2.13), (2.16), and (2.17) to obtain the
desired length estimate

H1(A) = H1(ρΓ ◦ γ)−1{z} ≤ c

∫
B5
|∇2u|2 dx . (2.18)

2.8 Connecting the Singularities bj to bj′ .

Although we now have a good description and length estimate for A, we are not
done. The problem is that the set A does not necessarily connect each of the original
singularities ai to another ai′ . The path in A starting at ai may end at some bj . To
complete the connections between pairs of ai, it will be sufficient to find a different union
B of curves which connect each frame singularity bj to a another unique frame singularity
bj′ . Then adding to A some components of B will give the desired curves connecting every
ai to a distinct ai′ . In this section we will use the map Φ from §2.4 to construct this
additional connecting set B, and we will, in the next section §2.9, obtain the required
estimate on the length of B.

First we recall the description in [M] of G̃2(R5) as a 2 sheeted cover of the Grassman-
nian of unoriented 2 planes in R5. With Q ∈ G̃2(R5) chosen as before in §3.2, consider
the 5 dimensional Schubert cycle

SQ = {P ∈ G̃2(R5) : dim
(
P ∩Q⊥)

≥ 1}

and the 4 dimensional subcycle

TQ = {P ∈ G̃2(R5) : dim
(
P ∩Q⊥)

≥ 2} = {P ∈ G̃2(R5) : P ⊂ Q⊥} .

As in [M], we see that G̃2(R5) \ SQ has two 6 dimensional antipodal cells, D+ centered at
Q and D− centered at −Q.

Next we will carefully define a (nearest-point) retraction map

ΠQ : G̃2(R5) \ {Q,−Q} → SQ .
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For P ∈ D+ \ {Q}, there is a unique vector v ∈ P ∩ S4 which is at maximal distance in
P ∩ S4 from Q ∩ S4 and a unique vector w in Q ∩ S4 that is closest to v; in particular,
0 < w · v < 1. Choose AP ∈ so (5) so that the corresponding rotation exp AP ∈ SO(5)
maps w to v and maps w̃ to ṽ where P = v ∧ ṽ and Q = w ∧ w̃. Thus expAP maps Q to
P , preserving orientation. Here (exp tAP )(w) defines a geodesic circle in S4, and

tP ≡ inf{t > 0 : w · (exp tAP )(w) = 0 } > 1 .

Then (exp 2tpAP )(w) = −w and exp 4tpAP = id . It follows that, in G̃2(R5), as t increases,

(exp tAP )(Q) ∈ D+ for 0 ≤ t < tP and (exp tAP )(Q) ∈ D− for tP < t ≤ 2tP ,

(exp 0AP )(Q) = Q, (expAP )(Q) = P, (exp tpAP )(Q) ∈ SQ, (exp 2tpAP )(Q) = −Q ,

and we let ΠQ(P ) = (exp tpAP )(Q).
As P approaches ∂D+ = SQ, tP ↓ 1 and |ΠQ(P )− P | → 0. Thus, let

ΠQ(P ) = P for P ∈ SQ .

Also, let
ΠQ(P ) = −ΠQ(−P ) for P ∈ D− \ {−Q} .

For P ∈ SQ \TQ, the intersection P ∩Q⊥∩S4 consists of 2 antipodal points in P ∩S4

that are uniquely of maximal distance from Q ∩ S4, and one sees that

Clos Π−1
Q {P}

is a single semi-circular geodesic arc joining Q and −Q. For almost all P ∈ SQ \ TQ, this
semi-circle meets transversely both Y , and, near ±Q, each small surface

Φ
(
[Σ ∩Bδ(bj)]× {ej}

)
.

We will choose P ∈ SQ \ TQ also to be a regular value of ΠQ ◦Φ. It follows (see §2.4) that
the set (

ΠQ ◦ Φ)−1{P} = Φ−1
(
Π−1

Q {P}
)

is an embedded 1 dimensional submanifold, with endpoints in {(b1,±e1), . . . , (bm,±em)}.
In small neighborhoods of any two points (bj , ej), (bj ,−ej) the set Clos

(
ΠQ ◦ Φ)−1{P}

consists of two smooth segments (antipodoal in the S4 factor) which both project, under
the projection

pΣ : Σ× S4 → Σ ,

17



onto a single smooth segment in Σ with endpoint bj . These two segments upstairs continue
in

(
ΠQ ◦ Φ)−1{P} to form two embedded antipodal paths whose final endpoints are

(bj′ , ej′), (bj′ ,−ej′) for some j′ distinct from j. Here

ej′ ∧ ej′Σ = Φ
(
bj′ ,±ej′

)
= −Φ

(
bj ,±ej

)
= −ej ∧ ejΣ .

Composing either path with the projection pΣ gives the same path connecting bj and bj′

Thus the the whole set
B = pΣ

[(
ΠQ ◦ Φ)−1{P}

]
provides the desired connection in Σ.

Also note that these two paths upstairs have similar orientations induced as fibers of
the map ΠQ ◦ Φ. That is, in the notation of slicing currents [F,4.3],

pΣ#

〈
[[Σ× S4]] , ΠQ ◦ Φ , Q

〉
= 2(H2 B) ∧ ~B , (2.19)

where ~B is a unit tangent vectorfield along B (in the direction running from bj to bj′).

2.9 Estimating the Length of the Connecting Set B.

The definition of B depends on the choices of:
(1) the point p ∈ S3 which gives the surface Σ = u−1{p} and the map

Φ : (Σ× S4
)
\ NΣ → G̃2(R5) , Φ(x, e) = e ∧ eΣ(x) ,

(2) the 2 plane Q ∈ G̃2(R5) which determines the retraction ΠQ of G̃2(R5)\{Q,−Q}
onto the 5 dimensional Schubert cycle SQ, and

(3) the 2 plane P ∈ SQ which gives B = pΣ

[(
ΠQ ◦ Φ)−1{P}

]
.

Having chosen p ∈ S3 as before to obtain estimate (2.5), we need to chose Q and P to get
the desired length estimate for B.

Concerning Q, we first readily verify that the retraction ΠQ is locally Lipschitz in
G̃2(R5) \ {Q,−Q} and deduce the estimate

|∇ΠQ(S)| ≤ c

|S −Q||S + Q|
for S ∈ G̃2(R5) \ {Q,−Q} . (2.21)

Using (2.19) and [F,4.3.1], we may integrate the slices to find that∫
SQ

pΣ#

〈
[[Σ× S4]],ΠQ ◦ Φ, P

〉
dH5P = pΣ#

∫
SQ

〈
[[Σ× S4]],ΠQ ◦ Φ, P

〉
dH5P

= pΣ#

(
[[Σ× S4]] (ΠQ ◦ Φ)#ωSQ

)
,
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where ωSQ
is the volume element of SQ. By (2.19) and Fatou’s Lemma,∫

SQ

2H1
(
pΣ[(ΠQ ◦ Φ)−1{P}]

)
dH5P =

∫
SQ

M[pΣ#

〈
[[Σ× S4]],ΠQ ◦ Φ, P

〉
]dH5P

≤ M
[
pΣ#

(
[[Σ× S4]] (ΠQ ◦ Φ)#ωSQ

)]
= sup

α∈D1(Σ),|α|≤1

∫
Σ

∫
S4

(ΠQ ◦ Φ)#ωSQ
∧ p#

Σα . (2.22)

To estimate this last double integral, we recall from §2.3 that, for each fixed x ∈
Σ \ {a1, . . . , am},

Φ(x, ·) : S4 \Nor (Σ, x) → Qx ≡ QTan (Σ,x) \ Yx

is a the smooth, orientation-preserving, 2-sheeted cover map. Each map Φ(x, ·) depends
only on Tan (Σ, x), and any two such maps are orthogonally conjugate. We will derive the
formula [

(ΠQ ◦ Φ)#ωSQ
∧ p#

Σα
]
(x, ·) = β(x, ·)p#

ΣωΣ(x) ∧ Φ(x, ·)#ωQx
(2.23)

where ωΣ and ωQx denote the volume elements of Σ andQx and β(x, ·) is a smooth function
on S4 \Nor (Σ, x) satisfying

|β(x, e)| ≤ c

|Φ(x, e)−Q|5|Φ(x, e) + Q|5
3∑

j=1

|∇τ̃j(x)| for e ∈ S4 . (2.24)

Before proving (2.23), note that the decomposition on the righthand side is not necessarily
smooth in x since the different Qx may overlap for x near a critical point of Φ(·, e) for
some e ∈ S4. Nevertheless, the formula does imply the measurability of β(x, e) in x, and
so may be integrated over Σ.

To derive (2.23), we first note that, with the factorization Σ× S4, there are only two
terms in the (p, q) decomposition of the 5 form,

(ΠQ ◦ Φ)#ωSQ
= Ω2,3 + Ω1,4 .

Thus,
(ΠQ ◦ Φ)#ωSQ

∧ p#
Σα = 0 + Ω1,4 ∧ p#

Σα (2.25)

because the term Ω2,3 ∧ p#
Σα, being of type (2 + 1, 3), must vanish.

For each S = Φ(x,±e) ∈ Qx \ Yx, we also have the factorization

Tan (G̃2(R5), S) = Nor (Qx, S) × Tan (Qx, S) .

Let µ1, µ2, µ3, µ4, ν1, ν2 be an orthonormal basis of ∧1Tan (G̃2(R5), S) so that

µ1, µ2, µ3, µ4 ∈ ∧1Tan (Qx, S) , ν1, ν2 ∈ ∧1Nor (Qx, S) , µ1 ∧ µ2 ∧ µ3 ∧ µ4 = ωQx
(S) ;
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thus, 0 = ν1(v) = ν2(v) = µ1(w) = µ2(w) = µ3(w) = µ4(w) whenever v ∈ Tan (Qx, S) and
w ∈ Nor (Qx, S). We may expand the 5 covector

Π#
Q(ωSQ

)(S) =

λ1 ν2 ∧ µ1 ∧ µ2 ∧ µ3 ∧ µ4 + λ2 ν1 ∧ µ1 ∧ µ2 ∧ µ3 ∧ µ4 + λ3 ν1 ∧ ν2 ∧ µ2 ∧ µ3 ∧ µ4

+ λ4 ν1 ∧ ν2 ∧ µ1 ∧ µ3 ∧ µ4 + λ5 ν1 ∧ ν2 ∧ µ1 ∧ µ2 ∧ µ4 + λ6 ν1 ∧ ν2 ∧ µ1 ∧ µ2 ∧ µ3

where
|λi| ≤

c

|S −Q|5|S + Q|5
, (2.26)

by (2.21). Applying Φ# (that is, ∧1DΦ(x, e) ) to all covectors and taking the (1, 4)
component, we find that only the first two terms survive so that

Ω1,4(x, e) =
[
λ1Φ#ν2 + λ2Φ#ν1

]
(1,0)

∧ Φ#µ1 ∧ Φ#µ2 ∧ Φ#µ3 ∧ Φ#µ4

=
[
λ1Φ#ν2 + λ2Φ#ν1

]
(1,0)

∧ Φ(x, ·)#ωQx(S) . (2.27)

Being of type (2, 0), the 2 covector([
λ1Φ#ν2 + λ2Φ#ν1

]
1,0
∧ p#

Σα
)
(x, e) = β(x, e)p#

ΣωΣ(x) (2.28)

for some scalar β(x, e), and (2.25) and (2.27) now give the desired formula (2.23). This
formula readily implies the smoothness of β(x, ·) on S4 \Nor (Σ, x).

To verify the bound (2.24), observe that

| [Φ#νi

]
1,0
| = sup

v∈S4∩Tan (Σ,x)

νi[∇vΦ(x, e)] , (2.29)

where ∇vΦ(x, e) = DΦ(x,e)(v, 0) ∈ Tan (G̃2(R5), S). For any unit vector v ∈ Tan (Σ, x)
and any w ∈ R5,

v ∧ w ∈ Tan (Qx, S)

because we may assume w /∈ Tan (Σ, x) and then choose a curve y(t) in S4∩v⊥ \Nor (Σ, x)
with y′(0) = w − (w · v)v, hence,

v ∧ w = v ∧ y′(0) =
d

dt t=0

(
v ∧ y(t)

)
= − d

dt t=0
Φ

(
x, y(t)

)
.

Thus, for any 2 vector ξ ∈ Nor (Qx, S), |ξ| = |ξ ∧ v|; in particular, |ξ| = |ξ ∧ ẽT (x)|,
|ξ| = |ξ ∧ eΣ(x)|, and hence,

|ξ| = | ξ ∧
(
ẽT (x) ∧ eΣ(x)

)
| .
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Since νi ∈ ∧1Nor (Qx, S) and |νi| = 1, we now find that

νi[∇vΦ(x, e)] = νi

[(
∇vΦ(x, e)

)
Nor (Σ,x)

]
≤ |∇vΦ(x, e) ∧

(
ẽT (x) ∧ eΣ(x)

)
| . (2.30)

Moreover,

|∇vΦ ∧ (ẽT ∧ eΣ)| ≤ |
(
∇v(e ∧ eΣ)

)
∧ (ẽT ∧ eΣ)| ≤ | (∇veΣ) ∧ (ẽT ∧ eΣ)|

= | eΣ ∧∇v(ẽT ∧ eΣ)| ≤ |∇v(ẽT ∧ eΣ)|

= |∇v

(
∗ ( τ̃1 ∧ τ̃2 ∧ τ̃3)

)
| ≤ c

3∑
j=1

|∇τ̃j | , (2.31)

where ∗ is the Hodge ∗ : ∧3R5 → ∧2tR5 ≈ R5 [F,1.7.8]) The desired pointwise bound
(2.24) now follows by combining (2.26), (2.28), (2.29), (2.30) and (2.31).

For each x ∈ Σ, the pull-back Φ(x, ·)#ωQx is point-wise a positive multiple of the
volume form of S4. So we may first integrate over S4 and use (2.24) to see that∫

S4
β(x, ·)Φ(x, ·)#ωQx

≤
∫
S4
|β(x, ·)|Φ(x, ·)#ωQx

≤ c
( 3∑

j=1

|∇τ̃j(x)|
) ∫

S4

Φ(x, ·)#ωQx

|Φ(x, ·)−Q|5|Φ(x, ·) + Q|5

= c
( 3∑

j=1

|∇τ̃j(x)|
) ∫

Qx

ωQx
(S)

|S −Q|5|S + Q|5

≤ c
( 3∑

j=1

|∇τ̃j(x)|
) ∫

Qx

dH4S

|S −Q|5|S + Q|5
. (2.32)

To handle the denominator, we note that the Grassmannian G̃2(R5) is a 6 dimensional
homogeneous space, and we readily use local coordinates to verify that

C3 =
∫

G̃2(R5)

1
|S −Q|5|S + Q|5

dH6Q < ∞ , (2.33)

independent of S.
Now we recall (2.22) and fix a sequence of 1 forms αi ∈ D1(Σ) with |αi| ≤ 1 so that

M
[
pΣ#

(
[[Σ× S4]] (ΠQ ◦ Φ)#ωSQ

)]
= lim

i→∞

∫
Σ

∫
S4

(ΠQ ◦ Φ)#ωSQ
∧ p#

Σαi ,

let βi be the corresponding function from the formula (2.23), and use (2.22), Fatou’s
Lemma, (2.23), (2.32), Fubini’s Theorem, (2.33), and (2.5) to obtain our final integral
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estimate ∫
G̃2(R5)

∫
SQ

2H1
(
pΣ[(ΠQ ◦ Φ)−1{P}]

)
dH5P dH6Q

≤
∫

G̃2(R5)

lim
i→∞

∫
Σ

∫
S4

(ΠQ ◦ Φ)#ωSQ
∧ p#

Σαi

≤ lim inf
i→∞

∫
G̃2(R5)

∫
Σ

∫
S4

βi(x, ·)ωΣ(x) ∧ Φ(x, ·)#ωQx

≤ c

∫
Σ

( 3∑
j=1

|∇τ̃j(x)|
) ∫

Qx

∫
G̃2(R5)

1
|S −Q|5|S + Q|5

dH6Q dH4S dH2x

≤ cC3

3∑
j=1

∫
Σ

|∇τ̃j(x)| dH2x

≤ c

∫
B5
|∇2u|2 dx .

The Schubert cycles SQ are all orthogonally equivalent with the same positive 5 dimensional
Hausdorff measure. So we can use the final integral inequality to choose first a 2 plane
Q ∈ G̃2(R5) and then a 2 plane P ∈ SQ so that the corresponding connecting set

B = pΣ[(ΠQ ◦ Φ)−1{P}]

satisfies the desired length estimate

H1(B) ≤ c

∫
B5
|∇2u|2 dx .
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