
JO NELSON: AN INTEGRAL LIFT OF CYLINDRICAL CONTACT

HOMOLOGY

1. Ingredients of “classical” contact homology CHQ

Consider (Y 2n−1, kerλ = ξ) a nondegenerate contact structure, cooriented for orientation rea-
sons. R is the Reeb vector field, c1(ξ) = 0, and J is an almost complex structure on (Rτ×M,d(eτλ)),
J∂τ = R. Assume J d(eτλ)-compatible.

Let γ± be periodic Reeb orbits, and setMJ(γ+, γ−) to be the moduli space of u : (R×S1, j0)→
(R×Y, J) such that u is J-holomorphic, and the limits of πY u as s→ ±∞ to be reparametrizations
of γ±, and the limits of πRu to be ±∞.

(CW’s question: is the c1 = 0 hypothesis only for obtaining an integral grading via the Conley-
Zehnder index? JN’s answer: yes.)

Grading is given by CZ index, and the dimension of MJ is |γ+| − |γ−|, where we set |γ| =
CZ(γ) + n− 3; when dimY = 3, this becomes CZ(γ)− 1.

The chain complex CCQ
∗ is defined to be the Q-vector space generated by all the non-bad Reeb

orbits. The CZ index of a Reeb orbit can either have the same parity or flip between odd and
even. Bad Reeb orbits are the even covers of flippy CZ guys. In dimension 3, they are even covers
of negative hyperbolic orbits; negative hyperbolic orbits are characterized by the linearized return
map having negative real eigenvalues. (NB’s question: why are these “bad”? JN’s answer: because
even when you have transversality, no way to prove invariance; they also mess up orientations.)

The differential maps ∂ : CC∗ → CC∗−1, and it’s defined by

〈∂Qx, y〉 =
∑

u∈M(x,y)/R,|x|−|y|=1

m(x)
m(u)ε(u).

(JO: On the next line is written another differential, with m(y) in the numerator. If we have
all the transversality in the world then these two differentials yield isomorphic homologies over
Q-coefficients.)

2. Issues

We are working with multiply-covered curves, hence there are compactness issues. The following
“conjeorem” was stated in EGH’s 2000 propaganda paper:

Theorem 2.1 (“conjeorem”). Let (Y 2n−1, λ) be a nondegenerate contact manifold, and let J be
generic. Assume there are no contractible Reeb orbits of index −1, 0, 1. Then ∂Q is well-defined,
(∂Q)2 = 0, and the homology of CC∗ is an invariant of ξ (e.g. independent of λ and J).

BEHWZ in 2003 showed that there’s no bubbling (just as in Hamiltonian Floer), but there is
breaking of curves into “buildings”. There is a maximum principle in πRu, but you can grow
minima, so you can grow new punctures at the negative ends. (The picture drawn is a cylinder,
with a minimum growing in the R-direction, hence can break into a pair of pants, a cylinder, and
a disk.) This makes us sad, because we only want once-broken cylinders to occur in the boundary.
This cylinder-degeneration is exactly what leads us to the “no bad orbits” hypothesis.

(NB’s question: why is the cap [finite energy plane] that comes off a “break” and not a “bubble”?
JF’s answer: because of the Hamiltonian, there’s no S1-symmetry, hence there’s only one real gluing
parameter.)
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In dimension 3 you can get automatic transversality and index calculations to work favorably;
the hypotheses are called “dynamically separated” provided 3 ≤ CZ(γ) ≤ 5 for γ simple and
contractible and CZ(γk+1) = CZ(γk) + 4. When γ is noncontractible we have an analogous
definition, but we have to keep track of free homotopy classes of the iterates of γ, which is annoying
to explain in a 1 hour talk. (By the way, the “dynamically separated” hypothesis is usually true
up to large action

∫
γ λ.)

Theorem 2.2 (JN, 2013). If (Y 3, λ) is nondegenerate and dynamically separated and J is generic,

then CHQ
∗ is defined (perhaps up to some large action/index) and invariant under choices of J and

dynamically separated λ.

Definition 2.3. (Y, λ) is “dynamically convex” if c1(ξ)|π2(Y ) = 0 and CZ(γ) ≥ 3 for all contractible
Reeb orbits γ.

Example 2.4. Any strictly convex hypersurface in (R4, ω0) transverse to the radial vector field.

Lemma 2.5 (Hutchings–Nelson, 2013). Say (Y 3, λ) is dynamically convex and J is generic. As-
sume also that CZ(γ) > 3 for γ nonsimple and contractible. Then the only buildings of index 2 in
R×M are unbroken cylinders between x, z with |x| − |z| = 2, a once-broken cylinder between three
orbits with each pair of index difference 1, or the pair of pants with a cap and cylinder that was
mentioned before. Furthermore, no index-2 cylinders can limit to the third configuration.

Corollary 2.6. ∂Q is well-defined and squares to zero.

3. Invariance?

The normal approach looks bad, so let’s try to define a nonequivariant version of CH and get
invariance. This will look like the positive part of symplectic homology, while the equivariant
version looks like the positive part of symplectic homology.

Now, instead of looking at a single J for all time, let’s take a domain-dependent Jt for t ∈ S1.
GOOD NEWS : for a generic S1-family (Jt),M(Jt)(γ+, γ−) is a manifold of dimension CZ(γ+)−

CZ(γ−) + 1.

Now, to define the differential, we need to throw in some point constraints. So, define ev± : M(Jt) →
im(γ±), defined as limits as s → ±∞. Take the base point pγ on the underlying embedded Reeb
orbit γ associated to any γ ∈ P(λ). In the language of evaluation maps we write

(1)

e+ : M(Jt)(γ+, γ−) → γ+

u 7→ lim
s→+∞

πY u(s, 0)

e− : M(Jt)(γ+, γ−) → γ−
u 7→ lim

s→−∞
πY u(s, 0)

by specifying e+(u) = pγ− or e−(u) = pγ+ .

For the chain complex, no longer have to throw out the bad ones, but will have twice as many
orbits as before. Can think of this as a Morse–Bott situation, where the Morse–Bott manifolds are
the Reeb orbits, and we use the height function as our Morse function on S1 ∼ γ, which gives rise
to two generators for each γ. This is the motivation for the following definition:

NCC∗ :=
⊕
γ̂,γ̌

Z〈γ̌, γ̂〉,
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where we set |γ̌| := |γ| = CZ(γ) + n − 3, |γ̂| := |γ| + 1 = CZ(γ̂) + n + −2. The hats and checks
are coming from the fact that we’re thinking Morse–Bott, so we’ve put the height Morse function
on all the Reeb orbits, which has two critical points and corresponding Morse index.

We will define the differential in terms of the following cascade Morse-Bott moduli spaces.
We will use these base points to define the cascade Morse-Bott moduli spaces, whose elements

are counted by the cascade differential; they are denoted byM(Jt)(α̌; β̌),M(Jt)(α̂; β̌),M(Jt)(α̌; β̂),

and M(Jt)(α̂; β̂). In these definitions we require α and β to be distinct Reeb orbits; definitions for
when they are the same Reeb orbit will follow presently.

As a set, each of these spaces is a disjoint union of subsets MJ (·, ·)` indexed by level `. Higher
levels consist of tuples (u1, .., u`) of broken cylinders subject to certain conditions. Before explaining
these conditions we define the base level, MJ (·, ·)1.

(2)

M(Jt)
(
α̌; β̌

)
1

:=
{
u ∈M(Jt)(α;β) | e+(u) = pα

}
M(Jt)

(
α̂; β̌

)
1

:= M(Jt)(α;β)

M(Jt)
(
α̌; β̂

)
1

:=
{
u ∈M(Jt)(α;β) | e+(u) = pα, e−(u) = pβ

}
M(Jt)

(
α̂; β̂

)
1

:=
{
u ∈M(Jt)(α;β) | e−(u) = pβ

}
Definition 3.1. Moving upwards, we define the higher levels M(Jt)

|α|−|β|

(
α̃, β̃

)
`

assuming α = γ0,

γ1, ... , γ`−1, γ` = β are all distinct Reeb orbits, where ˜ over a Reeb orbit indicates a decoration

of either a ̂ or .̌ We define M(Jt)
(
α̃, β̃

)
`

to be the set of tuples

(u1, .., u`) ∈
∏̀
i=1

M(Jt)(γi−1, γi)

such that
If α̃ = α̌ then the positive end of u0 has a point constraint, e+(u0) = pα

If β̃ = β̂ then the negative end of u` has a point constraint, e−(u`) = pβ

If 1 ≤ i ≤ ` then the three points pγi , e−(ui−1), e+(ui) are cyclically ordered around the image
of the Reeb orbit γi, with respect to the orientation given by the Reeb orbit.

When α and β are the same Reeb orbit we define

M(Jt) (α̌; α̌) =M(Jt) (α̌; α̂) =M(Jt) (α̂; α̂) = ∅

and

(3) MJ (α̂; α̌) :=

{
2{pt} if α is bad;
∅ if α is good.

}
The differential is defined in block form by:

∂ :=

(
∂̌ ∂+

∂− + obg ∂̂

)
,

where obg is a correction term that accounts for a contribution to the differential counted via
obstruction bundle gluing in the presence of certain contractibe Reeb orbits.
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We define

∂̌ : ČC∗ → ČC∗−1 ∂+ : ĈC∗ → ČC∗

α̌ 7→
∑
β̌

|α|−|β|=1

∑
u∈M(Jt)(α̌,β̌)

ε(u)β̌ α̂ 7→
∑
β̌

|α|−|β|=0

∑
u∈M(Jt)(α̂,β̌)

ε(u)β̌

∂− : ČC∗ → ĈC∗−2 ∂̂ : ĈC∗ → ĈC∗−1

α̌ 7→
∑
β̂

|α|−|β|=2

∑
u∈M(Jt)(α̌,β̂)

ε(u)β̂ α̂ 7→
∑
β̂

|α|−|β|=1

∑
u∈M(Jt)(α̂,β̂)

ε(u)β̂

(Answer to NB’s question: can use Z coefficients because the time-dependent J allows us to rule
out isotropy. Indeed, that time-dependence implies the existence of somewhere-injective points.)

Theorem 3.2. For (Y 3, λ) dynamically convex and J generic, NCC∗ is a chain complex and H∗
is independent of (Jt) and dynamically convex λ.

Let’s relate this back to ordinary cylindrical contact homology. When there is sufficient automatic
transversality (as needed to define ∂Q) then we can use this J to look atNCH∗. In this case, ∂̌ = ∂Q,

and ∂̂ is the other ∂Q when counting cylinders between good orbits. The counts between bad orbits

can be expressed in terms of ∂̌ and ∂̂ with additional simplification.

Theorem 3.3 (Hutchings–Nelson). If (Y, λ) is nondegenerate and dynamically convex, and J is
generic, then for

∂0 :=

(
∂̌ ∂+

∂− + obg ∂̂

)
and

∂1 :=

(
0 0
m 0

)
(NCC∗ ⊗ Z[u], ∂Z = ∂0 + ∂1u

−1, J) is a chain complex. (u is a formal variable of degree 2.)
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