Math 368. Combinatorics and Graph Theory.

List of problems:

Problem 5, page 9. Page 1.

Problem 5, page 9. Let G be a graph with $\delta(G) > k$.

(a) Prove that G has a path of length at least k.

(b) If $k \ge 2$, prove that G has a cycle of length at least k + 1.

Solution to (a). For k = 0 the statement is trivial because for any $v \in V$ the sequence v (of one term in V) forms a path of length 0.

So we assume that $k \geq 1$. Let n be the maximal possible length of a path in G, and let $v_1, v_2, \ldots, v_{n+1}$ be such a path of length n. In order to prove (a), we have to show that $n \geq k$.

If not (thus the proof is conducted by contradiction), then n < k. Denote $S = N(v_{n+1}) \setminus \{v_i \mid 1 \le i \le n\}$. We have $|S| \ge \delta(G) - n \ge k - n \ge 1$, i.e. $S \ne \emptyset$. Pick $u \in S$. Then the sequence $v_1, v_2, \ldots, v_{n+1}, u$ forms a path of length n+1, a contradiction with the assumption that n is the maximal length of a path in the graph G.

Solution to (b). If $\delta(G) = 1$, G does not need to have cycles (example: $P_n, n \ge 2$).

Now assume that $k \geq 2$. As in the previous proof, let n be the maximal possible length of a path in G, and let $v_1, v_2, \ldots, v_{n+1}$ be such a path of length n. It follows from (a) that $n \ge k$. Consider

 $S = N(v_{n+1}) \setminus \{ v_i \mid n - k + 2 \le i \le n \}.$

Clearly, $|S| \leq k - (k-1) = 1$, i.e., $S \neq \emptyset$. Pick $u \in S$. Then the walk $v_1, v_2, \ldots, v_{n+1}, u$ cannot be a path because its length is n+1 > n. It follows that $u = v_m$, for some $m \in [1, n-k+1]$, and then $v_m, v_{m+1}, \ldots, v_{n+1}, u$ is a path of length $n+1-m+1 = n+2-m \ge n+2-(n-k+1) = k+1$, completing the proof of (b).

Problem 2 (from Test 1). Prove that if diam(G) = 8 then $\omega(\overline{G}) > 5$.

Solution. If diam(G) = 8, there are $u, v \in V$ such that d(u, v) = 8. Then there exists an u_v -path

(1)

such that $u_0 = u$ and $u_8 = v$.

Claim. For integers i, j such that $0 \le i \le j \le 8$, $d(u_i, u_j) = j - i$.

Proof #1 of the Claim.

This has been proved in class for any geodesic path. (A path u_v is geodesic if its length is equal to d(u, v)). **Proof #2 of the Claim**. (Direct proof: If you do not remember the geodesic result).

 $u_0, u_1, \ldots, u_7, u_8$

Clearly, $d(u_i, u_i) \leq j - i$ because the path (1) contains a path between u_i and u_j of length j - i.

Now assume to the contrary that $d(u_i, u_j) < j - i$. Then by the triangle inequality

$$d(u, v) = d(u_0, u_8) \le d(u_0, u_i) + d(u_i, u_j) + d(u_j, u_8) \le i + d(u_i, u_j) + (8 - j) = 0$$

(2)

 $= 8 + i - j + d(u_i, u_j) < 8 + i - j + (j - i) = 8,$ a contradiction with the choice of u, v such that d(u, v) = 8.

It follows from (2) that the distances between any two different vertices in the set

 $W = \{u_0, u_2, u_4, u_6, u_8\}$

is at least 2, hence every pair in the set W lies in $E(\underline{G})$. $\omega(\overline{G}) \geq 5$. Since |W| = 5, it follows that $\omega(\overline{G}) \geq 5$.

The students who instead of writing down explicitly (2) just pointed out that all distances in the set Wexceed 2 because otherwise by the triangle inequality d(u, v) < 8 received full credit.