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Abstract. Let (Σ, p) be a pointed Riemann surface and k ≥ 1 an integer.
We parametrize the space of meromorphic quadratic differentials on Σ with
a pole of order k + 2 at p, having a connected critical graph and an induced
metric composed of k Euclidean half-planes. The parameters form a finite-
dimensional space L ∼= Rk×S1 that describe a model singular-flat metric around
the puncture with respect to a choice of coordinate chart. This generalizes an
important theorem of Strebel, and associates, to each point in Tg,1×L, a unique
metric spine of the surface that is a ribbon-graph with k infinite-length edges
to p. The proofs study and relate the singular-flat geometry on the surface and
the infinite-energy harmonic map from Σ \ p to a k-pronged graph, whose Hopf
differential is that quadratic differential.

1. Introduction

Holomorphic quadratic differentials on compact Riemann surfaces are central
objects in classical Teichmüller theory; for example, they provide coordinates for
the Teichmüller space of a compact surface in a number of settings. Such a dif-
ferential induces a singular-flat metric and a measured foliation on the underlying
Riemann surface; the projection map to the leaf-space of this foliation is harmonic.
These associated constructions (detailed in §2) provide alternative descriptions of
these differentials: for example the Hubbard-Masur theorem ([HM79]) asserts that
a holomorphic quadratic differential on a given Riemann surface is uniquely deter-
mined by the measured foliation, and one of us ([Wol96]) showed that the lift of the
differential to the universal cover can be recovered from the equivariant harmonic
map to the leaf-space (an R-tree) by taking its Hopf differential. Much of the
power and usefulness of these tensors in the theory derive from these equivalent
holomorphic, geometric and analytic perspectives.

For surfaces with punctures, the theory extends to the case of “integrable” qua-
dratic differentials (with poles of order at most one) and “Strebel” differentials
with poles of order two (see below), but is incomplete in general. In this article
we develop these equivalences for certain meromorphic quadratic differentials with
higher order poles, whose corresponding singular-flat metrics of infinite area are
analogous to the case of Strebel differentials.
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Let Σ be a compact Riemann surface of genus g ≥ 1 and p a marked point.
Our study is inspired by the following theorem of Strebel (see Theorem 23.5 in
[Str84]) which parameterizes a certain geometrically special subclass of the space
of quadratic differentials with poles of order 2:

Theorem (Strebel). Let (Σ, p) be a pointed Riemann surface as above. Given a
constant c ∈ R+, there is a unique meromorphic quadratic differential with a pole
of order 2 at p satisfying the following equivalent properties:

• (Analytic) The residue at the pole is −c, the critical graph connected, and
all the non-critical leaves of the (horizontal) measured foliation are closed.
• (Geometric) In the induced singular-flat metric, the punctured surface Σ\p

is a half-infinite Euclidean cylinder of circumference 2πc, with an interval-
exchange identification on its boundary that yields the critical graph.

The connected critical graphs (see §2 for definitions) in these cases are also called
“ribbon graphs”, and have proved useful in works from Harer-Zagier ([HZ86]) and
Penner ([Pen87]) to Kontsevich ([Kon92]) and others.

In this article we generalize Strebel’s result to the case of poles of higher order.

A half-plane differential of order k ≥ 1 on a pointed Riemann surface (Σ, p) is a
meromorphic quadratic differential on Σ with a single pole at p of order (k+2) and
a connected critical graph whose complement is a collection of k Euclidean half-
planes (what we shall call a half-plane structure). Our main result parameterizes
the space HPk(Σ, p) of such half-plane differentials in terms of “local data” at the
pole measured with respect to a choice of coordinate chart.

The collapsing map to the leaf-space of the horizontal foliation for a half-plane
structure defines a harmonic map from Σ \ p to a metric graph Xk comprising k
infinite rays (prongs) meeting at a single vertex O. The asymptotic behavior of
this map on the chosen coordinate chart shall characterize the differential. The
“model” is that of a k-planar-end, which is a conformal punctured disk obtained by
gluing k Euclidean half-planes by isometries along their boundaries (see Definition
3.1). As we shall see, the parameters determining this model map are then the
“local data” at the pole. Our main result is

Theorem 1.1. Let (Σ, p) be a pointed Riemann surface of genus g ≥ 1, and
U ∼= D a choice of coordinate chart around p. For any k ≥ 1 there is a space
P(k) ∼= Rk of “k-planar-ends” and a family M(k) ∼= Rk × S1 of harmonic maps
from D∗ to Xk obtained as their collapsing maps, such that the following three
spaces are homeomorphic:

• (Complex-analytic) HPk(Σ, p) = {half-plane differentials of order k
on (Σ, p)},
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• (Synthetic-geometric) Pk(Σ, p) = {singular-flat surfaces obtained by
an identification on the boundaries of k Euclidean half-planes by an

interval-exchange map, such that the resulting surface is Σ \ p},
• (Geometric-analytic) Hk(Σ, p) = {harmonic maps from Σ \ p to Xk

asymptotic (bounded distance) to some m ∈M(k) on U \ p}.

Here, the maps between the spaces extend standard constructions: (C-a)→ (S-g)
assigns the induced metric of the differential, (S-g)→ (G-a) assigns the collapsing-
map, and (G-a)→ (C-a) assigns the Hopf differential of the harmonic map.

In particular, given any m ∈ M(k), there is a unique q ∈ HPk(Σ, p) whose
half-plane structure has a collapsing map asymptotic to m. This yields a parame-
terization

ΨU : HPk(Σ, p)→M(k) ∼= Rk × S1.

The parameters for the space M(k) are the (combinatorial) data of edge-lengths
of the metric graph that form the spine for the corresponding k-planar-end, and
the additional S1 factor represents the angle at which the planar end sits relative
to the chosen coordinate chart.

Remark. For this case of higher order poles, in contrast with Strebel’s theorem
stated earlier, specifying the “residue” at the pole no longer suffices to uniquely
determine the half-plane differential. Instead, one needs to specify the model map,
which is a choice of an element in M(k), at the pole. This involves k+1 additional
parameters (the combinatorial edge-lengths and angle) that depend on the choice
of a co-ordinate chart around the pole: these constitute the local data at the pole.

Example. We provide a quick example to illustrate the well-known “standard
constructions” alluded to above (see §2 for details and definitions): for k ≥ 2
consider the surface CP1 = C∪{∞} with the quadratic differential zk−2dz2. This
has a pole of order (k+2) at∞, and is a half-plane differential of order k: there is
a single zero at 0 ∈ C, and k critical trajectories into∞ that are rays from the zero
at angles of {2π·j

k
}0≤j≤k−1. This complex-analytic object then induces a singular-

flat metric |zk−2||dz2| comprising k half-planes: namely, in this metric each sector
between critical rays is isometric to a Euclidean half-plane ({=ζ > 0}, |dζ2|) by
the map z 7→ zk/2 = ζ. This is the synthetic-geometric half-plane structure; the
subset C \ {0} is then a k-planar end, being a conformal punctured disk built out
of half-planes. The map h : C → Xk defined by collapsing to the leaf-space of
the horizontal foliation is defined locally by ζ 7→ =ζ where ζ is the coordinate
on each half-plane as above. This is the geometric-analytic harmonic map to the
k-pronged tree, whose restriction to C \ {0} is a “model map”. Finally, its Hopf
differential 4〈hz, hz〉dz2 (see Definition 2.6) recovers the differential zk−2dz2 (up
to a real constant multiple) returning us to the complex-analytic setting.
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The maps between the spaces in Theorem 1.1 extend these basic constructions
to the setting of half-plane differentials on punctured Riemann surfaces of genus
g ≥ 1.

Descriptions of the spaces M(k) and P(k) appear in §3, and details of the other
spaces in Theorem 1.1 appear in §4. As mentioned earlier, the correspondences in
Theorem 1.1 are known in the context of integrable holomorphic quadratic differ-
entials. Even for the case of differentials with poles of higher order, the correspon-
dence between the “complex-analytic” and “synthetic-geometric” descriptions can
be easily derived. Such differentials have also been studied from the point of view
of extremal problems (see, for example [Kuz00]). What this present work accom-
plishes is to identify the correct set of local data, at a pole of higher order, that
suffices to describe all possible half-plane differentials on a given pointed Riemann
surface. The difficult part of the theorem is to show that any choice of such local
data is (uniquely) achieved. For this we use the “geometric-analytic” characteri-
zation of half-plane differentials, involving harmonic maps to the graph Xk.

The critical graph of a half-plane differential in HPk(Σ, p) forms a metric spine
of Σ \ p, with k infinite rays to the puncture. As we vary the local data, and
the underlying (marked) pointed Riemann surface in Tg,1, these data vary in the
“combinatorial” space MSkg,1 of all possible such marked metric graphs (see §6).
Conversely, changing the lengths of the edges in such a metric spine can change
the underlying conformal structure as well as the local data at the pole. Hence,
as a consequence of Theorem 1.1, we establish:

Corollary 1.2. The map Φ : Tg,1 × Rk × S1 →MSkg,1 that assigns to a pointed
Riemann surface and local data the metric spine of the corresponding half-plane
differential, is a homeomorphism.

The space on the left hand side can be identified with the total space of half-
plane differentials of order k, as a subset of the corresponding bundle of meromor-
phic quadratic differentials over Tg,1 (see §6 for details). The homeomorphism Φ
may be thought of as a correspondence between Teichmüller space with “higher”
decoration, and metric spines on the punctured surface: from that perspective, this
corollary generalizes the Penner-Strebel parametrization of decorated Teichmüller
space (see [Pen87]).

The results in this paper generalize in the obvious way to the case of finitely
many poles on a compact Riemann surface (and to CP1 with more than two
poles). The existence of half-plane differentials on a given Riemann surface with
prescribed order and residue at the poles was first shown in [Gup14b]. This
article provides a different proof of that existence result, and completely answers
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Figure 1. (An example of a half-plane structure.) The genus-2
surface (on the left) is obtained by an interval exchange on a slit of
irrational slope on a flat torus. The corresponding Teichmüller ray
“stretches” the singular-flat metric in the vertical direction. A half-
plane differential of order 2 on a punctured torus (on the right) then
arises as the Gromov-Hausdorff limit when basepoints are taken to
lie on the critical graph.

the question of uniqueness raised in that paper. One way to interpret our result
is that we have completely answered the question:

In how many ways can you glue k Euclidean half-planes by isometries along
intervals on their boundaries, to obtain a given punctured Riemann surface?

Half-plane differentials arose in previous work of one of us ([Gup14a]) as represent-
ing “limits” of singular-flat surfaces along Teichmüller geodesic rays (see Figure 1
for an example).

An arbitrary meromorphic quadratic differential with higher order poles may
have a disconnected critical graph, which decomposes the surface into “horizontal
strips” and “spiral” or “ring” domains in addition to half-planes. In fact a generic
such differential would have no critical trajectories between zeros (viz. are saddle-
free) and such a decomposition comprises only horizontal strips and half-planes
(see also [BS]). The present work thus concerns trajectory structures in the “most
degenerate” case. In forthcoming work we aim to handle all trajectory structures
and provide a full generalization of the Hubbard-Masur theorem ([HM79]).

Outline of the paper. The main result of the paper is the correspondence
between the “complex-analytic” and “geometric-analytic” spaces in Theorem 1.1.
The technique of using harmonic maps to graphs to produce prescribed holomor-
phic quadratic differentials was developed by one of us in [Wol95], [Wol96]. A prin-
cipal difficulty in the present work is that the harmonic maps in the “geometric-
analytic” characterization have infinite energy. The argument for proving the
existence of such a map involves taking a compact exhaustion of the punctured
surface, and an appropriate sequence of harmonic maps that converges to it. The
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convergence is guaranteed by a priori energy bounds obtained by comparing the
maps with the solutions of a certain “partially free boundary” problem on an
annulus. This occupies an entire section (§4): we prove that under an additional
assumption of symmetry of the annuli the approximating maps (defined on the
compact exhaustion) have uniformly controlled behavior.

A feature of this paper is that we refrain from working in the universal cover:
our arguments exploit the “half-plane structure” on the surface. In particular, a
crucial challenge is to control the topology of the foliations of the Hopf differentials
of the limiting harmonic maps - for this we use properties of the foliations that
are specific to a half-plane structure (see, for example, the Topological Lemma in
§3.2).

After some preliminaries in §2, we introduce the notion of planar-ends and their
model maps in §3. After the discussion of the approximating maps in §4, the proof
of Theorem 1.1 is assembled in §5. In §6 we introduce the space of metric spines
MSkg,1 and provide the proof of Corollary 1.2.
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2. Preliminaries

In this section we provide some basic background that is relevant to the rest of
the paper, including some analytical results concerning harmonic maps that we
shall be using later.

2.1. Quadratic differentials. In this paper (Σ, p) shall denote a Riemann sur-
face of genus g ≥ 1 and a marked point p.

Definition 2.1. A meromorphic quadratic differential with a pole of order m ≥ 1
at p is a (2, 0)-tensor that is locally of the form q(z)dz2 where q(z) is holomorphic
away from p, while at p has a pole of order m.

Remark. By the Riemann-Roch theorem, the meromorphic quadratic differen-
tials on (Σ, p) with a pole of order at most m ≥ 1 is a complex vector space of
dimension 3g − 3 +m.
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Figure 2. The differential dz2 on C has a pole of order 4 at infinity,
this figure shows the horizontal foliation around the pole.

We shall often be thinking of this analytic object in terms of the geometry it
induces on the Riemann surface:

Definition 2.2 (Singular-flat metric). The singular flat metric induced by a mero-
morphic quadratic differential is the conformal metric locally defined as |q(z)||dz2|
(the singularities are at the zeros of the differential). The horizontal and vertical
components of the distance along an arc α shall be the absolute values of the real

and imaginary parts, respectively, of the complex-valued integral

∫
α

√
q.

Definition 2.3 (Horizontal measured foliation). The horizontal foliation induced
by such a differential is the singular foliation on the surface obtained locally by
pulling back the horizontal lines on the ξ-plane where the coordinate change z 7→ ξ
transforms the differential to dξ2. Moreover this is a measured foliation (see
[FLP79]), equipped with a measure on transverse arcs coming from the imaginary
component distance along such an arc. A similar definition holds for the vertical
foliation - this time we pull back the vertical lines by the change-of-coordinate
map. The foliation around a zero of the differential has a “branched” structure
that we shall refer to as a prong-singularity ; the order of the zero shall be referred
to as the order of such a prong-singularity. Around a pole of order (k+2), however,
the foliation has a structure with k “petals” (see Figure 2).

In classical Teichmüller theory, meromorphic quadratic differentials with a pole
of order at most 1 at p appear as the cotangent space to the Teichmüller space
Tg,1 at (Σ, p). These are called integrable quadratic differentials as the area form
|φ||dz2| is integrable on Σ, that is, the total singular flat area is finite. For qua-
dratic differentials with poles of order m ≥ 2, the induced singular flat metric has
infinite area. We briefly recall the metric structure around the poles (see [Str84],
[Gup14b] for details):

• an infinite cylinder for m = 2,
• a neighborhood of infinity of a k-planar end with k = m − 2 for m > 2

(see Definition 3.1) comprising k Euclidean half-planes.
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2.2. Half-plane differentials. In this article we shall be concerned with qua-
dratic differentials with poles of higher order (that is, of order m ≥ 3), and in the
special case that the critical graph (see the following definition) is connected.

As mentioned in §1, we call such a differential a half-plane differential of order
k, where k = m− 2, and its induced singular-flat geometry a half-plane structure.

Definition 2.4 (Critical graph). The critical graph of a holomorphic quadratic
differential comprises the zeros of the differential as well as the horizontal trajec-
tories (leaves of the horizontal foliation) emanating from them.

In the case of higher-order poles, when the critical graph is connected, that
graph forms a spine of the punctured surface. It follows from the classification of
the trajectory structure of horizontal foliations (see [Str84]) that the complement
of such a graph is then a collection of Euclidean upper half-planes with the hor-
izontal foliation precisely the horizontal lines on each half-plane. (In particular,
in this case spiral domains, ring domains or horizontal strips do not occur.) Re-
tracting each half-plane to its boundary along the vertical direction then defines
a retraction of the punctured surface to the spine. This describes the induced
half-plane structure.

2.3. Harmonic maps to graphs. Our main analytical tool will be harmonic
maps from the punctured Riemann surface to the k-pronged graph Xk. For the
general theory of harmonic maps to singular spaces, we refer to [KS93], [KS97]
and [GS92]. For the discussion in this paper, the following definition will suffice:

Definition 2.5. A harmonic map h : Σ\p→ Xk is a continuous and weakly differ-
entiable map with L2-derivatives that is a critical point of the energy-functional
for any compactly supported variation. (Note that by the above regularity as-
sumptions the energy density is locally integrable.) Alternatively, for this case
where the target is a tree, we equivalently require that the pullback of germs of
convex functions should be subharmonic (see §3.4 of [FW01] and Theorem 3.8 of
[DW07]).

The relation to quadratic differentials comes from the following construction:

Definition 2.6. The Hopf differential of a harmonic map h : Σ \ p → Xk is the
(2, 0)-part of the pullback of the metric on Xk, namely is the quadratic differential
locally of the form 4〈hz, hz〉dz2 (where the scalar product is with respect to a choice
of conformal background metric).

The main observation (see [Wol96], and Lemma 1 of [Sch]) that we use through-
out in this paper, is that the Hopf differential is holomorphic. Moreover, for a
1-dimensional target as in our case, the harmonic map projects along the leaves
of the vertical foliation of the Hopf differential. In other words, the level sets of
the harmonic map form the vertical foliation of the Hopf differential.
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Definition 2.7 (Collapsing map). Given a half-plane differential q ∈ HPk(Σ, p)
its collapsing map c = c(q) : Σ \ p→ Xk collapses the horizontal foliation of q to
its leaf-space, which is a tree with a single vertex O and k infinite-length prongs.
The critical graph is mapped to the vertex O. Moreover, the collapsing map is
harmonic, and its Hopf differential is −q (up to a positive real multiple) . We
shall sometimes refer to the horizontal foliation above as the collapsing foliation.

Remark. The extra negative sign above arises because of our choice of realizing
the horizontal foliation instead of vertical. This agrees with the convention chosen
in [HM79], but is opposite to that of [Wol96].

We note two further analytical results. First, a standard argument using the
chain-rule (see [Jos84] equation (5.1.1) for Riemannian targets and [KS93] for
tree-targets) yields:

Lemma 2.8. Let (T, d) be a (locally finite) metric tree with a basepoint O. Then
for a harmonic map h : Σ \ p → T , the distance function from the basepoint,
defined on Σ \ p as d(h(z), O) : Σ \ p→ R, is subharmonic.

Second, the following convergence criteria follows from a standard argument
using, for two-dimensional domains, the Courant-Lebesgue Lemma, a uniform
lower bound on the injectivity radius of the domain surface Σ and Ascoli-Arzela.
(See [Jos84] or [Wol96] for dimension two; for an analogous result that holds for
higher-dimensional domains see [KS93].)

Lemma 2.9. Let Σ be a compact Riemann surface (possibly with boundary) and
let (T, d) be a (locally finite) metric tree. For i ≥ 1 let hi : Σ → T be a sequence
of harmonic maps:
(a) with uniformly bounded energy and
(b) whose images have uniformly bounded distance from a fixed base-point on T .
Then there is a convergent subsequence with a limiting harmonic map h : Σ→ T .

2.4. More examples. We have already given a family of examples on the genus-
zero surface CP 1 in §1, following the statement of Theorem 1.1.

More generally, a one-parameter family of differentials in HPk(CP 1,∞) for an
even integer k ≥ 4, is given by

(zk−2 + iazk/2)dz2 for a ∈ R.

Here the critical graph has finite-length edges in addition to the k infinite prongs
(see [HM79] or Lemma 1.1 of [AW05]). For more examples, see §2 of [Gup14b].

3. Planar ends and model maps

In this section we introduce the space of k-planar ends P(k) and their harmonic
collapsing maps to the graph Xk (that has a single vertex O and k infinite-length
prongs). Together with an angle of rotation, these will form the space of model
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maps M(k) around the puncture p, for the collapsing maps of half-plane differen-
tials on the punctured Riemann surface Σ \ p. In §3.2 we highlight a topological
property of these model maps that shall be useful later.

3.1. Definitions. Throughout, we fix an integer k ≥ 1.

Definition 3.1 (Planar end). A k-planar end P is conformally a punctured disk
with a singular-flat metric, obtained by gluing k Euclidean upper half-planes to
each other by an interval-exchange of a finite number of subintervals of their
boundaries, where conical singularities of angle π in the resulting metric are not
allowed. (see Figure 3).

Figure 3. A fold is not allowed in the gluing on the boundaries.

The unglued intervals form the boundary of the resulting punctured disk (See
Figure 4.). The resulting surface has infinite area, with k rays incident to the
puncture at infinity; each ray corresponds to a pair of rays on the boundaries of
two half-planes that are identified by the gluing.

(Note that since there are only finitely many intervals, each half-plane boundary
has two half-infinite rays, and because the result of the gluing is to be a punctured
disk, the Definition 3.1 implicitly requires each half-infinite ray to be glued to
another in a manner that induces a cyclic ordering on the half-planes.)

Definition 3.2. We define P(k) to be the space of planar ends, in the topology
induced by the metric: two planar ends are close if there is a bi-Lipschitz map of
small distortion between them.

Proposition 3.3. The space P(k) of k-planar ends is homeomorphic to Rk−1 ×
R+
∼= Rk.

The idea of the proof (given below in detail) is as follows: the gluings of the
boundaries of the k half-planes yields a planar metric graph that forms a spine for
the punctured disk (and includes its boundary). We describe the parameter space
of such graphs, using a result in [MP98]. Briefly, there are different combinato-
rial possibilities of the metric graph, one obtainable from another by Whitehead
moves along the finite-length edges. For each combinatorial type, the lengths of
the finite edges parametrize a simplicial cone, and these piece together to give a
space homeomorphic to Rk−1 ×R+, where the positive real factor determines the
overall “scaling”.
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Figure 4. A 2-planar end has two possible patterns of metric
spines. The non-negative edge lengths (a, b) for each pattern pa-
rametrize cells that fit together to form R2. (See Propn. 3.3.)

Following [MP98] we first define:

Definition 3.4. A metric expansion of a graph G at a vertex of degree d ≥ 3 is
a new graph obtained by replacing the vertex by a tree (with each new vertex of
degree greater than two) that connects with the rest of the graph. (See Figure 5
for an example.)

The following proposition is culled from Theorem 3.3 of [MP98]:

Proposition 3.5. The space of metric expansions of a d-pronged tree Xd is home-
omorphic to Rd−3.

Sketch of the proof. A generic metric expansion replaces the vertex with a tree
that is dual to a triangulation of a d-gon on the plane, which in turn arises as the
convex hull of a function on the vertices. Postcomposing such a function with the
restriction of an affine map in Aff(R2,R) ∼= R3 to the vertices does not affect the
convex hull. Hence the space of metric expansions is obtained by quotienting out
the space of functions on the d-vertices by the space of these affine maps, resulting
in Rd−3. �

Proof of Proposition 3.3. For each a ∈ R+, consider the single-vertex graph Γa
consisting of a loop of length a and k (infinite-length) rays from the vertex. Next
consider the space of metric expansions of Γa for each a ∈ R+. Since the vertex
has valence (k+2), (see Figure 5 for the case k = 3), by Proposition 3.5 the space
of metric expansions of Γa is homeomorphic to Rk−1 for each choice of a. The
total space S of such metric expansions (when we vary a) is then Rk−1 × R+.

Finally, note that for any such metric graph, one can attach k half-planes to
obtain a k-planar end, and conversely, the metric spine of a k-planar end is a
graph in S. These maps are clearly inverses of each other, and each is continuous:
this thus establishes a homeomorphism between S and P(k). �
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Figure 5. A metric expansion at a vertex of degree 5.

In what follows we shall need:

Definition 3.6. The collapsing map of a planar end P is the harmonic map to
the k-pronged tree Xk

cP : P → Xk

obtained by mapping each half-plane to a prong by the map z 7→ =(z) that
collapses the horizontal foliation to its leaf space. (Throughout the article, =(z)
and <(z) shall denote the imaginary and real parts, respectively of a complex
number z.)

Note that this map takes the boundary of the planar end, and k arcs to the
puncture, to the vertex O of the tree Xk.

Definition 3.7 (Model maps). Let P ∈ P(k) be a planar end and θ ∈ [0, 2π/k)
be an angle, which we shall henceforth consider as lying on a circle S1. Consider
the conformal (uniformizing) homeomorphism φθ : P ∪ {∞} → D such that:

• φθ takes ∞ to 0, and
• φθ takes the k boundary rays to arcs incident to the puncture at (asymp-

totic) angles exp(iθ), exp(iθ + i2π
k

), · · · , exp(iθ + i2π(k−1)
k

).

(Note that the first condition determines such a uniformizing map φθ up to
rotation, and the latter determines it uniquely.) Then the model map for this
local data L = (P, θ) ∈ P(k)× S1 is the harmonic map

(1) m = cP ◦ φ−1
θ : D∗ → Xk

where cP is the collapsing map for P . The collection of such model maps with the
compact-open topology shall be denoted by M(k).

By definition, the assignment L = (P, θ) 7→ m above provides a homeomorphism
P(k)×S1 ∼= M(k). Hence by Proposition 3.3 we have the homeomorphism M(k) ∼=
Rk × S1 which is part of the statement of Theorem 1.1. As a remark, we can also
write the right-hand side Rk×S1 of this homeomorphism as Rk−1×C∗ by conflating
R+ × S1 to C∗ (together they represent the “complex scale” of the differential at
the pole).
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Two properties.

(1) First, we note that a model map is harmonic in the sense of Definition 2.5.
In particular, consider an annular subsurface S of the planar end P with a
one boundary component ∂S ∼= S1 that links the puncture, and the other
boundary component equal to ∂P . Then, the restriction of the collapsing
map of P to the subsurface S defines a harmonic map to a (finite) sub-
tree, say χ, that takes ∂P to the vertex O along with some boundary map
∂S → χ. The uniqueness of harmonic maps to trees (or more generally,
non-positively curved targets - see [Mes02]) then implies that the collaps-
ing map in fact solves the Dirichlet problem (and is the energy minimizer)
for these induced boundary maps. See Lemma 4.2 for an instance of this.

(2) The collapsing map from S to χ as in (1) has the feature that any interior
point of a prong of χ has exactly two pre-images on the boundary com-
ponent distinct from ∂P . We shall call this property “prong duplicity”.
Note that this property holds not just for a model map, but also for the
collapsing map for any half-plane differential on (Σ, p), when restricted to
such an annulus S around p in the corresponding planar-end.

We shall exploit these properties in Lemma 3.8 of the next section.

3.2. Topology of the collapsing foliation. As we saw in the previous section,
the model maps collapse along the leaves of a foliation on the punctured disk
(or its restriction to an annular subsurface S). This foliation has finitely many
prong-type singularities, with the property that all these singularities lie on a
connected “critical graph”. In subsequent constructions (in Proposition 5.2 and
Lemma 5.4), we will need to ensure that this connectedness holds for the critical
graphs for the Hopf differentials for a sequence of harmonic maps, and for the
limiting map. To this end, we shall use the following technical lemma. It shows
that the connectedness is forced by the two properties - harmonicity and the
“prong-duplicity” property - of the maps (see the end of §3.1).

The underlying reason for this is as follows: the prong-duplicity condition rules
out any “folding” of the map (which would have generated more pre-images) - the
prong-singularities (see Definition 2.3) are then forced to map to the vertex as it
is the only “singular” point of the target; finally, the Maximum Principle implies
that the preimage of the vertex is connected (this implicitly uses the feature that
the target is a tree).

Lemma 3.8 (Topological lemma). Let A be an annulus with boundary components
∂±A, and χ be a finite k-pronged tree with a single vertex O. Let f : A → χ be
a harmonic map collapsing along the leaves of a foliation F on A that is smooth
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except for finitely many prong-singularities. Further, assume that f satisfies the
following conditions:

• (Prong Duplicity) Each interior point of a prong of χ has precisely two
preimages on ∂+A, and

• ∂−A maps to the vertex O of χ.

Then the preimage f−1(O) is a connected graph that contains all the singularities
of F .

Proof. As we shall see, the harmonicity and the conditions above place restrictions
on the possible behaviors of the level sets, which are leaves of F .

First, note that as a consequence of the fact that f is harmonic, by the Maximum
Principle, no leaf of F can bound a simply connected region in A.

The argument for the connectedness of f−1(O) also uses the Maximum Princi-
ple:

Consider the level set f−1(O), and assume it is not connected. Let Γ1 and Γ2

be two disjoint connected components of f−1(O), with Γ1 containing ∂−A. We
may choose the “innermost” such pair, so that, together with arc(s) on ∂+A, the
graphs Γ1 and Γ2 bound a region of A without any preimage of the vertex in its
interior.

Figure 6. The (hypothetical) case when f−1(O) is disconnected.
Here the inner boundary of the annulus A (shown on the left) is
∂+A and the outer boundary is ∂−A.

Consider a path σ connecting Γ1 and Γ2. Since the image of σ does not cross
the vertex, the loop f(σ) ⊂ χ remains on one prong. Let y be the point on f(σ)
at maximum distance from the vertex, and let x ∈ σ map to y. (See Figure 6.).
Consider a small disk D centered at x contained in the interior of the region of
A bounded by Γ1 and Γ2. The restriction of the harmonic map f to U yields a
subharmonic distance function d(f(z), O) on U with a maximum achieved in its
interior. By the Maximum Principle, this forces f to be constant on U , which is
absurd, since its level sets are leaves of F .

Moreover, for an interior point of a prong, we can also show:
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Claim. If y ∈ Xk is an interior point of a prong, then the preimage f−1(y) is a
smooth arc without singularities and has exactly two endpoints on ∂+A.
Proof of claim. Otherwise, there will be a singularity, and hence some branching
at some point x′ ∈ f−1(y). Consider two of the branches of the preimage: if
they meet each other at an interior point, the resulting closed curve will either
enclose a simply connected region, which is not allowed by the Maximum Principle,
or separate the boundary components ∂±A which contradicts the fact that the
preimage of the vertex O is connected and intersects both. The same argument
rules out the two branches reaching the same point on ∂+A. Hence they reach
two distinct points of ∂+A. Then, the third branch will either

(1) reach ∂+A, which will violate prong-duplicity. (See Figure 7.) Note that it
must reach a point distinct from the other two branches as otherwise the
two branches from x′ with the same endpoint on ∂+A will create a bigon,
also disallowed by the Maximum Principle.

(2) close up, violating the Maximum Principle, as mentioned before,
(3) reach ∂−A, which will violate the fact that ∂−A maps to O.

Figure 7. A hypothetical singularity at x′ in A (left) is mapped
to an interior of a prong in Xk (right).

.

Hence in each possibility we get a contradiction. �

The claim just proved then implies that all the singularities must lie on the
preimage of the vertex f−1(O), which we also showed was connected. �

3.3. Bounded distance =⇒ identical. Lastly, we observe:

Lemma 3.9. A distinct pair of model maps m1,m2 ∈ M(k) are an unbounded
distance from each other, namely the distance function d : D∗ → R defined by
d(z) = dXk

(m1(z),m2(z)) is unbounded.

Proof. Assume that d is bounded. Since the distance function dXk
(·, ·) : Xk×Xk →

R is convex, the pullback d by the harmonic map (m1,m2) : D∗ → Xk × Xk is
subharmonic. Moreover, since any model map takes ∂D∗ to the vertex of Xk,
we have that d|∂D∗ ≡ 0. As D∗ is parabolic (in the potential-theoretic sense), a
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bounded non-negative subharmonic function on D∗ that vanishes on the boundary
is identically zero (see IV. §1 6C,7E and §2 9 of [AS60] or Theorem X.7 and X.17
of [Tsu75]). Thus d vanishes identically, contradicting the fact that m1 and m2

are distinct. �

Remark. This last lemma explains why the “geometric-analytic” space in The-
orem 1.1 involves the asymptotic behavior of harmonic maps upto “bounded dis-
tance”. In particular, for any fixed model map, there is a unique harmonic map
on the surface asymptotic to it in this sense. This shall be used in §5.2.

4. Symmetric annuli and estimates for least-energy maps

Recall that Xk is a tree with a single vertex O and k prongs of infinite-length.
In what follows, a finite k-pronged subtree of Xk (usually denoted by χ) will mean
a subset of Xk with the single vertex O and k finite prongs obtained by truncating
each prong of Xk.

Consider the following two boundary-value problems. Here, and subsequently
in the paper, we shall implicitly assume that maps considered are continuous with
weak derivatives locally in L2 (see Definition 2.5).

Problems. Find the energy-minimizing map from a conformal (round) annulus
A to a finite k-pronged sub-tree of Xk with a prescribed map on the boundary
component ∂+A, and with either:

• a prescribed map on the boundary component ∂−A ( a Dirichlet boundary
problem); when this is equal to the constant map to the vertex O we call
it a Dirichlet-O boundary problem, or
• no requirement on the boundary component ∂−A (a partially free boundary

problem).

Remark. We note that there exists a solution to the partially free boundary
problem for each annulus A: consider solutions of Dirichlet problems for different
boundary problems and then restrict to a sequence of those whose energy tends
to an infimum. Since there is an overall energy bound, the Courant-Lebesgue
Lemma provides for the equicontinuity of that sequence. Because the boundary
componeny ∂−A has fixed image, Lemma 2.9 applies, and shows that there is a
convergent subsequence.

In this section we show that under certain symmetry assumptions, the energies
of the solutions of these two problems differ by a bounded amount (Proposi-
tion 4.6). This comparison shall be crucial in the final section of §5 in proving a
uniform energy bound.
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Outline of the section. The results of this section shall be used later (§5.4)
to extract a convergent subsequence from a sequence of harmonic maps to Xk

defined on a compact exhaustion of our punctured Riemann surface Σ \ p. Such
a convergence is not obvious, as the images of such a sequence of maps are not
uniformly bounded - they lie in the graph Xk, and, as the sequence progresses, the
images cover arbitrarily large portions of the infinite-length prongs. In this section
we shall focus on an exhaustion of a planar end by symmetric annuli (defined
in §4.1) and eventually derive uniform bounds on compact sets, for the energy
and diameter of the partially free boundary solution for any such annulus in our
exhaustion. The main comparison results are stated in §4.2, where we compare
the solutions to the Dirichlet and the partially free boundary value problems on
the annuli (Propositions 4.7 and 4.6).

The first key observation (§4.3) for the proof is that the partially free boundary
problem on an annulus reduces to a Dirichlet problem on the doubled annulus
(where the doubling is across the “free” boundary). Then in §4.4, we use a stan-
dard decay for harmonic functions defined on a cylinder (here the decay is towards
the central circle of A) to uniformly bound – with a quantitative decay estimate
– the image of the “central” curve of the cylinder. Finally, in §4.5, we apply this
estimate in our setting to show that this decay compensates enough for the growth
of the image of the maps resulting from the growth of the compact subsurfaces:
this last balance of inequalities uses the additional symmetry we have assumed.

4.1. Exhaustion by symmetric annuli. We begin with some definitions.

Definition 4.1 (Rectangular annulus). A rectangular annulus A in a planar end
P is an annular subsurface with a core curve linking the puncture, whose boundary
consists of alternating horizontal and vertical edges on each half-plane. A trun-
cation of a planar end P is a rectangular annulus with one boundary component
precisely equal to the boundary of P .

Let A be a rectangular annulus in a planar end P . Then the restriction of the
collapsing map cP (as in Definition 3.6) to A is a harmonic map to its image in
Xk (see Property (1) following Definition 3.7). In particular, if A is a truncated
planar end, then cP is a harmonic map to the finite k-pronged subtree χ with
prong lengths given by the lengths of the horizontal edges in the outer boundary.
In this case, the collapsing map cP takes the boundary component ∂−A to the
vertex O, and so solves the “Dirichlet-O boundary” problem. We summarize the
discussion in the following lemma.

Lemma 4.2. The collapsing map cP restricted to a truncated planar end A in a
planar end P is the least energy map amongst those maps to Xk with same values
on the (outer) boundary component ∂+A, and which map the (inner) boundary
∂−A to O.



18 SUBHOJOY GUPTA AND MICHAEL WOLF

Figure 8. A symmetric rectangular annulus (shaded) in a 4-planar
end P has at least a 2-fold symmetry. Here the boundary of the
half-planes for the planar end are shown dotted, and the two sides
of a horizontal slit in the middle (in bold) form its boundary ∂P .

Remark. The energy of the collapsing map is equal to one-half the total area
of the rectangles constituting A.

Definition 4.3. A symmetric rectangular annulus in a k-planar end is a rectan-
gular annulus that uniformizes to a round annulus such that the restriction of the
collapsing map to the boundary components have a k-fold rotational symmetry
when k is odd, and k/2-fold rotational symmetry when k is even. (See Figure 8.)
In particular, if the subtree χ ⊂ Xk is the image of cP , then χ has that same order
of symmetry.

Finally, we shall need the following notion:

Definition 4.4 (Symmetric exhaustion). A symmetric exhaustion of a planar end
P is a sequence of nested symmetric rectangular annuli whose union includes a
neighborhood of the puncture at infinity.

Example. We refer to the example in §1 following Theorem 1.1. On the punc-
tured disk C \ {0} consider the meromorphic quadratic differential zk−2dz2 where
k ≥ 2. The induced metric is that of a k-planar end, and clearly has a k-fold
symmetry (multiplying z by a k-th root of unity leaves the differential invariant).
In particular, we can choose a sequence of closed curves with alternating vertical
and horizontal segments, having this symmetry, that exhaust the end and bound a
sequence of symmetric annuli. It is well-known (see [Str84]) that any odd higher-
order pole has a coordinate chart where the differential is of this form, and hence,
by the above description, has a symmetric exhaustion.

In what follows we give an independent synthetic-geometric proof of the exis-
tence of a symmetric exhaustion, that works in general.

Lemma 4.5. Any planar end P has a symmetric exhaustion.
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Figure 9. As in Figure 8, a planar-end can be obtained by intro-
ducing a slit (shown in bold) on a conformal copy of C obtained
by gluing half-planes. Given a 4-planar end (left) one can always
choose a symmetric 4-planar end (right) and truncations of each,
such that their complements are isometric.

Proof. We shall work with the metric spines of the planar ends - the latter is easily
recovered from the former by attaching half-planes. A symmetric exhaustion is
obvious for a “symmetric k-planar end”, that is, one with a critical spine having
the required symmetry (as in the preceding example). In what follows, we reduce
the general case to this.

A “truncation” of a metric spine S of P shall mean the subgraph obtained by
cutting off an end of each infinite-length ray. An H-thickening of such a truncated
metric spine (for some H > 0) is obtained by taking the points in P whose vertical
distance from the truncated spine is not greater than H. This is then a subsurface
of P comprising rectangles of height H on each half-plane.

The main observation is that, given an arbitrary planar end P , we can choose
a symmetric k-planar end Psym, and truncations of their metric spines, such that
the complements of their H-thickenings are isometric.

To see this, we apply the proof of Lemma 3.15 in [HM79]: namely, by elemen-
tary linear algebra (Lemma 3.13 of [HM79]) we choose the edge-lengths of the
symmetric k-planar end Psym, and distances along the rays for truncating both P
and Psym, such that for any thickening the edge-lengths of the resulting rectangles
would match. (See Figure 9.)

Pulling back a symmetric exhaustion of the latter by this isometry then pro-
duces the desired exhaustion on the planar end P we started with. �

4.2. Comparing solutions of Dirichlet and partially free boundary value
problems. The setting for this subsection is the following. Suppose {Ai}i≥1 is
a symmetric exhaustion of a planar end P . Let hi : Ai → Xk be the harmonic
map that solves the partially free boundary problem with the map on the outer
boundary being the restriction of the collapsing map cP . Also, let ci : Ai → Xk

be the restriction of cP to the annuli; we have already seen that they solve the
corresponding Dirichlet boundary problem on Ai (see Lemma 4.2 for the case when
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the exhaustion is by truncations of P ). Our aim in this section is to compare these
two harmonic maps; in particular, our main goal in this section §4 is to prove

Proposition 4.6. Let {Ai}i≥1 be a symmetric exhaustion of a planar end P . Let
ci : Ai → Xk be the restrictions of the collapsing map cP , and hi : Ai → Xk be
the solutions of the partially free boundary problem as above. Then their energies
satisfy:

(2) E(hi) ≤ E(ci) ≤ E(hi) +K

where K is independent of i.

This proposition will be used in the final section of §5 to prove an important
part of the main theorem.

The key ingredient in the proof of Proposition 4.6 is

Proposition 4.7. Suppose {Ai}i≥1 is a symmetric exhaustion of a planar end
P . Let hi : Ai → Xk be the harmonic map that solves the partially free boundary
problem with the map on the outer boundary being the restriction of the collaps-
ing map cP . Then the distance from the image under hi of the common (inner)
boundary component to the vertex O is uniformly bounded (independent of i).

The proof of this proposition will occupy subsections §4.3-4.5. The k-fold sym-
metry of the symmetric annuli plays a crucial role in §4.4, to guarantee the uniform
bound for any (k-) planar end: essentially, the argument then reduces to that of
a 2-planar end, with a general case being a finite cover.

Given Proposition 4.7, the proof of Proposition 4.6 is straightforward, so we
give it now.

Proof of Proposition 4.6:
Consider a fixed symmetric collar neighborhood N of the common (inner)

boundary I of Ai. (We shall assume, for convenience, that I coincides with ∂P .)
Then Proposition 4.7 applied to the symmetric exhaustion starting from the outer
boundary of N implies that the image of this collar neighborhood by the sequence
hi has a uniform diameter bound, say by C.

As before, let ci : Ai → Xk be the restriction of the collapsing map cP .
We construct a candidate map g : Ai → χi for the “Dirichlet-O boundary

problem” by

• setting g to equal to hi away from the fixed collar N .
• interpolating the map on N so that the inner boundary I is mapped by g to

the vertex O. (In case the boundary I does not coincide with the boundary
∂P of the planar end, the image will be a (fixed) finite k-pronged subtree
of Xk, and we instead interpolate to the corresponding map to it.)
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For such a map g, we see that g agrees with ci on the boundary ∂Ai and is a
candidate for the Dirichlet boundary problem whose energy is minimized by ci.
Hence we may conclude that

E(ci) ≤ E(g).

On the other hand, since the diameter of the collar is bounded (with bound
independent of the index i), the interpolation of the map g over the neighborhood
N can be done with a bounded cost of energy, independent of i. Hence

E(g) ≤ E(hi) +K

which gives the right-hand inequality of (2) once we apply the previous inequality.
To conclude, we note that the left-hand inequality in (2) is immediate: since

the collapsing map ci is a candidate for the partially free boundary minimizing
problem solved by hi, we find E(hi) ≤ E(ci). �

4.3. Doubling trick. Our goal then is to prove Proposition 4.7. We first show:

Proposition 4.8. Let A be a conformal annulus and let χ be a finite k-pronged
subtree of Xk. Fix a continuous map φ : ∂+A → χ on one boundary component
that takes on each value only finitely often, and consider the solution h : A → χ
to the partially free boundary problem that requires h to agree with φ on that
boundary component ∂+A. Then this map h extends by symmetry to a solution ĥ
of the symmetric Dirichlet-problem on a doubled annulus Â = A+ t∂−A A− where

one requires a candidate φ to be the map on both boundary components of Â. In
particular, we have h = ĥ|A+.

Note that the solution to the partially free boundary value problem exists (see
the beginning of §4).

Warmup to the proof of Proposition 4.8. We begin by assuming that the solution
h to the partially free boundary problem described above has image h(∂−A) of
the boundary component ∂−A disjoint from the vertex of χ.

By this assumption, near the boundary ∂−A, we have that h is a harmonic map
to a smooth (i.e. non-singular) target isometric to a segment.

First, we show that for the solution of the partially free-boundary problem, the
normal derivative at the (free)boundary component ∂−A vanishes. We include
the elementary computation below for the sake of completeness.
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Consider a family of maps ut : A→ R defined for t ∈ (−ε, ε). A map u0 = h in
this family is critical for energy if

0 =
d

dt

∣∣∣
t=0
E(ut)

=
d

dt

∣∣∣
t=0

∫
M

|∇ut|2dvolA

= 2

∫
M

∇u̇ · ∇u0dvolA

= −2

∫
M

u̇∆u0 +

∫
∂M

u̇
∂

∂ν
u0dvolA

Thus, since u̇ = d
dt

∣∣∣
t=0
ut is arbitrary, we see that necessary conditions for a

solution u0 to the partially free boundary value problem are that

∆u0 = 0

∂

∂ν
u0 = 0.(3)

Thus, the level curves for our map h = u0 to the graph meet the boundary arc
orthogonally.

We then show that the partially free boundary solution h is “half” of a Dirichlet
problem on a doubled annulus. We follow an approach developed by A. Huang in
his Rice University thesis [Hua]: Let Â be the annulus obtained by doubling the
annulus A across its boundary component ∂−A. That is, if we denote, as usual,
the boundary components ∂A = ∂+At∂−A, then we set Â to be the identification
space of two copies of A, where the two copies of ∂−A are identified. We write
this symbolically as Â = At∂−A Ā, where Ā refers to A equipped with its opposite
orientation.

Let ĥ : Â→ Xk denote the map defined on Â that restricts to h on the inclusion
A ⊂ Â and, in the natural reflected coordinates, on the inclusion Ā ⊂ Â. By the
continuity of h on A and its closure, it is immediate that ĥ is continuous on
Â. The vanishing of the normal derivative at the boundary (3) implies that the
gradient ∇h|∂−A is parallel to ∂−A. As that gradient is continuous on A up to

the boundary (see e.g. [Eva10], Theorem 6.3.6), we see that ĥ has a continuously

defined gradient on the interior of the doubled annulus Â.
Next, note that because ĥ is C1 on Â, we have that ĥi is weakly harmonic on

Â. In particular, we can invoke classical regularity theory to conclude that ĥ is
then smooth and harmonic on Â. Thus, since Xk is an NPC space, the map ĥ
is the unique solution to the Dirichlet harmonic mapping problem of taking Â to
Xk with boundary values h|∂+A. �
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Next, we adapt this argument to the general case when the image of the bound-
ary h(∂−A) might possibly contain the vertex O of the tree χ.

To accomplish the extension to the singular target case, we first analyze the
behavior of the level set h−1(O) of the vertex O within the annulus A, particularly
with respect to its interaction with the ‘free’ boundary ∂−A.

Lemma 4.9. Under the hypotheses above, any connected component of the level
set h−1(O) of the vertex O within the annulus A meets the free boundary ∂−A in
at most a single point.

Proof. We begin by noting that the proof of the Courant-Lebesgue lemma, based
on an energy estimate for h on an annulus (see, for example, Lemma 3.2 in [Wol96])
extends to hold for half-annuli, centered at boundary points of ∂−A. Applying
that argument yields a uniform estimate on the modulus of continuity of the map
h on the closure of A only in terms of the total energy of h. Thus there is a well-
defined continuous extension of the map h to ∂−A. We now study this extension,
which we continue to denote by h.

First note that there cannot exist an arc Γ ⊂ A ∩ h−1(O) in the level set for O
in A for which Γ meets ∂−A in both endpoints of ∂Γ. If not, then since A is an
annulus, some component of A \ Γ is bounded by arcs from ∂−A and Γ. But as
∂−A is a free boundary, we could then redefine h to map only to the vertex O on
that component, lowering the energy. This then contradicts the assumption that
h is an energy minimizer.

Focusing further on the possibilities for the level set h−1(O), we note that by
the assumption on the boundary values of h on ∂+A being achieved only a finitely
many times, the level set h−1(O) can meet ∂+A in only a finite number of points
(in fact the number of them is also fixed and equal to k in subsequent applications,
since the boundary map would be a restriction of the collapsing map for a k-planar
end).

Therefore, with these restrictions on the topology of h−1(O) in A in hand, we
see that by the argument in the previous paragraph, each component of h−1(O)
then must either be completely within, or have a segment contained in ∂−A, or -
the only conclusion we wish to permit - connect finitely many points of ∂−A with
one or more of the finite number of preimages of the vertex on ∂+A.

Consider the first case where a component of h−1(O) is completely contained
within ∂−A. A neighborhood N of a point in such a component then has image
h(N) entirely within a single prong, so the harmonic map on that neighborhood
agrees with a classical (non-constant) harmonic function to a segment. Thus in a
neighborhood of the segment, say on a coordinate neighborhood {=(z) = y ≥ 0},
the requirements from equation (3) and that h(0) = O and non-constant require
the function h to (i) be expressible locally as =(azk) + O(|z|k+1) for some k ≥ 1
and some constant a ∈ C, (ii) be real analytic, and (iii) satisfy ∂h

∂y
= 0 (where
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z = x + iy). It is elementary to see that these conditions preclude this segment
h−1(O) from being more than a singleton: that h−1(O) contains a segment defined
by {y = 0, x ∈ (−ε, ε)} implies that the constant a in condition (i) is real. But
then 0 = ∂h

∂y
= <(azk−1) +O(|z|k) also on that segment {y = 0, x ∈ (−ε, ε)}: thus

a = 0, and so the map h must be constant, contrary to hypothesis.
The same argument rules out the case when the level set h−1(O) meets the free

boundary ∂−A in a segment, and that segment is connected by an arc of h−1(O)
to ∂+A. But for this situation, we apply the argument of the previous paragraph
to a subsegment of h−1(O) on ∂−A with a neighborhood whose image meets only
an open prong, concluding as above that such a segment on ∂−A is not possible.

Thus the intersection of such a component of the level set h−1(O) with the free
boundary ∂−A is only a singleton, as needed. �

Conclusion of the proof of Proposition 4.8: It remains to consider the case when
the image of the boundary ∂−A by h contains the vertex O. It is straightforward
to adapt, as follows, the argument we gave in the warmup for the smooth case to
the singular setting.

Consider a neighborhood of a point on h−1(O)∩∂−A. Doubling the map on that
half-disk across the boundary ∂−A yields a harmonic map from the punctured disk
to the tree (defined everywhere except at the isolated point h−1(O)∩ ∂−A). That
harmonic map is smooth on the punctured disk and of finite energy, and hence
has a Hopf differential of bounded L1-norm. The puncture is then a removable
singularity for that holomorphic differential, and hence for the harmonic map.

The extended map ĥ is then harmonic on the doubled annulus, and is the
(unique) solution to the corresponding Dirichlet problem, as required. Note that
the normal derivative of the map may have a vanishing gradient at the boundary
(prior to doubling), this results in a zero of the Hopf differential on the central
circle of the doubled annulus. �

By the uniqueness of the solution of the Dirichlet problem on the doubled
annulus, we obtain the following immediate corollary of Proposition 4.8:

Corollary 4.10. The solution h : A → χ of the partially free boundary problem
as in Proposition 4.8 is unique.

4.4. A decay estimate. We now use Proposition 4.8 to gain uniform control on
the image under the harmonic map h of the free boundary ∂−A (which is the

central circle in the doubled annulus Â).
In what follows we will denote by C(L) a cylinder of circumference 1 and height

L, parametrized by cylindrical coordinates (x, θ) where x ∈ [0, L] and θ ∈ [0, 2π).
The central circle is the set {(L/2, θ)|θ ∈ [0, 2π)}.

Proposition 4.11. Let L > 1 and h : C(L) → R be a harmonic function with
identical maps f : S1 → R on either boundary that satisfy:



QUADRATIC DIFFERENTIALS, HALF-PLANE STRUCTURES, AND HARMONIC MAPS 25

• the maximum value of |f | is M , and
• the average value of f on each boundary circle is 0.

Then the maximum value of the restriction of h to the central circle is bounded by
O(Me−L/2), i.e there is a universal constant K0 so that |h(L/2, θ)| ≤ K0Me−L/2,
independent of the boundary values f of h.

Proof. Consider the case when f(θ) = Meinθ where n ≥ 1 and M is a real coeffi-
cient.

We compute that the Laplace equation 4h = 0 has solution

h(x, θ) =

(
sinhnx+ sinhn(L− x)

sinhnL

)
Meinθ

where we have used the boundary conditions h(0, ·) = h(L, ·) = f .
Thus, at x = L/2 we then obtain

(4) |h(L/2, θ)| ≤ K ·Me−|n|L/2

for some (universal) constant K.
In general, we have the Fourier expansion

f(θ) =
∑
n6=0

Mne
inθ

where note that there is no constant term because the mean of the boundary map
f vanishes. The coefficients of f satisfy

(5)
∑
n6=0

|Mn|2 = ‖f‖2 ≤M2

and the general solution is:

h(x, θ) =
∑
n6=0

(
sinhnx+ sinhn(L− x)

sinhnL

)
Mne

inθ

From (4) we find:

(6) |h(L/2, θ)| ≤
∑
n6=0

K ·Mne
−|n|L/2

Note that the geometric series

(7)
∞∑
n=1

e−nL =

(
e−L

1− e−L

)
≤ (K ′)2e−L

for the constant K ′ = (1− e−1)−1/2 ≈ 1.26 (once we assume that L > 1).
By the Cauchy-Schwarz inequality on (6) and using (5) and (7) , we then get:

|h(L/2, θ)| ≤ K ·M ·K ′e−L/2
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which is the required bound. �

4.5. Completing the proof. To finish the proof of Proposition 4.7, we apply the
results of §4.3 and §4.4 to the case of harmonic maps from annuli in a symmetric
exhaustion of a k-planar end to the corresponding finite k-pronged subtrees of Xk.

In what follows, let A be a symmetric rectangular annulus in a symmetric ex-
haustion {Ai}i≥1 in a k-planar end P . (Recall that these were defined in §4.1.)
The restriction of the collapsing map for P to the “outer” boundary ∂+A forms
the boundary condition for the partially free boundary problem.

Consider first the case when the number k of prongs is even. In this case,
by the k/2-fold symmetry of the domain (see Definition 4.3), the solution h to
the partially free boundary problem is the k/2-cover of the solution h̄2 of the
corresponding problem of a quotient annulus Ā to a 2-pronged tree X2. This is
because, by the uniqueness of the solution to the partially free boundary problem
(Corollary 4.10) on A, the solution acquires the same symmetries of the problem,
and then descends to the quotient annulus Ā.

On X2, one can define a signed distance function from the vertex, which is linear
and hence pulls back, via the harmonic map h̄2 : Ā→ X2 to a harmonic function
d(z) = ±dXk

(h̄2(z), O) on the annulus A. Then, as we shall quantify below, by
Proposition 4.11 of the previous section, this function will have an absolute-value
bound on the boundary component ∂−A. This bound is then acquired by the
(usual) distance function of the lifted map on the k/2-fold cover.

To determine the bound M of the distance function for d on the boundary ∂−A,
we examine the collapsing map of Ā to X2 on its boundary. This M is given by
the largest “height” of the rectangles in the symmetric annulus A (which descend
to the two rectangles constituting Ā). By its symmetry and well-known estimates,
the modulus of Ā is lnM (up to a bounded additive error), and hence the modulus
of A is 2

k
lnM (up to a bounded additive error). (See Figure 7.)

Hence the cylinder Â in the previous section that we obtained by doubling
across the “free” boundary of Ā has height L = 2 lnM + D for some real (uni-
versal) constant D, and Proposition 4.11 then gives the following bound on the
subharmonic distance function restricted to the middle circle:

|d(L/2, ·)| ≤ K0Me−L/2 = K0Me−2 lnM−D = K0e
−DM−1

which is uniformly bounded for any modulus M large enough (and in fact tends
to zero as i→∞ in the symmetric exhaustion by {Ai}i≥1).
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Figure 10. For large M the extremal length of the family of arcs
between the arcs shown in bold is ∼ 2 lnM +D for some real (uni-
versal) constant D. A truncated k-planar end is a k-fold branched
cover of this.

Hence the map h̄2 : Ā→ X2 takes the “free” boundary to a uniformly bounded
subset of X2, as A ranges over all the symmetric annuli in the exhaustion. As
noted above, the same bound holds for the original map h : A → Xk which is a
k/2-fold cover of the map h̄2 : Ā→ X2.

When k is odd, one needs a small additional step: the partially free boundary
solution h : A → Xk first lifts to a double cover ĥ : Â → X2k. The tree X2k now
has an even number of prongs and the above argument gives a uniform bound on
the image in X2k of the boundary component ∂−A by ĥ, that is also acquired by
the quotient map h.

This completes the proof of Proposition 4.7.

5. Proof of Theorem 1.1

In this section, we prove the main theorem. Recall we need to establish home-
omorphisms between the following spaces:

• (Complex-analytic) The space of half-plane differentials HPk(Σ, p).
• (Synthetic-geometric) The space of singular-flat half-plane structures Pk(Σ, p).
• (Geometric-analytic) The space Hk(Σ, p) of harmonic maps asymptotic to

some model map in M(k).

Here the space of model maps M(k) (see Definition 3.7) are defined relative to
a uniformization of a neighborhood U ∼= D of the puncture p. By “asymptotic”
we mean the distance function between the maps is bounded on U . Throughout,
the choice of U shall be fixed, and implicit in our discussion.

The spaces above can be given the obvious topologies: the “complex-analytic”
space HPk(Σ, p) acquires the topology induced as a subset of the corresponding
complex vector space of meromorphic quadratic differentials on Σ; the “synthetic-
geometric” space Pk(Σ, p) can be given a topology that measures how close the
singular-flat metrics are on compact subsets of Σ \ p (see also Definition 3.2);
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the “geometric-analytic” space of maps Hk(Σ, p) can be given the compact-open
topology.

The maps between these spaces, that we shall subsequently discuss, would all
be continuous in these topologies; hence we shall henceforth concern ourselves
with showing they define bijective correspondences.

We shall dispense with the easier correspondence in §5.1. To complete the proof
of Theorem 1.1, we will then be left with showing:

Proposition 5.1. The following bijective correspondences hold:

• (Synthetic-geometric→Geometric-analytic) The collapsing map for a half-
plane structure in Pk(Σ, p) yields a harmonic map in Hk(Σ, p).

• (Geometric-analytic→ Complex-analytic) For each model map m ∈M(k),
there exists a unique harmonic map h ∈ Hk(Σ, p) that is asymptotic to m,
whose Hopf-differential is in HPk(Σ, p).

In §5.2, we show that the first part of Proposition 5.1, in §5.3 we show the
uniqueness statement of the second part, while in §5.4, we complete the proof
of the existence statement of the second part, namely, that of a harmonic map
asymptotic to a given model map. This is where we use the energy estimates and
the a priori bounds established in §4.

5.1. Complex-analytic ↔ Synthetic-geometric. Since this part of Theorem
1.1 is already well-known, our discussion will be brief.

Recall from §2 that a half-plane differential q ∈ HPk(Σ, p) defines a flat singular
metric |q| on the surface Σ \ p that restricts to that of a Euclidean half-plane on
each complementary component of the metric spine, hence defining an element of
Pk(Σ, p).

Conversely, given a half-plane structure S ∈ Pk(Σ, p), the quadratic differential
dζ2 in the natural ζ-coordinate on each Euclidean half-plane {=ζ > 0} defines
a global holomorphic quadratic differential on the punctured Riemann surface
Σ \ p obtained by an an interval-exchange map on their boundaries. (Note that
the maps in an interval exchange are by semi-translations z 7→ ±z + c.) The
image of the boundary-lines of the half-planes after the identifications forms the
critical graph of this resulting differential, which is connected and forms a metric
spine (see the discussion following Definition 2.4). Hence we obtain a half-plane
differential q ∈ HPk(Σ, p).

Clearly, if two such half-plane structures in Pk(Σ, p) are isometric, then the
isometry is also a biholomorphism between the underlying Riemann surfaces that
also identifies the corresponding half-plane differentials.

It is straightforward to check this bijection is also continuous: the singular-flat
metrics depend continuously on the half-plane differential.
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Thus, what remains for the proof of Theorem 1.1 is the verification of Proposi-
tion 5.1. That proof occupies the next three sections.

5.2. Synthetic-geometric→Geometric-analytic. Recall that for a half-plane
differential, and its corresponding half-plane structure, the collapsing map of the
horizontal foliation to its leaf-space defines a harmonic map h : Σ \ p → Xk (see
Definition 2.7). In this subsection, we show that there is a unique model map
asymptotic to that collapsing map, that is:

Proposition 5.2. The restriction of the harmonic map h to U is bounded distance
from a unique model map m ∈M(k) on U . Moreover, as q above (and consequently
h) varies continuously, so does this model map m.

This proposition provides that the association in the second part of Proposi-
tion 5.1 is well-defined, namely, there is a well-defined map

(8) ΨU : HPk(Σ, p)→M(k)

that assigns ΨU(h) = m in the notation of the above Proposition. (Here recall
that in Theorem 1.1 we fix a coordinate chart U ∼= D around p.)

In what follows q ∈ HPk(Σ, p) shall be the half-plane differential corresponding
to the half-plane structure (we have already established in the previous section
that they are in bijective correspondence).

Note that for Proposition 5.2 we are assuming that h is already a collapsing
map of some half-plane differential (and hence of some planar end P ). The dif-
ficulty is that the (arbitrary) choice of the disk U means that its boundary may
not coincide with that of the planar end P . In particular, the harmonic map h
may not take ∂U to the vertex O of Xk, as a model map should. The assertion
of Proposition 5.2 is that nevertheless, the map h is bounded distance from such
a model map.

The strategy of the proof is the following: exhaust the punctured disk U \ p
with a sequence of annuli A1 ⊂ A2 ⊂ · · ·An ⊂ · · · , for which one boundary
component ∂−A agrees with ∂U . Then, for each such annulus, solve a Dirichlet
problem to get a harmonic map mn : An → Xk that maps ∂−A = ∂U to O, and
which restricts to h on the (other) truncated boundary ∂+A. We then show that
this sequence of harmonic maps mn will converge uniformly on compact sets to
the required model map m : U \ p→ Xk.

In the above construction, we need to ensure that the critical graphs for the Hopf
differentials for each mn, and the limiting map m, remain connected. Of course,
this application is what we had in mind in stating the Topological Lemma 3.8.
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(We recall that this lemma exploits the “prong-duplicity” property - see §3.1- of
the collapsing map h.)

Proof of Proposition 5.2. Recall that h : Σ \ p → Xk is the collapsing map for a
half-plane differential on Σ\p, and U ∼= D is a fixed disk centered at the puncture.
We shall construct a model map m : U → Xk as a limit of maps mn defined on
compact annuli exhausting U \ p. As usual we identify U ∼= D. Consider the
annulus An = D \ B(0, 1/n). We denote the boundary component ∂D as ∂−An
and the other boundary circle ∂B(0, 1/n) as ∂+An.

Let mn : An → Xk be the energy-minimizing map amongst continuous maps
with weak L2-derivatives that:

• restrict to h on ∂+An, and
• map ∂D = ∂−An to the vertex O.

Note that there is such an energy-minimizing map since any minimizing se-
quence will have a uniform energy bound, and the image of ∂−An is always the
vertex, so Lemma 2.9 applies. Since any reparametrization of the domain annu-
lus preserves the above properties, the limiting map is stationary (i.e. energy
minimizing for all reparametrizations of the domain), and by an argument of
Schoen (Lemma 1 of [Sch]), the Hopf differential is then holomorphic. Since h is
a collapsing map of a half-plane differential, its restriction to ∂+An satisfies the
prong-duplicity condition. By the Topological Lemma 3.8, these imply that mn

is a collapsing map for a foliation whose singularities which all lie on a connected
graph mapping to the vertex O of Xk. That is, the Hopf differential of mn has a
connected critical graph.

Next, let the maximum distance of h(∂−An) from O be denoted by B ≥ 0. The
distance function dn : An → R≥0 defined by

dn(z) = d(mn(z), h(z))

is then subharmonic, uniformly bounded by B on ∂D = ∂−An and (by construc-
tion) equal to zero on ∂+An. Hence by the Maximum Principle, the distance
function dn is bounded (by B) on An. Hence we have that all distance functions
are uniformly bounded on any compact set in D∗.

In fact, the sequence of harmonic maps mn are boundedly close to the fixed
harmonic map h. Thus, since the map mn takes the boundary ∂D to the vertex
of Xk for each n, then for any compact subset K ⊂ D∗ – noting that h(K) is fixed
independently of n – we see that there is a uniform bound on the diameter of its
image mn(K) under mn (note that K belongs to the domain of mn for all large
n). Hence there is a convergent subsequence mn → m (see Lemma 2.9 in §2.5)
where m : D∗ → Xk is harmonic and, indeed, still at bounded distance from h.

We need to show that m is a model map in M(k). We first show:
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Claim. The critical graph of the Hopf differential of m is connected, and is the
preimage of the vertex of Xk.
Proof of claim. We have noted above that the critical graph for each model
map mn is connected. The uniform convergence mn → m implies that the Hopf
differentials of mn converge uniformly on compact sets, and so do the horizontal
foliations of those Hopf differentials of mn (convergence here is in the Hausdorff
topology). Let F be the horizontal foliation for the Hopf differential of m.

The above convergence implies, in particular, that the singularities of the Hopf
differentials of mn converge to singularities of F . These account for all the singu-
larities on the punctured disk: each approximate has precisely k preimages of O
on the boundary component ∂+An (that shrink to the puncture), and in the limit
the Hopf differential has a pole of order (k+ 2) at the puncture, so by considering
the Euler characteristic, sum of the orders of the limiting prong-singularities (i.e.
the total order of zeros) is the same for m as it was for the approximates mn.

Since for each n, the singularities of mn are mapped to the vertex O of Xk,
hence so are their limits, which are all of the singularities of F by the argument
above.

The same argument as in the proof of Lemma 3.8 then completes the proof of
the claim: if there are two components of the critical graph (each mapping to O)
then one gets a maximum point of the subharmonic distance function from O in
the interior of a region of A bounded by them - a contradiction. �

Thus, the preimage of any interior point of a prong by m contains no singu-
larities, and is then a bi-infinite leaf with ends in the puncture. The complement
of the critical graph of the Hopf differential of m is then necessarily a collection
half-planes (swept out by the bi-infinite leaves). Moreover the number of such half-
planes is precisely k since the model map m is at most a bounded distance away
from the harmonic map h which is itself a collapsing map for some q ∈ HPk(Σ, p).
Finally, the map m takes ∂D to the vertex (since each mn does). Hence m ∈M(k).

The uniqueness follows from Lemma 3.9 - two such maps m1,m2, both a
bounded distance from h would be a bounded distance from each other, and
hence are identical. The statement about continuity follows since the singular
flat metrics vary continuously when the quadratic differential is varied, and so do
their collapsing maps. �

Remark. This now shows that ΨU : HPk(Σ, p)→M(k) defined by ΨU(q) = m
- see (8) - is well-defined and continuous. To prove it is a homeomorphism (and
complete the proof of Theorem 1.1) it shall suffice to prove that it is a bijection,
which the subsequent sections shall accomplish.
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5.3. Uniqueness of the half-plane differential. We next prove that the as-
sociation ΨU of half-plane differential to the model map is injective, namely the
uniqueness in the second part of Proposition 5.1. The argument is straightforward:

Suppose there are two half-plane differentials q1, q2 ∈ HPk(Σ, p) with harmonic
collapsing maps h1, h2 : Σ \ p→ Xk that are both asymptotic to the same model
map m. Then when restricted to U ∼= D, by the triangle inequality the subhar-
monic distance function d(z) = dXk

(h1(z), h2(z)) between the maps is bounded.
Since the punctured Riemann surface is parabolic in the potential-theoretic

sense, such a bounded subharmonic function must be constant, that is d ≡ c for
some non-negative real number c. (Compare the argument in Lemma 3.9.)

By definition, the preimage of the vertex O ∈ Xk by h1 and h2 are spines of the
punctured surface Σ\p. In particular, they must intersect (e.g. a pair of curves of
algebraic intersection number one cannot have disjoint representatives) and hence
the distance d ≡ 0 on Σ. Note that this uses the assumption that Σ has genus
g ≥ 1.

Hence h1 ≡ h2, as claimed. �

5.4. Geometric-analytic → Complex-analytic. In this section we prove the
surjectivity of the map ΨU : HPk(Σ, p)→M(k) in (8), namely the surjectivity of
the second part of Proposition 5.1. We shall use here the results of §4.

Our goal here is to show that for each model map m ∈ M(k), there exists a
harmonic map h : Σ \ p→ Xk of bounded distance to m, whose Hopf differential
q is half-plane, that is, q ∈ HPk(Σ, p). Note that the previous section §5.3 shows
that such a harmonic map h is unique. This would conclude the proof of Propo-
sition 5.1.

To this end, let (Σ, p), k ≥ 2, and U ∼= D be as in Theorem 1.1. Fix a planar end
and an angle (P, θ) and let m : U \ p→ Xk be a model map in M(k) determined
by this data, as in Definition 3.7.

By Lemma 4.4, we may choose a symmetric exhaustion of P

A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · ·
such that the symmetric rectangular annuli are all contained in U .

Let Σ0 = (Σ \ U) ∪ V , where V is the interstitial region between ∂U and the
inner boundary of A1 (see Figure 11). For n ≥ 1 define the sequence of Riemann
surfaces with boundary:

Σn = Σ0 ∪ An.

Definition 5.3 (Hn). For each n ≥ 0 let Hn be the set of continuous maps
h : Σn → Xk with weak derivatives in L2 such that

(a) the restriction of any h to ∂Σn ⊂ U is the same as the restriction of the
model map m : U → Xk, and
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(b) each h is a collapsing map for a foliation that is smooth except for finitely
many singularities, all of which lie along a connected spine for Σn that is
mapped to O ∈ Xk.

Define hn : Σn → Xk be an energy-minimizing map amongst all maps in Hn.

Note that an energy-minimizing map exists since by Lemma 2.9 any energy-
minimizing sequence in Hn has a convergent subsequence (the images of such a
sequence contains the common point O). Such a map has a holomorphic Hopf
differential as it is an energy minimizer for all reparametrizations of the domain.
We also note:

Lemma 5.4. The Hopf differential of hn has a connected critical graph.

Proof. By construction, each hn restricts to the model map m on ∂Σn. Recall
that the model map m (and consequently hn) has the “prong-duplicity property”
on the subsurface boundary, namely that any interior point of a prong of Xk has
precisely two preimages on ∂Σn (see Property (2) after Definition 3.7). In the
Topological Lemma 3.8 we showed that a harmonic map with this property has a
Hopf differential with a connected critical graph, in the case that the domain was
an annulus with one boundary component mapping to the vertex O ∈ Xk. In the
case at hand, the domain is a compact surface with boundary, with a spine that
maps to O. However, we can reduce to the case of a punctured disk by making
slits along each finite-length edge of the spine. Note that the resulting punctured
disk has a boundary that maps to O under hn. Applying the Topological Lemma
then completes the proof. �

The main result of this section is:

Proposition 5.5. After passing to a subsequence, the harmonic maps hn converge
uniformly on compact sets to a harmonic map h : Σ\p→ Xk, which is at bounded
distance from m on U , and whose Hopf differential q ∈ HPk(Σ, p).

The key step in the proof is to show that the energy of the restriction of hn to
Σ0 is uniformly bounded:

Lemma 5.6 (Energy bound). There exists a constant E > 0 such that the energy
of the restriction E(hn|Σ0) ≤ E for all n.

Proof. The strategy of proof follows that of [Wol91], also used in [JZ97] - we first
describe it in brief: Recall that hn is the energy-minimizing map amongst those in
Hn (Definition 5.3). The energy E(hn) can be expressed as a sum of the energies of
the restrictions of hn to Σ0 and An. We shall bound this energy in both directions:
for an upper bound we construct a “candidate” map g ∈ Hn, and for the lower
bound we use the estimate on the energy of the partially free boundary problem
obtained in §4 (Proposition 4.6). The two sides of the inequality shall then reduce
to the required uniform bound.
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Figure 11. Part of the compact exhaustion used in Lemma 5.6.

We denote by cn the restriction of the model (collapsing) map m to the sym-
metric rectangular annulus An for n ≥ 1. Let en be the energy of the solution of
the partially free-boundary problem on An, that is, the least energy map to the
k-pronged tree Xk amongst those that restrict to m on the outer boundary ∂+A.

By Proposition 4.6 we have:

(9) E(cn) ≤ en +K

where K is independent of n.
Now let h0 : Σ0 → Xk the energy minimizing map as defined in Definition 5.3.

For n ≥ 1 define gn : Σn → Xk to be the map that restricts to h0 on Σ0 and

to cn on the annular region An: note that this map is well-defined as h0

∣∣∣
∂Σ0

=

h0

∣∣∣
∂−A1

= cn

∣∣∣
∂−A1

.

Note that gn ∈ Hn and note that the energy E(gn) decomposes as

(10) E(gn) = E(h0) + E(cn).

Because hn is a minimizer for a problem for which g is a candidate, we have

E(hn) ≤ E(gn)

and, for analogous reasons, we also have

en ≤ E(hn|An).

Combining these last four displayed inequalities, we obtain:

E(hn|Σ0) + en ≤ E(hn|Σ0) + E(hn|An) = E(hn) ≤ E(h0) + en +K

which implies
E(hn|Σ0) ≤ E(h0) +K,

the required estimate. �
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Remark. The same argument applies for the energy of the restriction of the
map hn to any fixed subsurface Σl, and hence to any compact set in Σ \ p.
Corollary 5.7. After passing to a subsequence, the sequence {hn} converges to a
harmonic map h : Σ \ p→ Xk that is bounded distance from m on the disk U .

Proof. As in Lemma 2.9, the convergence on any fixed compact set is via a stan-
dard argument using the Courant-Lebesgue Lemma, using that the elements of
the sequence all have the vertex O in their image. A diagonal argument then
provides for convergence on full punctured surface Σ \ p.

Next, on the annulus An∪V , by construction we have that the distance function
dXk

(hn,m) vanishes on the “outer” boundary ∂+An. By the convergence hn → h,
we have a uniform distance bound (say dXk

(hn,m) < D) on the inner boundary
∂U . Since the distance function is subharmonic on the annulus An, by the Max-
imum Principle each map hn is then a uniformly bounded distance D from the
model map m, and hence the uniform limit h is also a uniformly bounded distance
from m. �

Finally, we observe:

Lemma 5.8. The critical graph of the Hopf differential of h is connected, and the
Hopf differential is a half-plane differential in HPk(Σ, p).

Proof. Since the convergence of the harmonic maps hn → h is uniform, so is the
convergence of the corresponding Hopf differentials. Since these are holomorphic
differentials, this convergence is in fact in C2 (and in fact in Ck for any k),
and hence their critical graphs converge to the critical graph in the limit. By
construction, each critical graph in the sequence is connected, and maps to the
vertex O. We briefly recount the argument, identical to that of the “Claim” in
the proof of Propn. 5.2, that implies that the limiting critical graph has the same
property:

First, the singularities of the approximates limit to singularities of the limiting
foliation, with the order of the resulting singularity being (at least) the orders of
the approximates. The sum of the orders of these prong-singularities is determined
by the Euler characteristic of the punctured surface; the orders and hence the sum
remains the same for the limiting foliation, and hence accounts for all the singu-
larities. There are no other singularities by this Euler-characteristic count, and
hence the entire critical graph maps to O. Second, if the critical graph has more
than one component, the subharmonic distance function (from O) would have a
maximum in the interior of a region enclosed by them, violating the Maximum
Principle.

Thus, the complementary regions of these spines are then necessarily half-planes
(see §2.2) and hence the Hopf differential is a half-plane differential. Moreover
since the harmonic map h is bounded distance from the model map m corre-
sponding to a k-planar end on their common domain near the puncture p, the
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Hopf differential of the harmonic map h has a pole of order k+ 2 at p, and hence
is in HPk(Σ, p). �

These two preceding lemmas complete the proof of Proposition 5.5, and hence
the proof of Proposition 5.1, and hence the proof of Theorem 1.1. �

6. Proof of Corollary 1.2

Definition 6.1 (Spaces of ribbon graphs). LetMS0
g,1 denote the space of marked

metric graphs that form an embedded spine of a punctured surface (Σ, p) of
genus g ≥ 1. These are also called ribbon-graphs or fat-graphs (see, for example,
[Pen87]). For k ≥ 1, let MSkg,1 denote the space of such marked metric spines
that, in addition, have precisely k edges of infinite length that are incident to the
puncture at p.

Remark. Graphs in MSkg,1 are precisely the metric spines of half-plane differ-
entials in Hk(Σ, p), as (Σ, p) varies over the Teichmüller space Tg,1, an observation
which we shall use below.

As a consequence of Proposition 3.5 we also have:

Lemma 6.2. The space of metric graphs MS0
g,1 is homeomorphic to R6g−6+3.

For k ≥ 1, the space of metric graphs MSkg,1 is homeomorphic to R6g−6+k+2×S1.

Proof. The first statement concerns the space of ribbon graphs (with a punctured-
disk complement) that have been parameterized elsewhere (see for example [Pen87],
[MP98]). In fact, Strebel’s theorem (as in the Introduction) provides the isomor-
phism MS0

g,1
∼= Tg,1 × R+

∼= R6g−6+3.
To obtain the second statement, we need to add in k infinite edges to such a

ribbon graph inMS0
g,1. The simplest way to do this is to add in an extra vertex v0

on the ribbon graph (viewed as the boundary of a disk punctured at p) such that
the additional k edges emerge from v0. There is then an S1-parameter space of
choices for placing the vertex v0. Any other graph inMSkg,1 is obtained by taking
a metric expansion at v0 (in the sense of Definition 3.4). Since the degree of v0 is
k+2, we see by Proposition 3.5 that the total spaceMSkg,1 then is homeomorphic

to MS0
g,1 × S1 × Rk−1 ∼= R6g−6+k+2 × S1 as required. �

Remark. Alternatively, for the second statement, given a ribbon graph in
MS0

g,1, one could replace the punctured disk in its complement by a k-planar

end with a choice of rotation, and hence the total spaceMSkg,1 would also be seen

from this perspective as homeomorphic to MS0
g,1 × P(k)× S1 ∼= R6g−6+k+2 × S1

(where we have invoked Proposition 3.3).

Proof of Corollary 1.2. We begin with the bundle Qk+2
g,1 of meromorphic quadratic

differentials with a pole of order (k + 2) over the Teichmüller space Tg,1. In that
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Figure 12. A metric spine inMS2
1,1 before “expansion” as in the

proof of Lemma 6.2.

total spaceQk+2
g,1 of meromorphic quadratic differentials with a pole of order (k+2),

consider the subset HPk,g consisting of half-plane differentials,, i.e.

HPk,g =
⋃

(Σ,p)

HPk(Σ, p) ⊂ Qk+2
g,1

where (Σ, p) varies over Tg,1.
By Theorem 1.1, we know that each HPk(Σ, p) ∼= Rk × S1 and hence

HPk,g ∼= Tg,1 × Rk × S1.

It remains to show that the map Φ : HPk,g → MSkg,1 that assigns the metric
spine of the corresponding half-plane differential, is a homeomorphism.

Any graph in MSkg,1 corresponds to a unique pointed Riemann surface (Σ, p)
and half-plane differential in HPk(Σ, p) by attaching to the spine k Euclidean
half-planes between the k infinite-length edges incident at the puncture. (The
differential is then the one induced by the standard differential dζ2 in the usual
complex coordinate ζ on each half-plane - see §5.1 for a related discussion.) It is
easy to see that this assignment forms the inverse for the map Φ.

Hence the map Φ is a bijection. Moreover, the inverse map constructed above is
clearly continuous. Since the Teichmüller space Tg,1 is homeomorphic to R6g−6+2,
applying Invariance of Domain to the lift of Φ to a map between the universal

covers H̃Pk,g and M̃Skg,1 (both homeomorphic to R6g−6+k+3) completes the proof.
�
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